
PRO: Preference-Aware Recurring Query Optimization

Zhongfang Zhuang*, Chuan Lei†, Elke Rundensteiner*, Mohamed Eltabakh*

*{zzhuang, rundenst, meltabakh}@cs.wpi.edu, †chuan@nec-labs.com
*Computer Science Department †NEC Labs. America
Worcester Polytechnic Institute 10080 N. Wolfe Road, SW3-350

Worcester MA, 01609 USA Cupertino CA, 95014 USA

ABSTRACT
While recurring queries over evolving data are the bedrock
of the analytical applications, resources demanded to pro-
cess a large amount of data for each recurring execution can
be a fatal bottleneck in cost-sensitive cloud computing envi-
ronments. It is thus imperative to design a system respon-
sive to users’ preferences regarding how resources should be
utilized. In this work, we propose PRO, a preference-aware
recurring query processing system that optimizes recurring
query executions complying with user preferences. First, we
show that finding an optimal execution configuration is an
NP-complete problem due to the cost interdependencies be-
tween consecutive executions. We propose an execution re-
lation graph (ERG) model that effectively incorporates these
dependencies between executions. This model enables us
to transform our problem into a well-known graph problem.
We then design a graph-based approach (called PRO-OPT)
leveraging dynamic programming and pruning techniques
with pseudo-polynomial complexity. Our experiments con-
firm that PRO consistently outperforms state-of-the-art so-
lutions by 9 fold in processing time under a rich variety of
circumstances on the Wikipedia datasets.

Keywords
Recurring Query; Preference-Aware; Execution Selection;

1. INTRODUCTION
Applications ranging from clickstreams analysis for online

advertisement recommendations, log analysis for intrusion
detection, to user sentiment inference on products are all
recurring complex analytical tasks. These applications exe-
cute periodically on data subsets that arrive within the last
hour(s), day(s), week(s), or even month(s) depending on the
applications’ scope of interest. Companies like Facebook,
LinkedIn, and Twitter dominantly utilize in-house clusters
with open source infrastructures to perform these tasks as
recurring queries over massive evolving datasets [14, 15].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-October 28, 2016, Indianapolis, IN, USA
c⃝ 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983664

One key question for such in-house computing clusters is
“how to handle system overload?” A system overload may
incur severe delays in response time or even a failure in pro-
ducing meaningful results when processing recurring queries
with large amounts of evolving data. Thus, if a recurring
query processing system cannot process every query execu-
tion within a reasonable latency, one feasible solution is to
drop certain recurring query executions to assure success of
all critical executions.

Dropping at the execution level produces exact results for
a subset of executions, whereas tuple-based sampling tech-
niques [2, 16] produce approximate results which are typ-
ically acceptable only for aggregation queries. Therefore,
depending on the queries semantics and complexity, execu-
tion dropping can be the preferred solution.

However, execution dropping must consider users’ prefer-
ence as well as the integrity of results for analytical work-
loads. Thus, it is imperative to design a system that (1) al-
lows data scientists to specify their execution selection pref-
erences as part of the recurring query submitted to the sys-
tem; (2) supports efficient recurring query processing with
limited resources based on user preference functions; and (3)
provides a proactive execution strategy for data fluctuations
based on runtime statistics.

State-of-the-Art Techniques. Some prior work [10,
11] focused on supporting recurring queries. However, their
solutions do not provide any system-level optimizations for
application-driven preference requirements, nor do they skip
executions to minimize the resource utilization.

Other systems [6, 12, 2, 16] minimize resource utilization
by providing approximate or partial results for large scale
analytical queries. More precisely, ApproxHadoop [6] ex-
plores input data sampling for workloads, while iMR [12]
proposes to sample and load-shed at the data origination
(i.e., where the data is generated). BlinkDB [2] aims to
balance between result accuracy and response time require-
ments specifically for aggregation queries. G-OLA [16] sup-
ports tuple-based incremental online aggregation by parti-
tioning data into smaller trunks of identical size on Spark.

None of these techniques target in particular recurring
queries where future periodic executions of a query can be
anticipated. Instead, their focus is limited to reduce the in-
put size of one individual execution to manageable size of
work. That is, their approximation techniques are designed
to reduce the execution time at the tuple or data block gran-
ularity [6, 12, 2, 16]. In contrast, the preference-aware re-
curring query processing, in this work, requires a system to
choose a subset of executions to complete (i.e., sampling at

2191

http://dx.doi.org/10.1145/2983323.2983664

the execution granularity) instead of sampling individual tu-
ples/blocks from the data source. Such a system guarantees
that all delivered results are a subset of the exact answer
with consideration of user-specified preferences. This prop-
erty is important since it allows the recurring application to
rely on the results received to be correct.
Challenges. To achieve the design goals of preference-

aware recurring query processing illustrated above, the fol-
lowing key challenges must be tackled.
Intractable Search Space of Execution Selection. Finding a

subset of executions from all executions with the maximum
satisfaction of user-specified preferences requires consider-
ing all possible combinations of query executions. This is
a NP-complete combinatorial problem [13]. Plus, adding
application preferences introduces additional dimensions to
the problem.
Stochastic Execution Costs. Consecutive executions of a

recurring query may share large segments of overlapping in-
put data. Hence, a decision about one particular execution
of a query may affect the costs of its subsequent executions
and thus the final configuration. This stochastic cost na-
ture of recurring query executions complicates our execu-
tion selection problem with uncertainties. Effective selection
strategies must be designed to reduce the execution costs.
Contributions. Our contributions include:
• We establish a preference-aware recurring query model.

This model incorporates the preference specification into
PRO’s optimization problem to ensure the maximum satis-
faction of application preferences across the selected query
executions (Sections 2 and 3).
• We show that our problem of finding a subset of exe-

cutions that maximally satisfy user-specified preferences is
NP-complete. Our platform-independent PRO optimizer is
designed to utilize a dynamic programming strategy to gen-
erate an optimal execution plan for a given period of time
with a pseudo-polynomial time complexity. Platform inde-
pendence enables the PRO optimizer to be employed in any
batch processing system, such as Hadoop, Spark, etc (Sec-
tions 4 and 5).
• Our experimental study on real-world datasets shows

PRO consistently outperforms the state-of-the-art solution in
processing time by 9 fold for various scenarios (Section 7).

2. PRELIMINARY
Recurring Query Parameters. A recurring query has

three parameters, namely a window w, a slide s and a pref-
erence specification pref. The scope of data to be processed
in each execution Ei of a recurring query Q is specified by
the time window w on the dataset, while the slide s specifies
the frequency of execution. Namely, two consecutive execu-
tions Ei and Ei+1 apply the query Q to the data within time
ranges [t−w, t] and [t+ s−w, t+ s] respectively, where t is
the current timestamp. Lastly, pref denotes the preference
specification associated with the query Q.
The preference specification pref has three parameters,

including (1) a period of time in the form of m consecutive
executions for a recurring query, (2) the number of execu-
tions k out of those m executions required by a user, and
(3) a preference function U given by the user indicating the
relative importance of each individual execution among the
m executions for the application. We further explain the
preference function in Section 3.1.

The system must guarantee that the number of executions
dropped never exceeds the value of m−k. Given the limited
available resources, we will drop executions such that the
delivered answer is a subset of the original answer. Choosing
the appropriate values for these three preference parameters
requires domain knowledge from the users. For example,
one way to determine k is to leverage the knowledge from
domain experts on the freshness or significance of results. In
this case, if the results slowly become stale, then a relatively
small k can be chosen [5].

Under heavy workload, it may not be possible to remove
excess load while still meeting the bound on k. In this case,
we apply“admission control”on recurring queries, where the
most costly queries whose preference specification cannot be
met are suspended.

Recurring Query Processing. In recurring systems
[10, 11], a recurring query Q is registered, where w and s
are defined as configuration parameters. Once registered,
the system periodically triggers the execution of Q accord-
ing to its w and s parameters. Given a recurring query
Q, the recurring system [10] pre-processes the input data
and subdivides the input files into smaller segments, called
panes, with a refined granularity. Each pane is an individual
file Fj on HDFS.

An execution Ei processes a sequence of files (Fx+1 to
Fx+n), where n is the number of files contained in the win-
dow w. When the window of interest w slides by s, any
overlapping data files between the two consecutive execu-
tions, Ei and Ei+1, do not need to be processed again.
Therefore, the pane-based partitioning divides a single query
execution into a sequence of subtasks over non-overlapping
pane inputs, each producing partial results. These partial
results are then combined to generate the final desired re-
sults. This execution strategy reduces the unnecessary
I/O and CPU costs otherwise associated with repeated
work across overlapping windows [10].

Although the state-of-the-art recurring query system [10]
avoids repetitive data processing caused by window and slide
semantics, it still strictly processes all recurring query ex-
ecutions to completion in isolation without supporting the
preferences specified by the users. In this work, we extended
their model to also accept a preference function pref as part
of a recurring query.

3. PRO PROBLEM FORMULATION
In this section, we further describe the preference func-

tions specified in the recurring query. Based on these prefer-
ence functions, we design a metric called penalty score (ps)
that indicates how preferable each execution is. We then
utilize this metric to formulate our optimization goal.

3.1 PRO Preferences
The penalty score is defined based on the preference func-

tion U in the PRO query model.

Definition 1 (Penalty Score). For a query Q and
its execution Ei, one preference function U maps the cost
of an execution Ei to a penalty score ps with ps between 0
(maximal preference) and 1 (minimal preference).

Example 1. A user may be asked to minimize the re-
source to process a recurring query due to the limited avail-
ability of resources of an in-house cluster. In such case, the
execution with the lowest cost is the most preferred. This

2192

preference function can be expressed as:

U(Ei) = 1− costmin

cost(Ei)
(1)

where costmin denotes the execution with the lowest esti-
mated processing cost, and cost(Ei) denotes the estimated
cost of the execution Ei.

Example 2. A user may favor to update a recommenda-
tion model at night (from 8pm to 2am) due to higher user
engagements. Thus the executions at night are considered
to be the most important, whereas the executions during the
day (from 2am - 8pm) are less important. Equation 2 shows
such a preference function U(·) for all Ei (i = 1,...n):

U(Ei) =

{
0.5 for 8pm < Ti < 2am
1 for 2am < Ti < 8pm

(2)

Note that although the executions during the day (from 2am
- 8pm) are less important, they can still be processed when
the in-house cluster has extra resources.

PRO Hybrid Preference Function. Our preference func-
tion U can also be a combination of multiple preference func-
tions. For ease of elaboration, here we assume that these
preference functions are independent. The users thus can
specify the relative importance of each function by assigning
relative weights. Each user may provide as many preference
functions as desired along with the associated weight fac-
tors to express their importance. The hybrid penalty score
of one execution Ei thus becomes:

U(Ei) =

n∑
j=1

αjUj(Ei) (3)

where
∑n

j=1 αj = 1 and αj ≥ 0, ∀j ∈ [1, n]. For example,
having α1 = α2 = 0.5 means that both preference functions
U1(·) and U2(·) are equally important for Ei to the user.

3.2 Problem Definition

Definition 2 (Problem Definition). Given a recur-
ring query Q(w, s, pref) with window w, slide s and a prefer-
ence specification pref (i.e., pref(m, k,U)), the preference-
aware recurring query optimization problem is to find
an execution configuration ε with the size |ε| = k, selected
from the total number of m executions that minimizes the
penalty score of a recurring query Q. That is,

Minimize: ps(Q) =
∑
Ei∈ε

U(Ei)

where U(Ei) is the total penalty score of each execution Ei ∈
ε as per Equation 3.

Finding the optimal solution for this problem requires enu-
merating all possible combinations of query executions for
Q, which is prohibitively expensive. Consecutive executions
of a recurring query may share one or more overlapping in-
put files. This overlap among recurring executions causes
the cost of one execution to depend on its preceding execu-
tions included in the execution configuration. Any solution
to our execution selection problem would need to tackle this
stochastic cost nature of recurring queries. In the following
sections, we will first describe our proposed solutions to the
above problem with a fixed value of k. Then, we will discuss
a relaxed problem in which the value of k can vary.

4. PRO PROBLEM ANALYSIS

4.1 Modeling Transition Costs
As described in Section 2, an execution Ei processes a se-

quence of files (Fx+1 to Fx+n), where n is the number of files
contained in a window w. To avoid repetitive data loading
among consecutive executions, the intermediate results gen-
erated from previous executions are cached for subsequent
reuse. Hence, the unnecessary I/O costs and the correspond-
ing execution time resulting from overlapping windows for a
query can be eliminated.

Due to the caching of intermediate results, the cost of a
query execution Ei on a file Fx can differ significantly on
whether some preceding executions have already processed
Fx. Therefore, the cost model now should account for the
caching mechanism as follows.

cost(Fx) =

{
costL + costP Fx is new

costP F ′
xs cache is available

(4)

where costL and costP denote the cost of data loading and
computation of an execution Ei, respectively. The cost of
an execution Ei is thus defined below.

Definition 3 (Execution Cost). Given a recurring
query Q, Ei is one query execution of Q over n input files
Fi = {Fx+1, Fx+2, ..., Fx+n}. The cost of this execution
cost(Ei) is defined as:

cost(Ei) = cost(Fi) =

n∑
l=1

cost(Fx+l) (5)

where cost(Fx+l) is defined in Equation 4.

Given that the consecutive executions are interdependent
and the cost of processing one execution may be affected
by its preceding executions, we define the notion of a transi-
tion cost to model this unique characteristic of the recurring
query execution.

Definition 4 (Transition Cost). Given two execu-
tions Ei and Ej (1 ≤ i < j) of a recurring query Q, and
the file sets Fi and Fj processed by Ei and Ej respectively,
the costs of processing these two executions independently
are cost(Ei) and cost(Ej), respectively. Then the transi-
tion cost (denoted as cost(Ei,j)) from Ei to Ej is defined
as follows:

cost(Ei,j) = cost(Fj\Fi) (6)

where Fj\Fi denotes the files associated only with Ej but not
with Ei.

Note that this transition cost can be utilized to calculate the
penalty score ps if a cost-based preference function is pro-
vided as part of the pref parameter. For example, assuming
execution Ei had previously been chosen to be processed,

then the penalty score ps of Ej is
(
1− costmin

cost(Ei,j)

)
.

4.2 Modeling the PRO Optimization Problem
With this notion of transition cost, the uncertainty in the

execution cost can be eradicated by modeling our problem of
selecting execution configurations with a weighted directed
acyclic graph G = (V, E). Each vertex in graph G represents
an execution (e.g., vi ∈ V represents execution Ei), and the
weight of each directed edge ei,j ∈ E from vertex vi to vertex
vj (∀vi, vj ∈ V and i < j) represents the penalty score ps
(Definition 1) of choosing Ej ∈ E right after Ei.

2193

Definition 5. Given a time period consisting of m exe-
cutions {E1, E2, ..., Em}, a directed acyclic graph ERG G =
(V, E), called Execution Relation Graph is defined as

1. v0 ∈ V denotes the root node (v0 leads to the first se-
lected execution),

2. ∀i ∈ [1,m], vi ∈ V, i ∈ [1,m] represents execution Ei,

3. a directed edge ei,j = (vi, vj) ∈ E exists only if vi, vj ∈
V and i < j. This directed edge denotes the decision
of choosing Ej directly after choosing Ei. The weight
of ei,j denotes its penalty score (Definition 1), which
is always positive.

Definition 6. Given a ERG graph G by Definition 5, a
directed length-k path Pi in G is defined as follows:

1. Pi starts at the root node v0,

2. Pi is composed of k edges (denoted as |Pi| = k).

5. PRO OPTIMIZER
To solve the core preference-aware recurring query op-

timization problem defined in Section 4.2, we have trans-
formed it into a minimum weight length-k path graph prob-
lem. We now propose the PRO optimizer consisting of a fam-
ily of algorithms for finding a length-k path with minimum
weight, taking both the length of a path and the weight of
a path into consideration. First, we present an exhaustive
search-based solution with pruning. Thereafter, we propose
a lightweight dynamic programming approach (PRO-OPT)
to produce an optimal solution. The PRO-OPT is extensible
to execution configurations with varying numbers of execu-
tions. Lastly, we design an adaptive methodology to tackle
fluctuations in the data rates.

5.1 Enhanced Exhaustive Search
To find minimum weight length-k paths as per Definition

6 in an ERG graph G, the PRO optimizer needs to enumerate
all possible length-k paths and to select the one with the
minimum weight. Unfortunately, the search space can be
shown to be exponentially huge [7]. There is not one unique
solution, i.e., there can be more than one length-k path with
the identical minimum weight.
A basic search algorithm would approach this problem by

traversing the graph G in a breadth-first search manner from
root v0. In the i-th iteration, it forms all possible length-i
paths. After k iterations, it produces all length-k solutions.
It then selects the one with minimal weight. If more than
one length-k path with equal minimal weight exist, then
this approach randomly selects one of them to be the final
execution configuration. The exhaustive search solution is
exponentially expensive as there are

(
m
k

)
length-k paths in

an ERG G.
While the search space is intractable, one key observation

is that certain subset of vertices in G do not need to be
considered any further as part of the final solution at each
iteration without losing optimality (see Lemma 1).

Lemma 1 (Vertex Pruning). Given an ERG G = (V, E)
and a desired path length k, then the out degree of va ∈ V is
denoted as deg+(va). In order to be considered fo r a length-
k path at the i-th iteration, the vertex va must satisfy:

deg+(va) ≥ k − i. (7)

5.2 Dynamic Programming-Based Approach
We now propose a dynamic programming-based PRO-OPT

approach that reduces search complexity. The key idea of
PRO-OPT is to exploit tabulation by building a series of
reusable sub-paths to form a length-k solution. An impor-
tant result is that PRO-OPT guarantees to produce an opti-
mal solution with a pseudo-polynomial time complexity.

Definition 7 (Minimum Weight Sub-paths). Let

P(h)
i denote the set of all length-h paths starting at vertex vi

and ending at any other vertex in a ERG G. Then we define

p
(h)
i,min as the minimum weight length-h path in P(h)

i .

Next we show that we can form a minimum weight length-
h path by adding one new edge to the current minimum
weight sub-path of length h− 1.

Definition 8 (Extension of Paths). Given an ERG G =
(V, E) by Definition 5 and an integer k as the desired path
length. All sub-paths with length h less than k can be ex-
tended according to the following equation:

w(p
(h)
i,min) =

{
min{w(ei,j)}, h = 1

min{w(ei,j) + w(p
(h−1)
j,min)}, h ∈ [2 : k]

(8)

where i ∈ [0,m], j ∈ [i+1,m−h+1]. w(ei,j) and w(p
(h−1)
j,min)

represent the weight of edge ei,j and the minimum weight of
length-(h− 1) sub-path starting from vj, respectively.

For a given vertex vi, only edges starting at vi and of
length less than or equal tom−h (i.e., ei,i+1, ei,i+2,...,ei,m−h)
are considered to form the minimum weight length-h sub-

path p
(h)
i,min. Multiple sub-paths starting from one vertex

can have the same minimum weight. Hence, all minimum

weight sub-paths p
(h)
i,min from one vertex and their respec-

tive associated minimum weight are stored in the Dynamic
Search Table (DST) to assure re-computations are avoided.
PRO-OPT Pruning Strategy. Similar to Lemma 1, not

all minimum weight sub-paths need to be considered. In-
stead, some sub-paths can never form a length-k path. There-
fore, we now reduce the Dynamic Search Table (DST) by
pruning these useless sub-paths.

Our formal PRO-OPT algorithm given in Algorithm 1 ex-
ploits both the sub-path extension method (Definition 8)
and dynamic pruning strategy to produce a minimum weight
length-k path.

The proposed dynamic pruning strategy does not affect
the correctness of PRO-OPT as it prunes sub-paths if and
only if they cannot be used to produce any length-k paths.
We now state the correctness of PRO-OPT in Lemma 2.

Lemma 2 (Optimality of PRO-OPT). Given an ERG

G = (V, E), the length-k path produced by PRO-OPT has the
minimal weight among all possible length-k paths.

5.3 Discussion
Problem Relaxation. As mentioned in Section 3.2, the

expected number of executions k can vary due to different
reasons. For example, domain experts may want to increase
k due to the change of their applications. The number of
executions k can also decrease when resources become less
available. Thus, PRO optimizer should have the ability to
generate a new execution configuration ε′ with a different

2194

Algorithm 1 PRO-OPT Algorithm

INPUT: Directed graph G = (V, E) and integer k
OUTPUT: A minimum weight simple k-path within G
1: for h = 1, h ≤ k, h← h+ 1 do
2: for i = k − h+ 1, i < |V| − k, i← i+ 1 do
3: for l = i+ 1, l < |V| − 2, l← l + 1 do
4: if h = 1 then
5: w(phi,min) = min{w(ei,i+l)}
6: store w(phi,min) and phi,min

7: else if 2 ≤ h < k then
8: w(phi,min) = min{w(ei,i+l) + w(p

(h−1)
i+l,min)}

9: store w(phi,min) and phi,min

10: else if h = k then
11: w(ph0,min) = min{w(e0,l) + w(p

(h−1)
l,min)}

12: store w(ph0,min) and ph0,min

13: break
14: end if
15: end for
16: end for
17: end for

number of executions based on the old one as needed. For-
tunately, our PRO-OPT is designed to build longer sub-paths
incrementally based on existing sub-paths stored in DST.
Therefore, a smaller size execution configuration ε′ is ex-
isted in DST. In addition, the minimum weight length-k + i
path can be extended from existing length-k + i − 1 paths
with a linear time complexity. Thereafter, if more than k
executions are feasible for the new time period based on the
cost estimation (Equation 1) and the available resources, our
PRO optimizer will produce an optimal execution configura-
tion (i.e., the minimum weight length-k+i path) for the new
time period.
Overlapping m Executions. Another issue concerns

that consecutive time periods of m executions may overlap
with each other. For example, if we have two consecutive
overlapping time periods Bi and Bj (i < j) of m executions
each, for any execution Ei /∈ Ei

∩
Ej , the execution cost of

Ei does not need to be changed. However, the costs of all
executions that belong to both periods (i.e., Ei

∩
Ej) need

to be adjusted to account for the fact that repetitive compu-
tations are eliminated in the PRO system. Consequently, the
edge weights that represent penalty scores in an ERG graph
are updated as well. Thereafter, we can simply apply the
above discussed adaptive technique to determine whether a
re-optimization is needed for the new time period.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup & Methodology
Experimental Infrastructure. We conduct all experiments

on a shared-nothing cluster with one master node and 39
slave nodes.* Each node has a configuration of 16 core AMD
3.0GHz processors, 32GB RAM, 250GB disk, and these 40
nodes are interconnected with 1Gbps ethernet. Each node
runs CentOS of version 6.5, Java 1.7 and Hadoop 1.2.1. Each
node is configured to concurrently run up to 8 map and 8
reduce tasks. The sort buffer size is set to 512MB. We keep
the default replication factor to 3.

*This cluster is supported by NSF Grant CNS-1305258.

Datasets and Queries. We use two real world datasets for
our experiments. The Wikipedia page editing log (400GB),
and the current version of all article pages from Wikipedia
(54GB) [1] being modified and updated continuously. We
focus on operations that are critical for emerging data ana-
lytical tasks, such as aggregation queries and top-k queries.

Algorithms and Systems. We implemented our PRO opti-
mizer with the proposed algorithms, PRO-EES and PRO-OPT
on top of a distributed platform, in this case Apache Hadoop
[3]. In addition, we implemented a depth first search al-
gorithm PRO-DFS for the purpose of comparison. Native
Redoop [10] is used in runtime performance experiments.
Since there is no support for preference-aware optimization
in native Redoop, we also configure a variation of Redoop
as k-Redoop, to only process first k executions in each time
period to make a fair competitor in robustness experiments.

Metrics & Methodology. We evaluate PRO runtime perfor-
mance by varying the input data volume and the number of
machines in the cluster and we measure the execution time-
a common metric for data management systems [11]. We
evaluate the result quality using ranking quality measure-
ment methods, namely Kendall’s tau [9], Normalized Dis-
counted Cumulative Gain (NDCG) [8] and Expected Recip-
rocal Rank [4]. Each method produces a precision result pr
and we define our error rate er to be er = 1−pr. Thereafter,
we compare error rates of PRO-OPT with native Redoop (i.e.,
all executions are being executed). We utilize the preference
function U1 in Table 1 for the above experiments. We ver-
ify the robustness of PRO optimizer with various preference
functions in optimizer robustness experiments.

Preference Functions

U1(Ei) 1− costmin
cost(Ei)

U2(Ei)

{
0.5 Ei.priority = high
1 Ei.priority = low

U3(Ei)
∑n

j=1 αjUj(Ei)

Table 1: Preference Functions Used in the Experiments

6.2 PRO Runtime Performance
Varying the cluster size. Figure 1(a) demonstrates the

scalability of PRO by varying the number of nodes in the
computing cluster. Compared to native Redoop, PRO-OPT
shows an average of 323% savings in processing time from
cluster size of 10 to 40 and up to 840% savings in processing
time when the number of nodes in the cluster is 10 and
execution selection ratio is 0.1.

Varying the data size. Figure 1(b) illustrates the exe-
cution times of PRO-OPT solution with different data sizes
ranging from 40GB to 400GB per a time period of m ex-
ecutions. PRO-OPT resource utilization significantly drops
compared to processing all executions. For example, PRO-
OPT saves up to 9 fold in execution time when the data size
is 400GB compared to native Redoop processing all execu-
tions. The execution time of PRO grows much slower than
native Redoop system for increased data sizes. For instance,
we observe the increasing rate of execution time from native
Redoop is 35% higher than PRO. The reason is that since we
use resource-driven preference function, PRO-OPT always se-
lects executions that will use the least resources.

6.3 Result Quality
We use PRO-OPT with execution selection ratios ranging

from [0.1, 0.9] to compute two lists of frequent items, i.e.,

2195

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 20 30 40

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Size of Cluster

Native Redoop
PRO-OPT, ratio=0.1
PRO-OPT, ratio=0.5
PRO-OPT, ratio=0.9

(a) Vary Cluster Size

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 40 80 120 160 200 240 280 320 360 400

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Size of Dataset (GB)

Native Redoop
PRO-OPT, ratio=0.1
PRO-OPT, ratio=0.5
PRO-OPT, ratio=0.9

(b) Vary Quality Method

Figure 1: PRO Runtime Performance

top-n frequent words (List #1) and the most frequent editors
in Wikipedia articles (List #2). We then compare error rates
between the results from PRO-OPT and Redoop. In Figure

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 0.3 0.5 0.7 0.9

Er
ro

r R
at

e
(%

)

Execution Selection Ratio (k/m)

PRO-OPT, List #1
PRO-OPT, List #2

Native Redoop

(a) Vary Item List

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.3 0.5 0.7 0.9

Er
ro

r R
at

e
(%

)

Execution Selection Ratio (k/m)

Kendall
NDCG

ERR

(b) Vary Quality Method
Figure 2: PRO Error Rate

2(a), we notice the error rate is much higher for List #2 than
List #1. For List #1, the error rate ranges from 14% to
0.5% when execution selection ratio is between 0.1 and 0.9,
respectively. For List #2, the error rate is 61.8% when there
is 10% of all executions within one time period are processed
and 15.8% when 90% of all executions within one time period
are processed. The reason is the ranking of frequent words
is more stable than the list of most frequent editors. In the
best case, we have an error rate of 0.06% when the execution
selection ratio is 0.9 with NDCG in Figure 2(b). In the worst
case, when execution selection ratio is 0.1 with ERRmethod,
we have an error rate of 75%. We observe that the error
rate of all three ranking measurement methods show the
same significantly decreasing trend as the execution selection
ratio increasing from 0.1 to 0.9 as a result of processing more
input data. The trade-off is that PRO uses far less resources
compared to native Redoop, yet still is able to produce high
quality results.

6.4 Robustness of PRO Optimizer

0
2
4
6
8

10
12
14
16
18
20

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9
F1 F2 F3

PRO-OPT
PRO-DFS
k-Redoop

Execution Selection Ratio (k/m)

Pe
na

lty
 S

co
re

(a) Penalty Score

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.1 0.3 0.5 0.7 0.9

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

Execution Selection Ratio (k/m)

PRO-OPT F1
PRO-OPT F2
PRO-OPT F3

(b) Execution Time
Figure 3: Varying Preference Functions

Next, we examine the effect of varying preference func-
tions from Table 1 on the penalty scores and execution times.
For that, we vary the execution selection ratio from [0.1, 0.9]
on the x-axis. The number of executions in each time pe-
riod is set to 30 and input data size is 240GB for one time
period. We randomly select 15 out of 30 executions as “low
priority” (penalty score is 1). The rest are set to “high pri-
ority” (penalty score is 0.5) in preference function U2. We

combine functions U1 and U2 using function U3 with rela-
tive importance of each function (U1 and U2) equally to 0.5.
Figure 3(a) shows that PRO-OPT always produces execution
configurations with minimum penalty scores compared to
PRO-DFS and k-Redoop for all three preference functions.
Figure 3(b) shows that the processing times of execution
configurations generated by PRO-OPT with different pref-
erence functions can differ drastically. For example, when
execution selection ratio is 0.5, the execution configuration
produced by PRO-OPT with the function U2 takes 61% longer
time to process than PRO-OPT with the function U1 and 47%
longer compared to PRO-OPT with function U3. The reason
is the execution configurations actually have different sets of
executions according to different preferences.

7. CONCLUSION
This paper presents the first preference-aware recurring

query processing solution. Our PRO system offers 3 key inno-
vations. (1) The preference-aware recurring query model es-
tablished for PRO integrates recurring query processing with
various preferences specified by application developers. (2)
The proposed execution relation graph models the interde-
pendencies and stochastic execution costs among executions.
(3) Our novel PRO-OPT algorithm effectively produces an
optimal execution configuration with a pseudo-polynomial
time complexity. Its efficiency enables PRO to adaptively
re-optimize when faced with data fluctuations. Lastly, our
experimental results demonstrate that our PRO solution con-
sistently outperforms state-of-the-art technologies by 9 fold
in a large range of scenarios.

8. REFERENCES
[1] Wikimedia downloads. https://dumps.wikimedia.org.

[2] S. Agarwal, B. Mozafari, et al. Blinkdb: queries with bounded
errors and bounded response times on very large data. In
EuroSys, pages 29–42, 2013.

[3] Apache. Hadoop. http://hadoop.apache.org.

[4] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Expected
reciprocal rank for graded relevance. In CIKM, pages 621–630,
2009.

[5] J. Gama, R. Sebastião, et al. Issues in evaluation of stream
learning algorithms. In SIGKDD, pages 329–338, 2009.

[6] Í. Goiri, R. Bianchini, S. Nagarakatte, et al. Approxhadoop:
Bringing approximations to mapreduce frameworks. In
ASPLOS, pages 383–397, 2015.

[7] A. Hassidim, O. Keller, et al. Finding the minimum-weight
k-path. In Algorithms and Data Structures, pages 390–401.
Springer, 2013.

[8] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM TODS, 20(4):422–446, 2002.

[9] M. G. Kendall. A new measure of rank correlation. Biometrika,
pages 81–93, 1938.

[10] C. Lei, E. A. Rundensteiner, and M. Y. Eltabakh. Redoop:
Supporting recurring queries in hadoop. In EDBT, pages
25–36, 2014.

[11] C. Lei, Z. Zhuang, E. A. Rundensteiner, and M. Eltabakh.
Shared execution of recurring workloads in mapreduce.
PVLDB, 8(7):714–725, 2015.

[12] D. Logothetis, C. Trezzo, K. C. Webb, et al. In-situ mapreduce
for log processing. In USENIXATC, pages 9–9, 2011.

[13] H. Ryser. Combinatorial mathematics. The Carus
Mathematical Monographs, No. 14, 1963.

[14] J. Sarma. Hadoop at facebook.
https://www.facebook.com/notes/facebook-
engineering/hadoop/16121578919.

[15] R. Sumbaly, J. Kreps, and S. Shah. The big data ecosystem at
linkedin. In SIGMOD, pages 1125–1134, 2013.

[16] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica.
G-ola: Generalized on-line aggregation for interactive analysis
on big data. In SIGMOD, pages 913–918, 2015.

2196

	Introduction
	Preliminary
	PRO Problem Formulation
	PRO Preferences
	Problem Definition

	PRO Problem Analysis
	Modeling Transition Costs
	Modeling the PRO Optimization Problem

	PRO Optimizer
	Enhanced Exhaustive Search
	Dynamic Programming-Based Approach
	Discussion

	Experimental Evaluation
	Experimental Setup & Methodology
	PRO Runtime Performance
	Result Quality
	Robustness of PRO Optimizer

	Conclusion
	References

