
Signed Distance-based Deep Memory Recommender

ABSTRACT
Personalized recommendation algorithms learn a user’s preference
for an item, by measuring a distance/similarity between them. How-
ever, some of existing recommendation algorithms (e.g., matrix
factorization) assume a linear relationship between the user and
item. This approach may limit the capacity of the recommender
systems, since the interactions between users and items in real-world
applications are much more complex than the linear relationship. To
overcome this limitation, in this paper, we design and propose a deep
learning framework called Signed Distance-based Deep Memory
Recommender, which captures non-linear relationship between users
and items directly and indirectly, and work well in both general
recommendation task and shopping basket-based recommendation
task. Through extensive empirical study on six real-world datasets
in the two recommendation tasks, our proposed approach achieved
significant improvement over ten state-of-the-art recommendation
models. Our source code is available at an anonymized URL.

ACM Reference Format:
. 2018. Signed Distance-based Deep Memory Recommender. In Proceedings
of ACM WWW conference (WWW’19). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Recommender systems [1] have been deployed in many online appli-
cations such as e-commerce, music/video streaming services, social
media, etc. They have played a vital role for users to explore new
items and for companies to increase their revenues. Most of recom-
mendation algorithms model user preference and item properties
based on observed interactions (e.g., clicks, reviews, ratings) be-
tween users and items [20, 21, 30]. In a perspective, we can view
most of the recommendation models as a measurement of similarity
or distance between a user and an item. For instance, the well known
latent factor (i.e., matrix factorization) models [19] usually employ
an inner product function to approximate the similarity between the
user and the item. Although the latent factor models achieved com-
petitive performance in some datasets, they did not correctly capture
complex (i.e., non-linear) relationships between users and items
because the inner product function follows limited linear nature.

Existing recommendation algorithms face difficulty in finding
good kernels for different data patterns [30], only focused on user-
item latent space without considering the item-item latent space
together [12, 24, 25, 42, 56], or required additional auxiliary infor-
mation (e.g., item description, music content, reviews) [4, 17, 29, 31,
52]. By overcoming the drawbacks, in this paper we aim to propose

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WWW’19, May 2019, San Francisco, California USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

user-item latent space item-item latent space
Personalized
Metric-based

Attention

Target Pair

attention

embedding embedding

embedding

Euclidean
distance

+
learned by SDP

learned by SDM

Consumed

Figure 1: We consider a recommender as a signed distance ap-
proximator, and decompose the signed distance between a user
and an item into two parts: the left box learns a signed distance
between the user and item (i.e., the camera lens), the right box
learns a signed distance between the item and the user’s recently
consumed items (i.e., the book, CD and camera). Our novel per-
sonalized metric-based soft attention is applied to the consumed
items to optimize their contributions to the final output signed
distance score. Then the two parts are combined to obtain a fi-
nal score. Most of linear latent factor models are equivalent to
simply measuring the linear Euclidean distance in the user-item
latent space (shown as the green line).

and build a deep learning framework to learn non-linear relation-
ship between a user and a target item by measuring a distance from
the observed data. In particular, we propose Signed Distance-based
Deep Memory Recommender (SDMR), which captures non-linear
relationship of the user and item directly and indirectly, combine
directly and indirectly measured relationship to produce a final dis-
tance score for the recommendation, and works well in both general
recommendation task and shopping basket-based recommendation
task.

SDMR internally combines two signed distances, each of which is
measured by our proposed Signed Distance-based Perceptron (SDP)
and Signed Distance-based Memory Network (SDM). On one hand,
SDP directly measures a non-linear signed distance between the user
and the item. Many existing models [13, 16] rely on a pre-defined
metric such as Euclidean distance (the green line in Figure 1) which
is much more limited than the customized non-linear signed distance
learned from the data (the red curves in Figure 1). On the other hand,
SDM indirectly measures a non-linear signed distance between the
user and the item via the user’s recently consumed items. SDM is
similar to the item neighborhood-based recommender [35, 41] in
nature. However, it is more advanced in several aspects, as shown
in the right side of Figure 1. First, SDM only focus on a set of
recently consumed items of the target user (e.g., the book, CD and
camera in Figure 1) as context items. Second, it employs additional
memories to learn a novel personalized metric-based attention on the
consumed items. The goal of our proposed attention is to compute
weights of each consumed item w.r.t. the target item (i.e., the camera
lens). In the example, the attention module assigns higher weights

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

WWW’19, May 2019, San Francisco, California USA

on the camera and lower weights on the book and CD. Unlike our
approach, most of the existing neighborhood-based models consider
contribution of consumed items to the target item equally, and it may
lead to unsatisfactory results. Last but not the least, we update the
attention weights via a gated multi-hop to build a long-term memory
within SDM. This multi-hop design helps refine our attention module
and produces more accurate attentive scores.

The contributions of this work are summarized as follows:

• We design a deep learning framework which can tackle both
general recommendation task and shopping basket-based recom-
mendation task.

• We propose SDMR that combines two signed distance scores
internally measured by SDP and SDM, which capture non-linear
relationship between a user and an item directly and indirectly.

• To better balance the weights among consumed items of the
user, we propose a novel multi-hop memory network with a
personalized metric-based attention mechanism in SDM.

• Extensive experiments on six datasets in two different recom-
mendation tasks demonstrate the effectiveness of our proposed
methods against ten baselines.

2 RELATED WORK
Latent Factor Models (LFM) have been extensively studied in the
literature, which include Matrix Factorization [16], Bayesian Person-
alized Ranking [38], fast matrix factorization for implicit feedbacks
(eALS) [13], etc. Despite their success, LFM suffer from several
limitations. First, LFM overlook associations between the user’s pre-
viously consumed items and the target item (e.g. mobile phones and
phone cases). Second, LFM usually rely on inner product function,
whose linearity limits the capability of modeling complex user-item
interactions. To address the second issue, several non-linear latent
factor models have been proposed, with the help of Gaussian pro-
cess [23] or kernels [30, 61]. However, they either require expensive
hyper-parameter tuning or face difficulty in finding good kernels for
different data patterns.

Neighborhood-based models [35, 41] are usually based on the
principle that similar users prefer similar items. The problem turns
into finding the neighbors of a user or an item based on a pre-defined
distance/similarity metric, such as cosine vector similarity [3, 22],
Person Correlation similarity [6], etc. The recommendation quality
highly depends on a chosen metric, but finding a good pre-defined
metric is usually very challenging. Furthermore, these models are
also sensitive to the selection of neighbors. Our proposed SDM is
similar to neighborhood-based models in nature, but it exploits a
novel personalized metric-based attention for assigning attentive
weights to neighbor items. Therefore, our approach is more robust
and less sensitive than conventional neighborhood-based models.

NeuMF [12] is a neural network that generalizes matrix factor-
ization via Multi Layer Perceptron (MLP) for learning non-linear
interaction functions. Similarly, some other works [24, 25, 42, 56]
substitute MLP with auto-encoder architecture. It is worth noting
that all these approaches are limited by only considering the user-
item latent space, and overlook the correlations in the item-item
latent space. Besides, some deep learning based works [32, 44, 50]
employ auxiliary information such as item description [17], music

content [52], item visual features [4, 29], reviews [31] to address the
cold-start problem. However, this auxiliary information is not always
available, and it limits their applicability in many real-world systems.
Another line of works use deep neural networks to model temporal
effects of consumed items [14, 36, 48, 55]. Although our proposed
methods do not explicitly consider the temporal effects, SDM uti-
lizes the time information to select a set of recently consumed items
as the neighborhoods of the target item.

The most closely related work to our work is recently proposed
Collaborative Memory Network (CMN) [7]. In this work, Memory
Network [47] is adapted to measure the similarities between users
and user neighbors. Key differences between our work and CMN
are as follows: (i) First, we follow an item neighborhood based
design, whereas CMN follows a user neighborhood based design.
The prior work showed that item neighborhood based models slightly
outperformed user neighbor based models [27, 41]; (ii) Second, our
proposed SDM model uses our proposed personalized metric-based
attention mechanism and produces signed distance scores as output,
whereas CMN exploited a traditional inner product based attention;
(iii) Third, we use a gated multi-hop architecture [28], whereas CMN
used the original multi-hop design. The prior study showed that a
gated multi-hop design outperformed the original multi-hop design
[47].

3 PROBLEM STATEMENT
In this section, we describe two recommendation problems: (i) gen-
eral recommendation task; and (ii) shopping basket-based recom-
mendation task. In the following sections, we focus on solving these
two tasks.
General recommendation task: Given a whole item setV = {v1,v2,
...,v |V | }, and a whole user set U = {u1,u2, ...,u |U | }. Each user
ui ∈ U may consume several items {vi1,vi2, ...,vik } in V , denoted
as a set of neighbor items c. In this task, given a user’s previously
consumed items, a recommendation model predicts a next target
item vj that user ui may prefer, denoting this task as estimating
P (ui ,vj |c). Note that some existing works assume independent re-
lationships between vj and neighbor items in the set c, leading to
P (ui ,vj |c) = P (ui ,vj) [12, 13]. In our work, we model the ui ’s
preference on vj in two steps: (i) a direct preference of ui on vj in
a signed distance based perceptron, and (ii) an indirect preference
of ui on vj via summing attentive effects of neighbor items toward
target item vj in a signed distance based memory network.
Shopping Basket-based recommendation task: This problem is
based on the fact that users go shopping offline/online and add some
items into a basket/cart together. Each shopping basket/cart is seen
as a transaction, and each user may shop once or multiple times, lead-
ing to one or multiple transactions. LetT (u) = {t1, t2, ..., t |T (u) | } as a
set of the user u’s transactions, where |T (u) | denotes the number of
user u’s transactions. Each transaction ti = {v1,v2, ...,v |ti | } consists
of several items in the whole item set V . In this problem, it is as-
sumed that all the items in ti are inserted into the same basket at the
same time, ignoring the actual order of the items being inserted and
considering ti ’s transaction time as each item’s insertion time. Given
a target item vj ∈ ti , the rest of the items in ti will be seen as the
context items or neighbor items of vj , denoted as c (i.e. c = ti\vj).
Then, given the set of neighbor items c, a recommendation model

Signed Distance-based Deep Memory Recommender WWW’19, May 2019, San Francisco, California USA

target user target item

concatenate
item

embedding

…

element-wise square

estimated signed
distance o(SDP)

user
embedding

BPR loss ground
truth

MLP
layers e(1)

e(l)

e(l+1)

Figure 2: The illustration of our SDP model.

predicts a conditional probability P (u,vj |c), which is interpreted as
the conditional probability that u will add the item vj into the same
basket with the other items c.

Both two recommendation tasks above are popular in the litera-
ture [8, 12, 36, 39]. The general recommendation task differs from
the shopping basket-based recommendation task because there is no
specific context items of the target item in the general recommenda-
tion task. In this paper, we focus on personalized recommendation
tasks because they are more preferred than the non-personalized
recommendation tasks in the literature [8, 36, 39].

4 PROPOSED METHODS
Our proposed Signed Distance-based Deep Memory Recommender
(SDMR) consists of two major components: Signed Distance-based
Perceptron (SDP) and Signed Distance-based Memory network
(SDM). We first describe an overview of our proposed models as
follows:

• Given a target user i and a target item j as two one-hot vectors,
we pass the two vectors through the user and item embedding
spaces to get user embedding ui and item embedding vj .

• On one hand, our proposed Signed Distance-based Perceptron
(SDP) will measure a signed distance score between ui and vj
by a multi-layer perceptron network.

• On the other hand, given target user i, target item j, and the user
i’s recently consumed neighbor items s as the input, our Signed
Distance-based Memory network (SDM) will measure a signed
distance score between user i and item j via attentive distances
between neighbor items s and target item j.

• Then, the Signed Distance-based Deep Memory Recommender
(SDMR) model will measure a total distance between user i and
item j by learning a combination of SDP and SDM. The smaller
the total distance is, the more likely the user i will consume the
item j.

Next, we describe SDP and SDM, and SDMR in detail.

4.1 Signed Distance-based Perceptron (SDP)
We first propose Signed Distance-based Perceptron (SDP) that di-
rectly learns a signed distance between a target user i and a target

item j. An illustration of SDP is shown in Figure 2. Let the embed-
ding of a target user i be ui ∈ Rd , and the embedding of a target
item j bevj ∈ Rd , where d is the number of dimensions in each em-
bedding. First, SDP takes a concatenation of these two embeddings
as the input and proceeds as follows:

e (1) = f1 (W(1)
[
ui
vj

]
+ b (1)) (1)

e (2) = f2 (W(2)e (1) + b (2)) (2)

· · · (3)

e (ℓ) = fℓ (W(ℓ)e (ℓ−1) + b (ℓ)) (4)

e (ℓ+1) = square (e (ℓ)) (5)

o(SDP) = w (o)⊤e (ℓ+1) + b (o) (6)

where fl (·) refers to a non-linear activation function at the layer lth

(e.g. sigmoid, ReLu or tanh), and square (·) denotes an element-
wise square function (e.g square ([2, 3]) = [6, 9]). Through experi-
mental results, we choose tanh as the activation function because
it yields slightly better results than ReLu. From now on, we will
use f (·) to denote the tanh function. It can be easily observed that
Eq. (1) – (4) form a trivial Multi-Layer Perceptron (MLP) network,
which is a popular design [12, 59] to learn a complex and non-linear
interaction between user embedding ui and item embedding vj .
Our new design starts at Eq. (5) – Eq. (6). In Eq. (5), we apply
the element-wise squared function square (·) to the output vector
e (l) of the MLP and obtain a new output vector e (l+1) . Next, in
Eq. (6), we use a fully connected layer w (o) to combine different
dimensions in e (l+1) and yields a final distance value o(SDP) . Our
idea of using w (o) in here is that after applying the element-wise
square function square (·) in Eq. (5), all the dimensions in e (l+1) will
be non-negative. Thus, we consider each dimension of e (l+1) as a
distance value. The edge weights w (o) will then be used to combine
those distant dimensions to provide a more fine-grained distance.

We note that SDP can be reduced to a squared Euclidean distance
with the following setting: at Eq. (1), W(1) = [1,−1] with 1 denotes

an identity matrix1 and so W(1)
[
ui
vj

]
= ui −vj ; the activation f (·)

is an identity function; the number of MLP layers ℓ = 1; the edge-
weights layer at Eq. (6): w (o) = 1 (e.g. the all-ones matrix), bias
b (o) = 0. Note that if w (o) in Eq. (6) is an all-negative layer, it
will yield a negative value, which we name as a signed distance2

score. If we see each user i as a point in multi dimensional space,
and the user’s preference space is defined by a boundary Ω, we
can interpret this signed distance score as follows: When the item
j is out of the user i’s preference boundary Ω, the distance d (i, j)
between them is positive (i.e. d (i, j) > 0) and it reflects that user i
does not prefer item j. When the distance between user i and item j
is shortened and j is right on the boundary Ω, the distance between
them is zero and it indicates user i likes item j. As j is coming
inside Ω, the distance between them becomes negative and reflects
a higher preference of user i on item j. In short, we can see SDP
as a signed distance function, which could learn a complex signed

1https://en.wikipedia.org/wiki/Identity_matrix
2https://en.wikipedia.org/wiki/Signed_distance_function

WWW’19, May 2019, San Francisco, California USA

Input Memory

target
item

item
embedding

V(i)

Personalized Metric-based Attention Module
pairwise
concat

target
user

Wc

Wc

Wc

Wc

Wc

Output Memory

target
item

user
embedding

U(o)

item
embedding

V(o)

pairwise
concat target

user

 softmax

L2-norm

L2-norm

L2-norm

L2-norm

L2-norm

extract

extract

attention
weights

Output Module

Wd

Wd

Wd

Wd

Wd

qij

pij

zij

Input Module

Wa

Wb

square

weighted
summation

eij

estimated
signed

distance

ground truth

aij

oij

BPR
loss

we

square

square

square

square

user
embedding

U(i)

Figure 3: The illustration of single-hop SDM, which consists of
a memory module, an input module, an attention module, and
an output module.
distance between a user and an item via a MLP architecture with non-
linear activations and an element-wise square function square (·). In
the recommendation domain, the signed distances will provide more
fine-grained distance values, thus, reflecting a user’ preferences on
items more accurately (i.e. accurately rank items for the user).

4.2 Signed Distance-based Memory Network
(SDM)

We propose a multi-hop memory network, Signed Distance-based
Memory network (SDM), to model indirect preference of a user
on the target item via the user’s previously consumed items (i.e.,
neighbor items). The indirect preference is represented as a signed
distance. First, we describe a single-hop SDM, and then describe how
to expend it into the multi-hop. Following the traditional architecture
of a memory network [28, 47, 57], our proposed single-hop SDM
has four main components: a memory module, an input module, an
attention module, and an output module. The overview of SDM’s
architecture is presented in Figure 3. We will go into details of each
SDM’s module as follows:

4.2.1 Memory Module: We maintain two memories called in-
put memory and output memory. The input memory contains two
embedding matrices U(i) ∈ RM×d and V(i) ∈ RN×d , where M and
N are the number of users and the number of items in the system,
respectively. d denotes the embedding size of each user and each
item. Similarly, the output memory also contains two embedding
matrices U(o) ∈ RM×d and V(o) ∈ RN×d . As shown in Figure 3, the
input memory will be used to calculate attention weights of a user’s
consumed items (i.e., neighbor items), whereas the output memory
will be used to measure a final signed distance between the target
user and the target item via the user’s neighbor items.

Given a target user i, a target item j and a set of user i’s consumed
items as neighbor items T i

j , the output of this module is the em-
beddings of user i, item j, and all neighbor items k ∈ T i

j : (ui ,vj ,

<v1,v2, ...,vk>). Since this module has a separated input memory
and output memory, we obtain (u (i)

i ,v
(i)
j , <v

(i)
1 ,v

(i)
2 , ...,v

(i)
k >) as

the output of the input memory, and (u (o)
i ,v

(o)
j , <v

(o)
1 ,v

(o)
2 , ...,v

(o)
k >)

as the output of the output memory. It is obvious that u (i)
i is the i-th

row of U(i) ,v (i)
j andv (i)

k are the corresponding j-th and k-th row of

V(i) . A similar explanation is applied to u
(o)
i v

(o)
j , andv (o)

k .

4.2.2 Input Module: The goal of the input module is to form a
non-linear combination between the target user embedding and the
target item embedding. Given the target user embedding u (i)

i and the

target item embeddingv
(i)
j from the input memory in the memory

module, following the widely adopted design in multimodal deep
learning work [46, 60], the input module simply concatenates the
two embeddings, and then applies a fully connected layer with a
non-linear activation f (·) (i.e. tanh function) to obtain a coherent
hidden feature vector as follows:

qi j = f
(
Wa



u
(i)
i

v
(i)
j


+ ba

)
(7)

where Wa ∈ Rd×2d is the weights of input module. Note that qi j ∈
Rd can be seen as a query embedding in Memory Network [47].

Similarly, if the inputs of the input module are the target user
embeddings u

(o)
i and the target item embeddings v

(o)
j from the

output memory, we can form a non-linear combination between u (o)
i

andv (o)
j (i.e. an output query), denoted as pi j , as follows:

pi j = f
(
Wb



u
(o)
i

v
(o)
j


+ bb

)
(8)

4.2.3 Attention Module: The goal of the attention module is to
assign attentive scores to different neighbor items (or candidates)
given the combined vector (or a query) qi j of the target user i and
target item j obtained in Eq. (7). First, we calculate the L2 distance
between the input query qi j and each candidate itemv

(i)
k as follows:

zi jk =

f

(
Wc



qi j

v
(i)
k


+ bc

)

2 (9)

where | | · | |2 refers to the L2 distance (or Euclidean distance), which
is widely used in previous works to measure similarity among
items [8] or between users and items [15]. To better understand
our intuition in Eq.(9), we will break it into smaller parts and
explain them. First, similar to the intuition of Eq. (7), we have

f
(
Wc



qi j

v
(i)
k


+ bc

)
component to define a non-linear combination

between the input query qi j and each neighbor item embeddings

v
(i)
k

. Then, | | · | |2 will measure the L2 distance of the combined
vector. It is worth to note that with a following setting:Wa = [0,1]
where 1 refers to an identity matrix and 0 is an all-zeros matrix;
f (·) is an identity function;Wc = [1,−1]; bias terms ba = bc = 0.

Then, in Eq. (7), qi j = f
(
Wa



u
(i)
i

v
(i)
j


+ ba

)
= v

(i)
j ; in Eq. (9),

f
(
Wc



qi j

v
(i)
k


+ bc

)
= v

(i)
j − v

(i)
k , and zi jk = | |(v

(i)
j − v

(i)
k) | |2,

which simply generalizes a L2 distance between the target item j
and the neighbor item k. Additionally, with another setting: Wa
= [1,−1]; f (·) is an identity function; Wc = [1,1]; bias terms

ba = bc = 0. Then, in Eq. (7), qi j = f
(
Wa



u
(i)
i

v
(i)
j


+ ba

)
=

Signed Distance-based Deep Memory Recommender WWW’19, May 2019, San Francisco, California USA

u
(i)
i − v

(i)
j , in Eq. (9), f

(
Wc



qi j

v
(i)
k


+ bc

)
= u

(i)
i − v

(i)
j + v

(i)
k ,

and zi jk = | |(v
(i)
k +u

(i)
i −v

(i)
j) | |2, which simply generalizes a L2

distance between the target item j and the neighbor item k where the
user i plays as a translator [9]. The two examples above show that
our proposed design can learn a more generalized distance between
target and neighbor items.

The output L2 distance in Eq. (9) will show how similar the target
item j and the neighbor item k are. The lower the distance score is,
the more similar two items j and k are. Next, we use the Softmax
function to normalize and obtain attentive score between j and k as
follows:

ai jk =
exp (−zi jk)∑

p∈T i
j
exp (−zi jp)

(10)

where T i
j is the set of user i’s neighborhood items. The minus sign

in Eq. (10) is used to assign a higher attention score for a lower
distance between two items (j, k).

We note that the L2 distance (or Euclidean distance) satisfies
four conditions of a metric 3. While the crucial triangle inequality
property of a metric was shown to provide a better performance
compared to the inner product [15, 37, 45] in recommendation do-
mains, to our best of knowledge, most of existing attention designs
[2, 5, 26, 33, 43, 53, 58] adopted the inner product for measuring
attentive scores. Hence, this proposed attention design is the first
attempt to bring metric properties into the attention mechanism.

Similar to [49], we limit the number of considering neighbor/context
items by choosing the user i’s s most recently consumed items be-
fore target item j as the neighbor items of target item j. Here, s can
be selected via tuning with a development dataset. The soft attention
vector containing attentive contribution scores of s neighbor items
toward the target item j of a user i is given as follows:

ai j =



ai j1
· · ·

ai js


(11)

4.2.4 Output Module: Given the attentive scores ai j in Eq.(11)

and the combined vector pi j ∈ Rd of the user embedding u
(o)
i and

item embedding v
(o)
j from the output memory U (o) and V (o) , the

goal of this output module is to measure a total output distance
o
(SDM)
i j between the output target item embeddings v (o)

j and all

the user i ’s output neighbor item embeddings v (o)
k (k ∈ T ij) using

attention weights ai j and the output query pi j as follows:

o
(SDM)
i j = w⊤e ei j + be (12)

where ei j ∈ Rd is calculated as follows:

ei j =
∑
k ∈T i

j

ai jk × square
(
f
(
Wd



pi j

v
(o)
k


+ bd

))
(13)

In here, let ri jk = f
(
Wd



pi j

v
(o)
k


+ bd

)
. Similar to the previously

discussed intuition in Eq (9), ri jk is a flexible combination between

pi j and each output neighbor item embeddingsv (o)
k ; square (·) is an

3https://en.wikipedia.org/wiki/Metric_(mathematics)

Input
Memory

Output
Memory

a(0)

q(0)
Input

Module

Attention
Module

Output
Module

e(0)p(0)

Wg(0)

g(0)

1-g(0)

q(0)

+

q(1)

Attention
Module

a(h)

e(h)

…

q(h)

…

Output
Module

p(h)

ground truth

BPR
loss

we

estimated
signed

distance

o(SDM)

Figure 4: The illustration of our multi-hop SDM.

element-wise squared function. Our idea in Eq. (12), (13) is similar
to the idea in Eq. (5), (6) of the SDP model. First, in Eq. (13), each
neighbor item k will attentively contribute to the target item j via a
squared Euclidean measure. Second, in Eq. (12), each non-negative
dimension in ei j will be considered as a distance dimension and we
use an edge-weights layer we to combine them flexibly. When there
is only one neighbor item in T i

j , then in Eq. (13), the attention score
ai jk=1.0, leads to ei j = square (ri jk), which is similar to Eq. (5).
In this case, SDM will measure the distance between target item j
and neighbor item k in the same way as SDP model does. Note that
Eq. (13) is similar to Eq. (6) so SDM can also learn a signed distance
value, which also provides a more fine-grained distance compared
to a general distance value.

4.2.5 Multi-hop SDM:. Inspired by previous work [47] where the
multi-hop design helped to refine the attention module in Memory
Network, we also integrate multiple hops to further extend our SDM
model to build a deeper network (Figure 4). As the gated multi-hop
design [28] was shown to perform better than the original multi-hop
design with a simple residual connection in [47], we employ this
gated memory update from hop to hop as follows:

д(h−1) = σ (W(h−1)
д q (h−1) + b (h−1)д) (14)

q (h) = (1 − д(h−1)) ⊙ e (h−1) + д(h−1) ⊙ q (h−1) (15)

where q (h−1) is the input query embedding as shown in Eq. (7) at
hop h − 1, W(h−1)

д and bias b (h−1)д are hop-specific parameters, σ is
the sigmoid function, e (h−1) is the output of Eq. (13) at hop h − 1,
q (h) is the input query embedding at the next hop h. So the attention
could be updated at hop h accordingly using q (t) as follows:

α
(h)
i jk =

exp (−z
(h)
i jk)∑

p∈T i
j
exp (−z

(h)
i jp)

(16)

where z (h)i jk is measured by:

z
(h)
i jk =

f
(
W(h)

c



q
(h)
i j

v
(i)
k


+ bc

)

2 (17)

The multi-hop architecture with gated design further refines the
attention for different users based on the previous output from hop
to hop. Hence, if the final hop is h then the SDM model with h hops,
denoted as SDM-h, will use a

(h)
i j to yield a final signed distance

WWW’19, May 2019, San Francisco, California USA

score as follows:

o
(SDM−h)
i j = w⊤e e

(h)
i j + b

(h)
e (18)

where ei j is calculated as:

e
(h)
i j =

∑
k ∈T i

j

a
(h)
i jk × square

(
f
(
W(h)

d



p
(h)
i j

v
(o)
k


+ b

(h)
d

))
(19)

Weight constraints in multi-hop SDM model: To save memory,
we use the global weight constraint in multi-hop SDM. Particularly,
input memory U (i) ,V (i) and output memory U (o) ,V (o) are shared
among different hops. All the weights are shared from hop to hop
W

(1)
a =W

(2)
a = ... =W

(h)
a ;W (1)

b =W
(2)
b = ... =W

(h)
b ;W (1)

c =W
(2)
c

= ... = W
(h)
c ; W (1)

d = W
(2)
d = ... = W

(h)
d ; and so do all bias terms.

The gate weights are also global weights:W (1)
д =W

(2)
д = ... =W

(h)
д .

4.3 Signed Distance-based Deep Memory
Recommender (SDMR)

Now we propose Signed Distance-based Deep Memory Recom-
mender (SDMR), a hybrid network that combines SDP and SDM.
The first approach to combine them is to employ a weighted summa-
tion of the output scores from SDP and SDM as follows:

o = βo(SDP) + (1 − β)o(SDM) (20)

where o(SDP) is the signed distance score obtained at Eq. (6), o(SDM)

is the signed distance score obtained at Eq. (18), and β ∈ [0, 1] is a
hyper-parameter to control the contribution of SDP and SDM. When
β=0, SDMR becomes SDM. When β=1, SDMR becomes SDP.

However, to avoid tuning an additional hyper-parameter β , we do
not use Eq. (20) for SDMR. Instead, we let SDMR self-learns the
combination of SDM and SDM as follows:

o = ReLU

(
w⊤u

[
e (ℓ+1)

e (h)

]
+ bu

)
(21)

where e (ℓ+1) is the final layer embedding from SDP and is obtained
at Eq. (5), e (h) is the final hop output from the multi-hop SDM
obtained at Eq. (19). We note that SDP and SDM are first pre-trained
separately using the BPR loss function (see the next section). Then,
we obtain e (ℓ+1) from SDP, and e (h) from SDM, and keep them fixed
in Eq. (21) to learn wu and bu . We use ReLU in Eq. (21) because
ReLU encourages sparse activations and helps to reduce over-fitting
when combining the two components SDP and SDM.

4.4 Loss Functions
In our models, we adopt the Bayesian Personalized Ranking (BPR)
optimization criterion as our loss function, which is similar to the
idea of AUC (area under the curve):

L = argmin
θ

(
−

∑
(u,i+,i−)

log σ (oui− − oui+) + λ∥θ ∥
2
)

(22)

where we uniformly sample tuples in a form of (u, i+, i−) for user u
with positive item (consumed) i+ and negative item (unconsumed)
i−. λ is a hyper-parameter to control the regularization term, and
σ (·) is the sigmoid function. Note that other pairwise probability
functions could be plugged in Eq. (22) to replace σ (·). Both SDP
and SDM are end-to-end differentiable since we uses soft attention

over the output memory. Hence, we can utilize back-propagation to
learn our models with stochastic gradient descent or Adam [18].

5 EMPIRICAL STUDY
In this section, we evaluate our proposed SDP, SDM, and SDMR
models against ten state-of-the-art baselines in two recommendation
tasks: (i) general recommendation task, and (ii) shopping basket-
based recommendation task. We design our experimental evaluation
to answer the following research questions (RQs):

• RQ1: How do SDP, SDM, and SDMR perform compared to
other state-of-the-art models in both general recommendation
task and shopping basket-based recommendation task?

• RQ2: Why/How does the multi-hop design help to improve the
proposed models’ performance?

5.1 Datasets
In each recommendation task, we conduct experiments on the fol-
lowing datasets:
General recommendation task: In this task, we evaluate our pro-
posed models and state-of-the-art methods using different datasets
with various density levels as follows:

• Movielens [40]: It is a widely adopted benchmark dataset for
collaborative filtering evaluation. We use two versions of this
benchmark dataset, namely MovieLens100k (or ML-100k) and
MovieLens1M (or ML-1M).

• Netflix Prize 4: It is a real-world dataset collected by Netflix.
This dataset was collected from 1999 to 2005, and consists of
463,435 users and 17,769 items with 56.9M of interactions. Since
the dataset is extremely large, we subsample the Netflix dataset
by randomly picking one-month data for evaluation.

• Epinions [34] 5: It is a well-known online rating dataset where
users can share product feedback by giving explicit ratings and
reviews.

In preprocessing preparation, we adopted a popular k-core prepro-
cessing step [11, 25, 51] (with k-core = 5) to filter out inactive users
with less than five ratings and items which are consumed by less than
five users. Since ML-100k and ML-1M are already preprocessed,
we only apply 5-core preprocessing step on the Netflix and Epinions
datasets. We also binarize the rating scores as implicit feedback by
converting all observed rating scores as positive interactions and the
remaining as negative interactions. The statistics of the four datasets
are summarized in Table 1.
Shopping basket-based recommendation task: We evaluate our
proposed models on two real-world transaction datasets as fol-
lows:

• IJCAI-15 6: It is a well-known shopping basket-based dataset.
It consists of shopping logs of users from Tmall 7. Since the
original dataset is extremely large scale. We subsample IJCAI-15
by randomly picking 20k transactions for evaluation.

4https://www.netflixprize.com/
5http://www.trustlet.org/downloaded_epinions.html
6https://tianchi.aliyun.com/datalab/dataSet.htm?id=1
7https://www.tmall.com

Signed Distance-based Deep Memory Recommender WWW’19, May 2019, San Francisco, California USA

Table 1: Statistics of the four datasets in the general recommen-
dation task.

Statistics ML-100k ML-1M Netflix Epinions

of users 943 6,040 1,888 23,137
of items 1,682 3,706 3,724 23,585
of interactions 100,000 1,000,209 103,254 461,982
Density (%) 6.3% 4.5% 1.5% 0.08%

Table 2: Statistics of the two real-world transactional datasets
in the shopping basket-based recommendation task.

Statistics IJCAI-15 Tafeng

of users 2,433 22,851
of items 4,534 22,291
avg # of items in a transaction 6.28 9.28
of generated instances 15,422 523,653
Density (%) 0.14% 0.10%

• Tafeng 8: It is a grocery store transaction data. It contains four
month transaction data from November 2000 to February 2001
by T-Feng supermarket.

In both IJCAI-15 and Tafeng datasets, each user behavior is
logged under four types of actions: click, add-to-cart, purchase,
and add-to-favourite. We consider all the four types as the click
action. We only keep transactions with at least five items. This is
because we will take one item out for testing, another item for de-
velopment. In the remaining three items, one will be taken out as
a target item and the two items will be used as the neighbor items.
Attentive scores will be assigned to the neighbor items. In each
of original transactions, we generate data instances of the format
< c,vc > where vc is the target/predicting item and c is a set of all
other items in the same transaction with vc . In particular, in each
transaction t , each time we pick one item out as a target item and
leave the rest of items in t as corresponding neighbor/context items.
Subsequently, for each transaction t containing |t | items, we can
generate |t | data instances. The statistics of the two transactional
datasets are summarized in Table 2.

For an easy reference, we call (ML-100k, ML-1M, Netflix, Epin-
ions) as Group-1 dataset and (IJCAI-15, Ta-Feng) as Group-2 datasets.

5.2 Baselines and State-of-the-art Methods
We compared our proposed models against several strong base-
lines which are widely used in general recommendation task as
follows:

• ItemKNN [41]: It is an item neighborhood-based collaborative
filtering method. It exploited cosine item-item similarities to
produce recommendation results.

• Bayesian Personalized Ranking (MF-BPR) [38]: It is a state-
of-the-art pairwise matrix factorization method for implicit feed-
back datasets. It minimizes

∑
i
∑
j,k −loдσ (u

T
i vj+ - uTi vj−) +

λ(| |ui | |
2 + | |vj+ | |

2) where (ui , vj+) is a positive interaction and
(ui , vj−) is a negative sample.

8http://stackoverflow.com/questions/25014904/download-link-for-ta-feng-grocery-
dataset

• Sparse LInear Method (SLIM) [35]: It learns a sparse item-item
similarity matrix by minimizing the squared loss | |A −AW | |2 +
λ1 | |W | | + λ2 | |W | |2, where A is a m × n user-item interaction
matrix and W is a n ×n sparse matrix of aggregation coefficients
of neighbor items.

• Collaborative Metric Learning (CML) [15]: It is a state-of-
the-art collaborative metric-based model that utilizes a distance
metric (i.e Euclidean distance) to measure similarities between
users and items. For fair comparison, we learn CML with BPR
loss by minimizing −

∑
i, j+, j− loд(σ (d (ui ,vj−)

2 − d (ui ,vj+)
2)),

where d (ui ,vj+)2 is a squared Euclidean distance of a positive
interaction (ui , vj+) and d (ui ,vj−)

2 is a squared Euclidean dis-
tance of a negative sample (ui , vj−).

• Neural Collaborative Filtering (NeuMF++) [12]: It is a state-
of-the-art matrix factorization method using deep learning archi-
tecture. We use a pre-trained NeuMF to achieve its best perfor-
mance, and denote it as NeuMF++.

• Collaborative Memory Network (CMN++) [7]: It is a state-
of-the-art memory network based recommender. Its architecture
follows traditional user neighborhood based collaborative filter-
ing approaches. It adopts a memory network to assign attentive
weights for other similar users.

Even though our proposed methods do not model the order of con-
sumed items in the user’s purchase history (e.g. rigid orders of items),
since we consider latest s items as the context items to predict the
next item, we still compare our models with some key sequential
models to further show our models’ effectiveness as follows:

• Personalized Ranking Metric Embedding (PRME) [8]:
Given a user u, a target item j, and a previous consumed item k ,
it models a personalized first-order Markov behavior with two
components: dujk = α | |vu −vj | |

2 + (1 − α) | |vk −vj | |2, where
| |vu − vj | |

2 is a squared L2 distance of (u, j), and | |vk − vj | |2

is a squared L2 distance of (k, j). Then PRME is learned by
minimizing BPR loss.

• PRME_s: It is our extension of PRME, where the distance be-
tween the target item j and the previous consumed item k is
replaced by the average distance between j and each of previous
s items: dujs = α | |vu −vj | |

2 + (1 − α) 1
|s |

∑
k ∈s | |vk −vj | |

2. We
use BPR loss to learn PRME_s.

• Translation-based Recommendation (TransRec) [9]: It uses
first-order Markov and considers a useru as a translator of his/her
previous consumed item k to a next item j. In another word,
prob (j |u,k) ∝ βj −d (u +vk −vj) where βj is an item bias term,
d is a distance function (e.g. L1 or L2 distance). We use L2
distance because it was shown to perform better than L1 [9].
TransRec is then learned with BPR loss.

• Convolutional Sequence Embedding Recommendation
(Caser) [48]: It is a state-of-the-art sequential model. It uses
convolution neural network with many horizontal and vertical
kernels to capture the complex relationships among items.

The strong sequential baselines above surpassed many other sequen-
tial models such as: TransRec outperformed FMC[39], FPMC [39],
HRM [54]; Caser surpassed GRU4Rec [14] and Fossil [10], so we
exclude them in our evaluation.

WWW’19, May 2019, San Francisco, California USA

Comparison: In the general recommendation task, we compare
our proposed models with all ten strong baselines listed above. In
the shopping basket-based recommendation task, since the sequen-
tial models often work better than general recommendation-based
models (see Table 3), we only compared our proposed models with
sequential baselines (PRME, PRME_s, TransRec and Caser). We
name general recommendation baselines (i.e. ItemKNN, BPR, SLIM,
CML, NeuMF++, CMN++) as Group-1 baselines, and call sequen-
tial baselines (i.e. PRME, PRME_s, TransRec, Caser) as Group-2
baselines for an easy reference.

5.3 Experimental Settings
Protocol: We adopt the widely used leave-one-out setting [12, 59],
in which for each user, we reserve her last interaction as the test
sample. If there are no timestamps available in the dataset, then
the test sample is randomly drawn. Among the remaining data, we
randomly hold one interaction for each user to form the development
set, while all others are utilized as the training set. Since it is very
time-consuming and unnecessary to rank all the unobserved items
for each user, we follow the standard strategy to randomly sample
100 unobserved items for each user. Then, we rank them together
with the test item [12, 19].
Assigning item orders: Sequential models need rigid orders of
consumed items but consumed items in the same transaction (in
IJCAI-15 and TaFeng datasets) are assigned the same timestamp
of the transaction containing these items. Hence, we assigned the
item timestamps where the orders of items are kept as in the original
dataset. This may give credits to sequential models but not our
methods (because our methods will use all consumed items in the
same transaction as neighbor items and our methods do not model
the item orders).
Hyper-parameters selection: We perform a grid search for the
embedding size from {8, 16, 32, 64, 128} and regularization terms
from {0.1, 0.01, 0.001, 0.0001, 0.00001} in all the models. We select
the best number of hops for CMN++ and our SDM from {1, 2, 3, 4}.
In NeuMF++, we select the best number of MLP layers from {1, 2, 3}.
In our models, we fix the batch size to 256. We adopt Adam optimizer
[18] with a fixed learning rate of 0.001. Similar to CMN++ and
NeuMF++, the number of negative samples is set to 4. We use
one layer perceptron for SDP (more complex datasets may need
more than one layer to get better results). We initialize the user
and item embeddings using N (µ = 0,σ = 0.01), and initialize the
edge-weights layers using LeCun uniform initializer (e.g. w (o) , we ,
wu in Eq. (6), (18), (21), respectively). In the four datasets used
in general recommendation task (e.g ML-100k, ML-1M, Netflix,
Epinions), to avoid too many zero paddings for users with a smaller
number of consumed items or too many neighbor items are kept in
the memory, which unnecessarily slow down the model’s execution,
we follow [49] to limit the number of neighbor items using latest s
consumed items. We search s in {5, 10, 20}. In the two shopping
basket-based recommendation datasets (i.e. IJCAI-15 and TaFeng),
since the maximum number of items in a transaction is small (e.g.
13 in IJCAI-15, and 18 in TaFeng), we consider all the other items in
the same transaction with the target item as its neighbor items. All
the hyper-parameters are tuned using the development dataset.

Evaluation Metrics: We evaluate the performance of all compared
models by two widely used metrics: Hit Ratio (hit@k), and Nor-
malized Discounted Cumulative Gain (NDCG@k), where k is a
truncated number or top-k item recommendation. Intuitively, hit@k
shows whether the test item is in the top-k list or not, while NDCG@k
accounts for the position of the hits by assigning higher scores to the
hits at top ranks and downgrading the scores to hits by loд2 at lower
ranks.

5.4 Experimental Results
RQ1: Overall results in general recommendation task: The per-
formance of our proposed models and the baselines are shown in
Table 3. First, we observe that SDP significantly outperformed BPR
in all four datasets in Group-1 datasets, improving hit@10 from
8.33∼41.19%, and NDCG@10 from 10.44∼44.56%. Even though
SDP and BPR shared the same loss function, the difference between
them is SDP measured a signed distance score between a target user
and a target item via a MLP which modeled a non-linear interaction
between them, while BPR went along with Matrix Factorization
that exploited inner product. This result confirms the effectiveness
of using signed distance based similarity over inner product in the
general recommendation task. Second, we compare SDP with CML.
CML worked by trying to minimize the squared Euclidean distance
scores between target users and target items. Our SDP, in another
hand, works by minimizing signed distance scores of a non-linear
interaction (via non-linear activation functions) between target users
and target items. We observe that SDP performed better than CML
in all Group-1 datasets, improving hit@10 from 8.33∼11.19%, and
NDCG@10 from 7.06∼12.24%. On average, SDP improved hit@10
by 7.5% and NDCG@10 by 9.5% compared to CML. Our SDP even
gain competitive results compared to NeuMF++ and CMN++. On
average, SDP is just slightly worse than NeuMF++ and CMN++ by
-2.67% for hit@10, and -1.68% for NDCG@10. All of these results
show the effectiveness of using signed distance in our SDP model.

Next, we compare SDM with neighborhood-based baselines. Both
SLIM and item-KNN used previously consumed items of a user to
make the prediction for the next item. SDM significantly outper-
formed both baselines, improving hit@10 from 20.53∼130.92%
and NDCG@10 from 39.05∼106.35% compared with SLIM. It is
an obvious result because the neighborhood-based baselines barely
measured linear similarities between the target item and the user’s
consumed items. In contrast, our SDM produced signed distance
scores and assigned personalized metric-based attention weights to
each of consumed items that contribute to the target item.

We then compare SDM with CMN++ and NeuMF++. SDM out-
performed CMN++ in all Group-1 datasets, improving hit@10 from
11.71∼35.93% and NDCG@10 from 26.51∼43.38%. On average, it
improves hit@10 by 18.63% and NDCG@10 by 32.84% compared
to CMN++. This result shows the effectiveness of our personal-
ized metric-based attention with signed distance and item-based
neighborhood design over the traditional inner product-based atten-
tion in a user-based neighborhood design in CMN++. SDM also
outperformed NeuMF++, improving hit@10 from 13.97∼34.35%,
and NDCG@10 from 27.42∼42.34%. On average, in all Group-1
datasets, SDM outperformed all the baselines in “General Recom-
menders” (Group 1), improved hit@10 by 18.13% and NDCG@10
by 32.58% compared to the best baseline in Group 1.

Signed Distance-based Deep Memory Recommender WWW’19, May 2019, San Francisco, California USA

Table 3: General Recommendation Task: Overall performance of the baselines, and our proposed SDP, SDM, and SDMR on four
datasets. The last four lines show the relative improvement of the SDM and SDMR over the best baseline method in General Recom-
menders (Group 1) and Sequential Recommenders (Group 2), respectively.

Method type Method ML-100k ML-1M Netflix Epinions

hit@10 NDCG@10 hit@10 NDCG@10 hit@10 NDCG@10 hit@10 NDCG@10

General
Recommenders
(Group 1)

Item-KNN 0.166 0.073 0.235 0.110 0.039 0.019 0.121 0.096
SLIM 0.520 0.298 0.677 0.420 0.358 0.212 0.249 0.189
MF-BPR 0.554 0.316 0.595 0.352 0.352 0.193 0.384 0.232
CML 0.596 0.326 0.662 0.390 0.447 0.254 0.376 0.237
NeuMF++ 0.623 0.341 0.716 0.438 0.509 0.279 0.428 0.274
CMN++ 0.620 0.344 0.729 0.442 0.523 0.293 0.423 0.272

Sequential
Recommenders
(Group 2)

PRME 0.638 0.381 0.724 0.486 0.509 0.329 0.538 0.346
PRME_s 0.674 0.398 0.734 0.491 0.539 0.348 0.380 0.244
TransRec 0.684 0.402 0.770 0.524 0.511 0.345 0.551 0.357
Caser 0.674 0.386 0.826 0.606 0.480 0.253 0.326 0.268

Ours
SDP 0.616 0.349 0.694 0.424 0.497 0.279 0.416 0.266
SDM 0.713 0.435 0.816 0.584 0.584 0.379 0.575 0.390
SDMR 0.695 0.562 0.810 0.662 0.592 0.449 0.568 0.423

Compared to
Group 1

Imprv. of SDM 14.54% 26.51% 11.93% 32.13% 11.71% 29.32% 34.35% 42.34%
Imprv. of SDMR 11.65% 63.44% 11.11% 49.77% 13.24% 53.20% 32.71% 54.38%

Compared to
Group 2

Imprv. of SDM 4.24% 8.21% -1.21% -3.63% 8.35% 8.91% 4.36% 9.24%
Imprv. of SDMR 1.61% 39.80% -1.94% 9.24% 9.83% 29.02% 3.09% 18.49%

Table 4: Shopping basket-based Recommendation Task: Over-
all performance of the baselines, and our proposed models on
two datasets. The last two lines show the relative improvement
of the SDM and SDMR over the best baseline.

Method IJCAI-15 Ta-Feng

hit@10 NDCG@10 hit@10 NDCG@10

PRME 0.276 0.177 0.594 0.365
PRME_s 0.229 0.133 0.590 0.355
TransRec 0.262 0.168 0.622 0.401
Caser 0.173 0.096 0.605 0.373

SDP 0.323 0.201 0.633 0.401
SDM 0.316 0.189 0.646 0.439
SDMR 0.336 0.222 0.627 0.559

Imprv. of SDM 14.49% 6.78% 3.86% 9.48%
Imprv. of SDMR 21.74% 25.42% 0.80% 39.40%

Finally, we look at the performance of SDMR model, which is
the proposed fusion of SDP and SDM. Compared to SDM, our
SDMR insignificantly downgrades SDM on hit@10 measurement
with a very small amount, but it does help a lot in refining the
ranking of items and boosting NDCG@10 results. As shown in
Table 3, SDMR improved from 8.46∼29.20% for NDCG@10, and
by 17.37% for NDCG@10 on average compared to SDM in Group-1
datasets. SDMR also surpassed all the methods in Group 1. On
average, SDMR improved hit@10 by 17.18% and NDCG@10 by
55.20% compared to the best model in Group 1.

We also compared our models with some strong sequential models
in Table 3. Sequential models exploited consuming time of items
and model their rigid orders, which often lead to a much improved
performance compared to general recommendation models in Group-
1 baselines. As such, compared to the best sequential baseline model,

on average, SDM improves hit@10 by 3.94% and NDCG@10 by
5.68% , and SDMR improves hit@10 by 3.15% and NDCG@10 by
24.14% compared to the best sequential model reported in Table 3.

5.5 RQ2: Understanding our multi-hop
personalized metric-based attention design?

In the previous section, we see that our proposed models outper-
formed many strong baselines in six different datasets of the two
different recommendation problems. In this part, we explore why
did we achieve those better results? As “attention is all you need”
[53], the core reason brought us an surpassed performance accredit
to the metric-based attention which are further refined via multi-hop
design. Therefore, we want to explore quantitatively and qualita-
tively how our attention with multi-hop design worked by answering
two smaller research questions: (i) what did our metric-based atten-
tion with multi-hop design learn?, (ii) did the metric-based attention
with multi-hop design improve recommendation results? Without a
special mention, since our SDMR model just learned a combination
between SDP and SDM without re-learning the learned-already pa-
rameters in SDP and SDM, we use our SDM model in this section
to understand how attention with multi-hop design works. Note that
we conduct this analysis for ML-100k only due to space limitation
and the availability of movies genre in ML-100k (for visualization
in Figure 7).
What did our metric-based attention with multi-hop design learn?
To answer this research question, we first measure the point-wise
mutual information (PMI) between two certain items j and k as:

PMI (j,k) = loд
P (j,k)

P (j) × P (k)
(23)

where P (j,k) is the joint probability between two items j and k,
which shows how likely j and k are co-preferred (P (j,k) = #(j,k)

|D | ,

WWW’19, May 2019, San Francisco, California USA

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(a) ML-100K.

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

0.8

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(b) ML-1M.

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(c) Netflix.

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(d) Epinions.

8 16 32 64 128
embedding size

0.0

0.1

0.2

0.3

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(e) IJCAI-15.

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(f) TaFeng.

Figure 5: Comparison of varying the number of hops regarding different embeddings sizes in the six datasets.

0 2 4
PMI score

0.00

0.25

0.50

0.75

At
te

nt
iv

e
sc

or
e

(a) Hop 1.

0 2 4
PMI score

0.00

0.25

0.50

0.75

1.00

At
te

nt
iv

e
sc

or
e

(b) Hop 2.

0 2 4
PMI score

0.00

0.25

0.50

0.75

1.00
At

te
nt

iv
e

sc
or

e

(c) Hop 3.

0 2 4
PMI score

0.00

0.25

0.50

0.75

1.00

At
te

nt
iv

e
sc

or
e

(d) Hop 4.
Figure 6: ML-100K: Scatter plots of PMI scores and attentive
scores generated by SDM with h hops (h={1, 2, 3, 4} from left
to right). The red lines are the linear trend lines. The Pearson
correlation between two scores increases when h increased.

where D denotes a collection of all item-item pairs, and |D | refers to
the total number of item-item co-occurrence pairs in D). Similarly,
P (j) and P (k) are the probabilities of the item j and k appears in
D, respectively (e.g. P (j) = #(j)

|D | , P (k) =
#(k)
|D |). Intuitively, a PMI

score between two items shows how likely the two items are co-
purchased/co-preferred. The higher the PMI score between j and k
is, the more likely the user will purchase j if k was purchased before.

We denote SDM-h is the SDM model with h hops. Now, given a
target item j and the user’s neighbor/context items k, SDM-h with
h hops will assign attentive scores for all (j,k) pairs. We also get
PMI scores (from Eq. (23)) of (j,k) pairs. Next, we plot a scatter
plot of PMI scores and attentive scores for all (j,k) pairs to see
the relationship between the two scores. Our results for ML-100k
dataset is shown in Figure 6.

In Figure 6, the Pearson correlation between PMI scores and
attentive scores are 0.059, 0.097, 0.143, and 0.146 for SDM-1, SDM-
2, SDM-3 SDM-4, respectively. It indicates that as we increase the
number of hops in SDM model, PMI scores and attentive scores are
more positively correlated. In another word, as we increase number
of hops, our metric-based attention with multi-hop design will assign
higher weights for co-purchased items, which is what we desire.

Furthermore, scatter plots in Figure 6a presents that there is a
high density of points with small attentive scores. This indicates
that attention in SDM-1 is distributed to several items (which is
somewhat close to equally focusing on neighbor items). However,
when we increase the number of hops h, the density spreads up to
the top, indicating that the model tends to give higher attention to
some neighbor items, which can be more relevant than others. This
observation is consistent with “learning to attend” in [2, 58].
Did the metric-based attention with multi-hop design improve
recommendation results? We answer this research question by
showing the results of SDM model when varying number of hops
h from {1, 2, 3, 4} with different embedding sizes and visualize
attention scores of SDM-h with a random observation.
Varying number of hops with different embedding sizes: The
performance of SDM-h regarding hit@10 with h from {1, 2, 3, 4}
and embedding size from {8, 16, 32, 64, 128} is presented in Figure
5. We see that more hops tend to give additional improvement in

set of consumed items

Attention Scores

predicting item

action romance action romance action action

Personalized
Weights

Multi-hop
Memory

Figure 7: Multi-hop Attention visualization.

all 6 datasets, except in Tafeng dataset where SDM with more hops
over-fitted. In ML-100k and ML-1M, the optimal number of hops
are 3 or 4. In Netflix, SDM with 3 hops performed well. In Epinions
and IJCAI-15, SDM-4 tends to achieve better results. Overall, the
selection of the number of hops depends on the dataset complexity,
and it varies from datasets to datasets.
Attention Visualization: Lastly, to visualize how the personalized
metric-based attention with multi-hop design works, we chose one
user from ML-100K data. The learned weights at each hop of SDM is
shown in Figure 7. The target item in this example is an action movie
called Fire Down Below (1997). The first two hops of SDM assigned
high weights to two romance movies, and the lowest score to the
action movie Money Talks (1997). The 3rd-hop and 4th-hop attention
refined the weights of movies to better reflect the correlations and
similarities w.r.t the target movie. At last, Money Talks (1997) was
assigned with the highest weight 0.386, and the total weights of two
romance movies decreased to less than 0.2. This result shows the
effectiveness of our multi-hop SDM model.

6 CONCLUSION
In this paper, we have studied the top-k recommendation problem in
a distance metric learning perspective. Different from the previous
works, we have considered two independent signed distance models
for measuring user-item similarities and for item-item similarities
respectively via deep neural networks. Extensive experiments have
been performed on six real-world datasets in general recommenda-
tion and shopping basket-based recommendation task. We presented
that our proposed SDMR outperformed ten baselines in all two
recommendation tasks. To an extension, future works can integrate
position embeddings [53] in our models, which give our models a
sense of which position we are dealing with, which can help further
improve our model’s performance when rigid orders of items are
available.

Signed Distance-based Deep Memory Recommender WWW’19, May 2019, San Francisco, California USA

REFERENCES
[1] Charu C Aggarwal. 2016. Recommender systems. Springer.
[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[3] Daniel Billsus and Michael J Pazzani. 2000. User modeling for adaptive news
access. User modeling and user-adapted interaction 10, 2-3 (2000), 147–180.

[4] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive collaborative filtering: Multimedia recommendation
with item-and component-level attention. In Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information Retrieval.
ACM, 335–344.

[5] Heeyoul Choi, Kyunghyun Cho, and Yoshua Bengio. 2018. Fine-grained attention
mechanism for neural machine translation. Neurocomputing 284 (2018), 171–176.

[6] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommendation
algorithms. TOIS 22, 1 (2004), 143–177.

[7] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network
for Recommendation Systems. In Proceedings of the 41st ACM International
Conference on Research and Development in Information Retrieval.

[8] Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and Quan
Yuan. 2015. Personalized Ranking Metric Embedding for Next New POI Recom-
mendation.. In International Joint Conference on Artificial Intelligence, Vol. 15.
2069–2075.

[9] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based rec-
ommendation. In Proceedings of the Eleventh ACM Conference on Recommender
Systems. ACM, 161–169.

[10] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In Data Mining (ICDM), 2016 IEEE
16th International Conference on. IEEE, 191–200.

[11] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. International World Wide
Web Conferences Steering Committee, 507–517.

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web. International World Wide Web Conferences
Steering Committee, 173–182.

[13] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
matrix factorization for online recommendation with implicit feedback. In Pro-
ceedings of the 39th International ACM SIGIR conference on Research and Devel-
opment in Information Retrieval. ACM, 549–558.

[14] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[15] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative metric learning. In Proceedings of the 26th
International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 193–201.

[16] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE Inter-
national Conference on. Ieee, 263–272.

[17] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.
2016. Convolutional matrix factorization for document context-aware recommen-
dation. In Proceedings of the 10th ACM Conference on Recommender Systems.
ACM, 233–240.

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[19] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted col-
laborative filtering model. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 426–434.

[20] Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 447–456.

[21] Yehuda Koren. 2010. Collaborative filtering with temporal dynamics. Commun.
ACM 53, 4 (2010), 89–97.

[22] Ken Lang. 1995. Newsweeder: Learning to filter netnews. In ICML. 331–339.
[23] Neil D Lawrence and Raquel Urtasun. 2009. Non-linear matrix factorization with

Gaussian processes. In Proceedings of the 26th Annual International Conference
on Machine Learning. ACM, 601–608.

[24] Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep collaborative filtering via
marginalized denoising auto-encoder. In Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management. ACM,
811–820.

[25] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. (2018).

[26] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,
Bowen Zhou, and Yoshua Bengio. 2017. A structured self-attentive sentence

embedding. arXiv preprint arXiv:1703.03130 (2017).
[27] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon. com recommen-

dations: Item-to-item collaborative filtering. IEEE Internet computing 1 (2003),
76–80.

[28] Fei Liu and Julien Perez. 2017. Gated end-to-end memory networks. In Pro-
ceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers, Vol. 1. 1–10.

[29] Qiang Liu, Shu Wu, and Liang Wang. 2017. DeepStyle: Learning user preferences
for visual recommendation. In Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, 841–
844.

[30] Xinyue Liu, Chara Aggarwal, Yu-Feng Li, Xiaugnan Kong, Xinyuan Sun, and
Saket Sathe. 2016. Kernelized matrix factorization for collaborative filtering. In
Proceedings of the 2016 SIAM International Conference on Data Mining. SIAM,
378–386.

[31] Yichao Lu, Ruihai Dong, and Barry Smyth. 2018. Coevolutionary Recommenda-
tion Model: Mutual Learning between Ratings and Reviews. In Proceedings of
the 2018 World Wide Web Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 773–782.

[32] Yichao Lu, Ruihai Dong, and Barry Smyth. 2018. Convolutional Matrix Factoriza-
tion for Recommendation Explanation. In Proceedings of the 23rd International
Conference on Intelligent User Interfaces Companion. ACM, 34.

[33] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[34] Paolo Massa and Paolo Avesani. 2007. Trust-aware recommender systems. In
Proceedings of the 2007 ACM conference on Recommender systems. ACM, 17–24.

[35] Xia Ning and George Karypis. 2011. Slim: Sparse linear methods for top-n
recommender systems. In 2011 11th IEEE International Conference on Data
Mining. IEEE, 497–506.

[36] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi.
2017. Personalizing session-based recommendations with hierarchical recurrent
neural networks. In Proceedings of the Eleventh ACM Conference on Recom-
mender Systems. ACM, 130–137.

[37] Parikshit Ram and Alexander G Gray. 2012. Maximum inner-product search using
cone trees. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 931–939.

[38] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[39] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalized markov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. ACM, 811–820.

[40] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. 1994. GroupLens: an open architecture for collaborative filtering of netnews.
In Proceedings of the 1994 ACM conference on Computer supported cooperative
work. ACM, 175–186.

[41] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-
based collaborative filtering recommendation algorithms. In Proceedings of the
10th international conference on World Wide Web. ACM, 285–295.

[42] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.
Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th
International Conference on World Wide Web. ACM, 111–112.

[43] Paul Hongsuck Seo, Zhe Lin, Scott Cohen, Xiaohui Shen, and Bohyung Han.
2016. Hierarchical attention networks. arXiv preprint arXiv:1606.02393 (2016).

[44] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. 2017. Interpretable convo-
lutional neural networks with dual local and global attention for review rating
prediction. In Proceedings of the Eleventh ACM Conference on Recommender
Systems. ACM, 297–305.

[45] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for sublinear
time maximum inner product search (MIPS). In Advances in Neural Information
Processing Systems. 2321–2329.

[46] Nitish Srivastava and Ruslan R Salakhutdinov. 2012. Multimodal learning with
deep boltzmann machines. In Advances in neural information processing systems.
2222–2230.

[47] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. 2015. End-to-end memory
networks. In Advances in neural information processing systems. 2440–2448.

[48] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation
via convolutional sequence embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. ACM, 565–573.

[49] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent relational metric
learning via memory-based attention for collaborative ranking. In Proceedings of
the 2018 World Wide Web Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 729–739.

[50] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Multi-Pointer Co-Attention
Networks for Recommendation. arXiv preprint arXiv:1801.09251 (2018).

WWW’19, May 2019, San Francisco, California USA

[51] Thanh Tran, Kyumin Lee, Yiming Liao, and Dongwon Lee. 2018. Regulariz-
ing Matrix Factorization with User and Item Embeddings for Recommendation.
In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. ACM, 687–696.

[52] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep
content-based music recommendation. In Advances in neural information process-
ing systems. 2643–2651.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing Systems. 6000–6010.

[54] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi
Cheng. 2015. Learning hierarchical representation model for nextbasket recom-
mendation. In SIGIR. 403–412.

[55] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.
2017. Recurrent recommender networks. In Proceedings of the tenth ACM inter-
national conference on web search and data mining. ACM, 495–503.

[56] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabora-
tive denoising auto-encoders for top-n recommender systems. In Proceedings of
the Ninth ACM International Conference on Web Search and Data Mining. ACM,
153–162.

[57] Caiming Xiong, Stephen Merity, and Richard Socher. 2016. Dynamic memory
networks for visual and textual question answering. In International conference
on machine learning. 2397–2406.

[58] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual attention. In ICML. 2048–2057.

[59] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. 2017.
Deep Matrix Factorization Models for Recommender Systems.. In Proceeding of
the 26th International Joint Conference on Artificial Intelligence. 3203–3209.

[60] Hanwang Zhang, Yang Yang, Huanbo Luan, Shuicheng Yang, and Tat-Seng Chua.
2014. Start from scratch: Towards automatically identifying, modeling, and
naming visual attributes. In Proceedings of the 22nd ACM international conference
on Multimedia. ACM, 187–196.

[61] Tinghui Zhou, Hanhuai Shan, Arindam Banerjee, and Guillermo Sapiro. 2012.
Kernelized probabilistic matrix factorization: Exploiting graphs and side informa-
tion. In Proceedings of the 2012 SIAM international Conference on Data mining.
SIAM, 403–414.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Proposed Methods
	4.1 Signed Distance-based Perceptron (SDP)
	4.2 Signed Distance-based Memory Network (SDM)
	4.3 Signed Distance-based Deep Memory Recommender (SDMR)
	4.4 Loss Functions

	5 Empirical Study
	5.1 Datasets
	5.2 Baselines and State-of-the-art Methods
	5.3 Experimental Settings
	5.4 Experimental Results
	5.5 RQ2: Understanding our multi-hop personalized metric-based attention design?

	6 Conclusion
	References

