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ABSTRACT

Collective classification has attracted considerable attention
in the last decade, where the labels within a group of in-
stances are correlated and should be inferred collectively,
instead of independently. Conventional approaches on collec-
tive classification mainly focus on exploiting simple relational
features (such as count and exists aggregators on neighbor-
ing nodes). However, many real-world applications involve
complex dependencies among the instances, which are ob-
scure/hidden in the networks. To capture these dependencies
in collective classification, we need to go beyond simple rela-
tional features and extract deep dependencies between the
instances. In this paper, we study the problem of deep col-
lective classification in Heterogeneous Information Networks
(HINs), which involves different types of autocorrelations,
from simple to complex relations, among the instances. Dif-
ferent from conventional autocorrelations, which are given
explicitly by the links in the network, complex autocorrela-
tions are obscure/hidden in HINs, and should be inferred
from existing links in a hierarchical order. This problem is
highly challenging due to the multiple types of dependencies
among the nodes and the complexity of the relational features.
In this study, we proposed a deep convolutional collective
classification method, called GraphInception, to learn the
deep relational features in HINs. The proposed method can
automatically generate a hierarchy of relational features with
different complexities. Extensive experiments on four real-
world networks demonstrate that our approach can improve
the collective classification performance by considering deep
relational features in HINs.
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1 INTRODUCTION

Collective classification [1] aims at exploiting the label auto-
correlation among a group of inter-connected instances and
predicting their class labels collectively. In many relational
data, the labels of different instances can be related. For
example, in bibliographic networks, the papers written by
the same author are more likely to share similar topics than
those written by different authors. An effective model for
relational data should be able to capture the dependencies
among different instances and perform classification collec-
tively. Motivated by this challenge, collective classification
has been extensively studied in recent years [1–4].

Previous works on collective classification are concentrated
on conventional relational models, which depend heavily on
the design of relational features by the experts. On one
hand, conventional relational features are usually defined as
a simple aggregation of a node’s direct neighbors, such as
the average or the count of their labels. On the other hand,
recent works on deep learning models [5] offer automatic
end-to-end feature learning in a variety of domains, such as
vision [6], speech and NLP [7]. However, current research
on deep learning mainly focuses on content features, e.g.,
visual features in image data. They have not yet been used
to extract deep relational features in collective classification,
to capture the complex autocorrelation among instances in
relational learning.

In this paper, we study the problem of deep collective clas-
sification in HINs, which involves a hierarchy of different
types of autocorrelations among the instances. For example,
in Figure 1, we show a deep relational learning task, i.e.,
predicting the research area (label) of the authors in bibli-
ographic networks. Different authors are not only explicitly
inter-connected through co-author relations, but also implicit-
ly connected through latent relations, such as adviser-advisee,
share-advisor, colleague. The dotted lines in Figure 1 rep-
resent implicit relationships between authors that exist in
real world, but can only be inferred in the DBLP network.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: An example of simple links and hidden
links in DBLP network. Here the solid lines repre-
sent the simple relations exist in DBLP network, and
the dotted lines represent the hidden relations that
exist in real world but should be inferred from DBLP
network, i.e., co-author (blue line), adviser-advisee
(pink line) and share-adviser (red line).

Although there exist previous methods on collective classifi-
cation in HINs [8, 9], deep collective classification is still an
open and challenging problem due to the following reasons:
• Deep Relational Features: One major challenge of the
problem is that HINs can involve a hierarchy of different
types of autocorrelations, from simple to complex ones. The
complex relationships are not given directly by the links in
the network, but can be inferred by a hierarchy of relational
features. For instance, in the DBLP network in Figure 1,
there are co-author relations (simple relationships) between
authors; advisor-advisee relations (hidden relationships), and
share-adviser relations (complex relationships). The complex
relations, e.g., share-advisor, cannot be directly modeled
by shallow relational features like co-author relations, but
can potentially be inferred from a hierarchy of deep rela-
tional features, from simple ones (co-authors), medium ones
(advisor-advisee), to complex ones (share-advisor), as shown
in Figure 2. For example, to infer the advisor-advisee re-
lationships, we could find the two authors sharing similar
neighboring nodes (these neighbors are most likely to be their
adviser and other students in the research group). Because of
the complex and obscure relationships between the instances
in heterogeneous networks, we need a deep relational learning
model to extract a hierarchy of deep dependencies among
the instances.
• Mixed Complexity in Relational Features: The sec-
ond major challenge of the problem is the diversity of the
complexity levels in the relational features. As shown in Fig-
ure 1, there are usually a mixture of both simple and complex
dependencies among the instances, which can all be relat-
ed to the collective classification task. In these networks, a
simple relational model can only capture simple relations,
but will be underfitting on complex relations. On the other
hand, a conventional deep learning model with deep layers
may only capture complex relations, but will be overfitting
on simple relations. Therefore, an ideal model should be able
to automatically balance its model complexity with respect
to the mixture of complexities.

Figure 2: An example of a hierarchical relations be-
tween authors in the DBLP network. Here the com-
plex/obscure relations (above) can be inferred from
the existing/simple relations (bottom).

Figure 3: The difference between the proposed
method and conventional methods. We divided the
algorithms according to the difficulty of the con-
tent features and the relational features. In partic-
ular, the deep learning models include highway net-
work [11], inception module [12] and graph convolu-
tion model [10].

• Heterogeneous Dependencies: The third major chal-
lenge with applying deep learning models on collective classi-
fication lies in the diversity of the node types and link types
in HINs. The properties of different types of nodes (links) are
very different, which makes it difficult to apply deep learning
models directly. For example, graph convolution models [10],
assume each node in the network sharing the same convolu-
tion kernels, which is untenable in HINs. Although there exist
some researches for collective classification in HINs [8, 9],
however, most of them are shallow models which ignore the
deep relational features in the network.

In order to address the above challenges, we present a
deep graph convolutional model, called GraphInception, for
collective classification in HINs. Figure 3 compares the d-
ifference between GraphInception and other conventional
methods. Considering the diversity of the complexity levels
in the relational features (some are very simple and some
are complex), in order to study the relational features more
efficiently, we propose the graph inception module to balance
relational features with different complexities. This model
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is inspired by the inception module [12], a highly efficient
deep convolutional model for CNN with fewer parameters
and deeper layers.

2 PRELIMINARIES

𝑁𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛: We use upper-case letters for matrices,
bold lower-case letters for vectors and handwritten letters for
sets. The operator ⊗ is used to denote convolution operation.
We summarized all notations in Table 1.

2.1 Heterogeneous Information Network

In many real-world applications, the networks include multi-
ple types of nodes and links, which are called heterogeneous
information networks [13].

Definition 1. Heterogeneous information network is a
special kind of information network, which can be represented
as a directed graph 𝐺 = (𝒱, ℰ). 𝒱 denotes the set of nodes,
including 𝑚 types of nodes: 𝒱1 = {𝑣11, · · · , 𝑣1𝑛1}, · · · ,𝒱𝑚 =
{𝑣𝑚1, · · · , 𝑣𝑚𝑛𝑚}, where 𝑣𝑗𝑖 represents the 𝑖-th instance of
type 𝑗. ℰ ⊆ 𝒱 × 𝒱 denotes the links between the nodes in 𝒱,
which involves multiple types of links.

For example, as shown in Figure 1, the DBLP network
includes three types of nodes, e.g., authors, papers, confer-
ences, which are connected through two types of links, e.g.,
authoredBy, PublishedIn.

2.2 Collective Classification in HINs

In this paper, we focus on studying the collective classification
problem on one type of nodes, instead of on all of them in
HINs. The reason is the label space of different types of nodes
are quite different, so it’s unreasonable to assume all types of
nodes share the same set of label concepts. For instance, in
movie networks, e.g., IMDB [14], the label concepts for movie
genres classification task are only defined on movie nodes,
instead of director nodes or actor nodes. In a specific inference
task, we usually only care about the inference results on one
type of nodes.

Without loss of generality, we suppose the first node type
𝒱1 in the HIN 𝐺 as the type of target nodes we need to
inference, and suppose we have 𝑛 nodes in 𝒱1. On each
node 𝑣1𝑖 ∈ 𝒱1, we have a features vector x𝑖 ∈ R𝑑 in the
𝑑-dimensional space; and we also have a label variable 𝑌𝑖 ∈
{1, · · · , 𝐶} indicating the class label assigned to node 𝑣1𝑖.
𝒳 = {x1, · · · ,x𝑛} and 𝒴 = {𝑌1, · · · , 𝑌𝑛} represent the set of
features and the set of labels for all instances in 𝒱1.

The instances in 𝒱1 are then divided into a training set ℒ
and a test set 𝒰 , where ℒ

⋃︀
𝒰 = 𝒱1 and ℒ

⋂︀
𝒰 = ∅. We use

𝒴ℒ = {𝑌𝑖|𝑣1𝑖 ∈ ℒ} represents the labels set of the nodes in
the training set, and use 𝒴𝒰 = {𝑌𝑖|𝑣1𝑖 ∈ 𝒰} represents the
labels set of the nodes in the test set. Collective inference
methods assume that the instances linked in the network
are related [1]. Let 𝒩𝑖 (𝒩𝑖 ⊆ 𝒱1) represents the set of nodes
associated with 𝑣1𝑖, 𝒴𝒩𝑖 = {𝑌𝑖|𝑣1𝑖 ∈ 𝒩𝑖}. Then the task of

authoredBy

authoredBy authoredBy

Author

authoredBy publishedIn

Conference Author

publishedIn

Paper Paper

Paper

Figure 4: Examples of different types of Meta-path
between two authors in DBLP Network.
collective classification in HINs is to estimate:

Pr (𝒴𝒰 |𝒳 ,𝒴ℒ) ∝
∏︁

𝑣1𝑖∈𝒰

𝑃𝑟(𝑌𝑖|x𝑖,𝒴𝒩𝑖) (1)

It is challenging to learn and infer about 𝑃𝑟(𝑌𝑖|x𝑖,𝒴𝒩𝑖),
especially to learn the deep relational features of the nodes
with complex correlations in HIN. In next section, we propose
a framework to solve the problem.

3 GRAPH CONVOLUTION-BASED
DEEP RELATIONAL FEATURE
LEARNING

For learning the deep relational features in HINs, we present
the graph convolution-based relational feature learning model
in this section. The model includes two phases: i) multi-
channel network translation, which translates the HIN to a
multi-channel network so that we can do convolution in the
HIN; ii) graph convolution based relational feature learning,
which learns the deep relational features from multi-channel
networks based on graph convolution. The architecture of
our method is shown in Figure 5.

3.1 Multi-channel Network Translation

There are abundant types of nodes in a HIN, while the
diversities between different node types vary widely, which
greatly increased the difficulty of convolution operation on
the network. Usually, we only care about one type of nodes,
instead of all of them in HINs. To simplify the learning curve,
we propose the multi-channel network, each channel of which
is a homogeneous network consisting of the target nodes
type, and the links (relationships) are extracted from the
HIN with different semantic meaning. In this subsection, we
first introduce a concept named meta path [13], which is often
used to extract relationships among the instances in HINs.
Then we propose how to translate the HIN to a multi-channel
network based on meta paths.

The instances in HIN are inter-connected through multiple
types of links. Each type of links from node type 𝒱𝑖 to node
type 𝒱𝑗 corresponds to a binary relation 𝑅, where 𝑅(𝑣𝑖𝑝, 𝑣𝑗𝑞)
holds if the node 𝑣𝑖𝑝 and 𝑣𝑗𝑞 are linked in 𝑅. For example, in
Figure 1, the link type “authoredBy” is a relation between
paper nodes and author nodes, where 𝑅(𝑣𝑖𝑝, 𝑣𝑗𝑞) holds if the
paper node 𝑣𝑖𝑝 has a link of type “authoredBy” to the author
node 𝑣𝑗𝑞 in the network. We can write the link type as “paper
𝑎𝑢𝑡ℎ𝑜𝑟𝑒𝑑𝐵𝑦−−−−−−−−→ author”. The meta path is defined as a sequence
of relations in the network schema. For instance, a meta path

“author
𝑎𝑢𝑡ℎ𝑜𝑟𝑒𝑑𝐵𝑦−1

−−−−−−−−−−→ paper
𝑎𝑢𝑡ℎ𝑜𝑟𝑒𝑑𝐵𝑦−−−−−−−−→ author” denotes a
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Table 1: Important Notations.
Symbol Definition

𝐺 = (𝒱, ℰ) A heterogeneous information network.
𝒱 = {𝒱1, · · · ,𝒱𝑚} The set of nodes, involving 𝑚 types of nodes. The target node type is 𝒱1.
𝒳 = {x1, · · · ,x𝑛} The set of local features for all instances in 𝒱1.
𝒴 = {𝑌1, · · · , 𝑌𝑛} The set of label values for all instances in 𝒱1, 𝑌𝑖 ∈ {1, · · · , 𝐶}.

ℒ and 𝒰 The training set and test set, where ℒ
⋃︀

𝒰 = 𝒱1, ℒ
⋂︀

𝒰 = ∅.
𝒮 = {𝒫1, · · · ,𝒫|𝒮|} The set of meta paths type. Each 𝒫𝑙 denotes a composite relationship between instances in 𝒱1.

X The convolutional signal of nodes, where X ∈ R𝑛×𝐶 .
𝐾 The convolutional kernel size.
𝐹 Number of convolutional filters, i.e., the hidden dimension of the filter.

H𝑡 and T H𝑡 denotes the convolution result at 𝑡-th layer in neural networks. T is the number of convolutional layers.

Figure 5: Architecture of the proposed GraphInception in HINs. The details of the graph inception module
is shown in Figure 6.

composite relationship between author nodes, where the
semantic meaning of this meta-path is that the two authors
are Co-author. Here the link type “authoredBy−1” represents
the inverted relation of “authoredBy”. We give two types of
meta path between author nodes in Figure 4.

Each meta path defines a unique relationship between
nodes, and can be used as a link type to a specific channel
in the multi-channel network. For learning the dependencies
among instances more effectively, we translate the HIN to the
multi-channel network, where each channel of the network is
connected via a certain type of meta path. Formally, given a
set of meta paths 𝒮 = {𝒫1, · · · ,𝒫|𝒮|}, the translated multi-
channel network 𝐺′ is defined as:

𝐺′ = {𝐺′
ℓ|𝐺′

ℓ = (𝒱1, ℰ1ℓ), ℓ = 1, · · · , |𝒮|.} (2)

where ℰ1ℓ ⊆ 𝒱1 × 𝒱1 denotes the links between the instances
in 𝒱1, which connected through the meta path 𝒫ℓ.

There are many ways to construct meta paths: At the
beginning, meta paths were constructed manually by the
experts; Afterwards, several efficient methods were presented
to construct meta paths including using the breadth-first
search within a limited path length [8] and greedy tree-based
model [15]. In this paper, We choose the breadth-first search
to construct meta paths.

3.2 Graph Convolution-based Relational
Feature Learning

In this subsection, we first propose the idea of learning the
relational features from homogeneous networks based on
graph convolution, then extend the idea into HINs.

In this study, we focus on relational feature learning, while
conventional graph convolution models mainly focus on con-
tent feature learning [10, 16, 17]. We summarized the signifi-
cant differences between them as shown in Table 2 and the
last paragraph in this subsection. Considering the graph con-
volution on a homogeneous network 𝐺homo, the convolution
theorem defines convolutions as linear operators that diag-
onalize in the Fourier basis. We use the eigenvectors of the
graph transition probability matrix P as Fourier basis. Then
the convolution on 𝐺homo is defined as the multiplication of
a signal X ∈ R𝑛×𝐶 (a 𝐶-dimensional feature vectors for each
node) with a filter 𝑔𝜃 on P in the Fourier domain, i.e.,

𝑔𝜃 ⊗𝐺homo X = 𝑔𝜃(P)X = 𝑔𝜃(UΛU⊤)X = U𝑔𝜃(Λ)U⊤X
(3)

where U is the eigenvector matrix of P, Λ is the diagnal
matrix of eigenvalues of P, 𝑔𝜃(Λ) is the vector of Fourier
coefficients, and U⊤X is the graph Fourier transform of X.
Note that U and Λ are complex matrices because P is unsym-
metrical matrix. However, recent work [18] has successfully
applied the complex valued in traditional CNN. And we will
see later, our model has nothing to do with whether U is
complex matrix.

For selecting the local neighbors of a given node, we define
𝑔𝜃 as a polynomial-parametric filter [10]:

𝑔𝜃(Λ) =

𝐾∑︁
𝑘=1

𝜃𝑘Λ
𝑘 (4)

where the parameter 𝜃 ∈ R𝐾 is a vector of polynomial coeffi-
cients. Then we have:

𝑔𝜃 ⊗𝐺homo X = U

𝐾∑︁
𝑘=1

𝜃𝑘Λ
𝑘U⊤X =

𝐾∑︁
𝑘=1

𝜃𝑘P
𝑘X (5)
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Table 2: The differences between our model and
graph convolution models.

Graph convolution models Our model
Target problem Graph classification Collective classification
Convolution Laplacian matrix Transition probability

matrix L matrix P
Convolution Neighbor nodes Neighbor nodes

Input with itself only
Convolution Content Relational

Output features features
Networks Homogeneous networks Heterogeneous networks

Note that this expression is now 𝐾-order neighborhood since
it is a 𝐾-th order polynomial of the transition probability
matrix, i.e., it depends only on nodes that are at maximum
𝐾 steps away from the target node.

Now, we extend the Eq. 5 to HINs. Previously, we intro-
duced how to translate a HIN 𝐺 to a multi-channel network
𝐺′, where each channel of the network represents a particular
relationship between the nodes in 𝒱1. In this subsection, we
learned the relational features on HIN via convolution on
each channel of 𝐺′, i.e.,

𝑔𝜃 ⊗𝐺 X =
(︁
𝑔𝜃1 ⊗𝐺′

1
𝑥, · · · , 𝑔𝜃|𝒮| ⊗𝐺′

|𝒮|
X
)︁

=
(︁
𝑔𝜃1(P1)X, · · · , 𝑔𝜃|𝒮|(P|𝒮|)X

)︁ (6)

wherePℓ (ℓ = 1, · · · , |𝒮|) represents the transition probability
matrix of 𝐺′

ℓ. Note that we use different convolutional filters
on different channels, and finally concat the convolution
results. The reason is that the nodes have different neighbor
nodes in each channel, thus are not suitable for convolution
on all channels with one filter. Moreover, we generalize Eq. 6
to 𝐹 filters for feature maps, i.e., the hidden dimension of
the convolutional filter is 𝐹 . Then we have:

H = 𝑔Θ ⊗𝐺 X =
(︁
𝑔Θ1(P1)X, · · · , 𝑔Θ|𝒮|(P|𝒮|)X

)︁
= 𝑟

(︃
𝐾∑︁

𝑘=1

P𝑘
1XΘ1𝑘, · · · ,

𝐾∑︁
𝑘=1

P𝑘
|𝒮|XΘ|𝒮|𝑘

)︃
(7)

Θℓ𝑘 ∈ R𝐶×𝐹 (ℓ = 1, · · · , |𝒮|) is now a matrix of filter pa-
rameters. A function 𝑟 of a vector x is defined as 𝑟(x) =
(𝑟(𝑥1), · · · , 𝑟(𝑥𝑛)), here 𝑟(𝑥𝑖) = max(0, 𝑥𝑖) is the Relu func-
tion. The 𝑖-th row vector of H represents the learned rela-
tional features of the node 𝑣1𝑖.

In summary, the differences between conventional graph
convolution models and our model include the following as-
pects: 1) Conventional models concentrate on graph classifica-
tion problem, while our model focus on collective classification
problem; 2) Most graph convolution models are content fea-
ture learning models, therefore, they use the eigenvectors
of the laplacian matrix L as the Fourier basis. Instead, our
model is a relational feature learning model, so we use the
eigenvectors of the transition probability matrix P as the
Fourier basis; 3) Since we aim at learning the relational fea-
tures, our convolutional filters donot need the attributes of
the node itself, i.e., do not need to consider the case of 𝑘 = 0
in Eq. 5; 4) The convolution output of our model is relational
features, and most conventional models are content features;
5) Our model can deal with HINs, while traditional graph
convolution models cannot work on HINs.

4 GRAPH INCEPTION
MODULE-BASED DEEP
RELATIONAL FEATURE LEARNING

In order to balance the complexity levels of relational features,
we proposed the graph inception module, to automatically
generate a hierarchy of relational features from simple to
complex features.

Conventional inception modules can only work on Eu-
clidean grids data, e.g., image data [12], and can not be used
on general graph structure, e.g., network data. Therefore, we
propose the graph inception module, in order to learn the
relational features in networks more effectively. As shown in
Figure 6(a), graph inception module combines convolutional
kernels with different size to extract relational features, and
generate a hierarchy of relational features from simple to
complex features through stacking such network layers. We
also give a toy example in Figure 6(b), which generate rela-
tionships among authors in the DBLP network, from simple
to complex ones. For instance, we take two convolutional ker-
nels for each channel on every layer, and set the kernel sizes
as 1 and 2 respectively. Then the graph inception module in
the 𝑡-th layer is defined as:

C𝑡
ℓ1 = Pℓ𝜎(Ĥ

𝑡−1)Θ𝑡
ℓ1

C𝑡
ℓ2 = Pℓ𝜎(Ĥ

𝑡−1)Θ𝑡
ℓ1′ +P2

ℓ𝜎(Ĥ
𝑡−1)Θ𝑡

ℓ2

Ĥ𝑡 = 𝑟
(︀
C𝑡

11,C
𝑡
12, · · · ,C𝑡

|𝒮|1,C
𝑡
|𝒮|2
)︀ (8)

Here C𝑡
ℓ1/C

𝑡
ℓ2 are the convolution kernels of size 1/2, by

combining them to construct the 𝑡-th layer of the neural
network. And C𝑡

ℓ1,C
𝑡
ℓ2 ∈ R𝑛×𝐹 . 𝜎(·) is a 1× 1 convolutional

filter for dimensionality reduction, and Ĥ0 = (𝑋) ∈ R1×𝑛×𝐶 .
When 𝑡 is 0, Θ𝑡

ℓ𝑘 ∈ R𝐶×𝐹 (𝑘 = 1, 2), otherwise Θ𝑡
ℓ𝑘 ∈ R𝐹×𝐹 .

To further reduce the number of parameters, we replace 𝐶𝑡
ℓ2

as:

C𝑡
ℓ2 = P2

ℓ𝜎(Ĥ
𝑡−1)Θ𝑡

ℓ2 (9)

We can extract complex relational features through stacking
multiple graph inception layers, and control the complexity
of the learned relational features by adjusting the number of
layers.

Compared with Eq. 7, the graph inception module-based
method has three strengths: 1) It can significantly reduce
the required storage space when 𝐾 is a large number (Eq. 7
need to store 𝐾 matrices while Eq. 8 only need to store P
and P2); 2) It requires fewer parameters than Eq. 7 when
the network is very deep; 3) It can enhance the ability of the
model to extract the relational features. We intuitively expect
that such a model can alleviate the problem of overfitting
on local neighborhood structures for graphs with very wide
node degree distributions, such as social networks, citation
networks, etc.

Suppose the graph inception module has 𝑇 layers, then the
convolution operation has complexity 𝒪(|𝒮|·𝐶 ·𝐹 ·𝑇 ·|ℰ|), here
|𝒮| is the number of the meta paths, 𝐶 is the dimension of the
input signals, and 𝐹 is the hidden dimension of convolutional
filters. As P𝑘

ℓX can be efficiently implemented as a product of
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(a) Framework of the graph inception module (b) A Hierarchy of Relational Features in DBLP network

Figure 6: Graph inception module. (a) the framework of the proposed module, and the red chart on the left
is an enlarged view of each layer. (b) a toy example of the graph inception module in DBLP network, which
generate a hierarchy of relationships among authors via graph inception (The green arrow indicates the neural
network in the left parentheses).

Input:

𝐺 : a heterogeneous network, 𝑇 : depth of inception layer

𝑀𝑎𝑥𝐼𝑡: maximum # of iterations, 𝒳 : features for all instances
𝑝𝑚𝑎𝑥 :maximum metapath length (default=4)

Multi-channel Network Construction:
- Construct the meta-path set 𝒮 = {𝒫1, · · · ,𝒫|𝒮|}

Breadth search on schema graph of 𝐺, starting from 𝒱1

by adding meta-path 𝒫ℓ that ends with 𝒱1 into 𝑆,

length(𝒫ℓ) 6 𝑝𝑚𝑎𝑥.

- Use the meta path set 𝒮 to construct the multi-channel
network 𝐺′ of the HIN 𝐺.

Initialization:
- For each 𝑣1𝑖 ∈ 𝒰 , set the label 𝑌𝑖 as 𝑌𝑖 = 0

Training:

- Learn the neural network model 𝑓 :
1. Construct an extended training set 𝒟 = {(x′

𝑖, 𝑌𝑖)} by

converting each instance x𝑖 to x′
𝑖 with 𝑇 layers of Eq. 8

2. Let Eq. 10 be the neural network 𝑓 trained on 𝒟.
Iterative Inference:

- For each 𝑣1𝑖 ∈ 𝒰 , estimate the label 𝑌𝑖 as 𝑌𝑖 = 𝑓((x𝑖,0))

- Repeat until convergence or #iteration > 𝑀𝑎𝑥𝐼𝑡

1. Construct the associate features x′
𝑖 for each test instance

𝑣1𝑖 ∈ 𝒰 as: x′
𝑖 =

(︀
x𝑖,vec(H

𝑇
𝑖 )

)︀
, where H𝑇

𝑖 is estimated

through Eq. 8
2. Update the 𝑌𝑖 as 𝑌𝑖 = 𝑓(x′

𝑖) for each 𝑣1𝑖 ∈ 𝒰 .

Output:
𝒴𝒰 =

(︀
𝑌1, · · · , 𝑌|𝒰|

)︀
: the labels of test instances (𝑣1𝑖 ∈ 𝒰).

Figure 7: The GraphInception algorithm

a sparse matrix with a dense matrix, and |𝒮|, 𝐶, 𝐹, 𝑇 ≪ |ℰ|,
the complexity is linear in the number of graph edges.

5 PROPOSED SOLUTION

After learning the relational features for all nodes, we predict
the label 𝑌𝑖 ∈ 𝒴𝒰 via a softmax layer with relational features
H𝑇

𝑖 and local features x𝑖, i.e.,

𝑃𝑟(𝑌𝑖 = 𝑐|𝒴𝒩𝑖 ,x𝑖) = softmax(vec(𝑊𝑐HH𝑇
𝑖 ) +𝑊𝑐xx𝑖 + b𝑐)

(10)

where 𝑊𝑐H ∈ R2|𝒮|×𝐹 and 𝑊𝑐x ∈ R𝑑 are weight matrices and
b𝑐 is a bias. 𝑇 is the top layer of Eq. 8, and 𝑐 ∈ {1, · · · , 𝐶}
indicates the label of nodes. Here vec(·) is a function which

scales the input matrix into a vector. We use the labels
of all nodes as the input signal X of Eq. 8, and use 0 to
initialize the labels of the test (unknown) nodes. There are
two reasons why we only use the labels instead of both labels
and local features as the input signal X: 1) It can significantly
reduce the number of parameters; 2) Conventional collective
classification methods confirmed that there is only little
association between the label of the target node and the local
features of the neighboring nodes.

Inspired by the success of iterative classification method [1],
we propose an algorithm, called GraphInception, to solve the
collective classification problem in HINs. The framework of
GraphInception is shown in Figure 7. The algorithm includes
following steps:
Multi-channel Network Construction: Given a HIN 𝐺,
we first extract a meta-path set 𝒮 = {𝒫1, · · · ,𝒫|𝒮|} within
the maximum path length 𝑝max. Then we use the meta-path
set to construct the multi-channel network 𝐺′.
Training Model: In the training step, we construct an
extended training set 𝒟 = {(x′

𝑖, 𝑌𝑖)} by converting each
instance x𝑖 to x′

𝑖 = (vec(H𝑇
𝑖 ),x𝑖) using local fecatures x𝑖

and relational features learned from Eq. 8. Then we train the
neural network on the extended training set based on Eq. 10.
Iterative Inference: In the inference step, we iteratively
update the label values of neighboring nodes based on latest
predict results, and then use these new labels to make a
prediction. The iterative process terminates when the con-
vergence criteria are met. In the end, we will get 𝒴𝒰 for the
test instances.

Our proposed GraphInception model can not only be ap-
plied to ICA framework, but can also be easily extended
to other collective classification frameworks including stack
learning and label propagation by replacing the traditional
relational features with Eq. 8.

6 RELATED WORK

This paper sits at the intersection of two developed areas:
collective classification and deep learning models. We provide
a brief overview of related works in both fields.
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Collective classification [1, 2, 4, 25, 26] of relational data,
has been investigated by many researchers. Basic collective
classification problems mainly focus on homogeneous net-
work [3, 27]. Ji [28] studied a specialized classification prob-
lem on HINs, where different types of nodes share a same
set of label concepts. Kong et al. [8, 9, 29] proposed meth-
ods based on meta-path to solve the collective classification
problem on one-type nodes in HINs. Kou [30] proposed a
method based on stacked model to solve collective classifica-
tion problem. Choetkiertikul [22] extends the stacked model
into multi-relational networks, which can be considered as
one of multi-channel networks proposed in this paper. How-
ever, all above are shallow models. Nandanwar [31] proposed
a deep random walk-based collective classification model, but
it focuses on homogeneous networks. In this work, we chose
three representative algorithms in [1, 8, 22] as competing
algorithms.

On the other hand, in deep learning models, there exist
many related works on graph convolution recently [10, 16, 32–
34]. There are two strategies to define convolutional filters
on graph: either from a spatial approach or from a spec-
tral approach. By construction, spatial approaches provide
filter localization via the finite size of the kernel. However,
although graph convolution directly in the spatial domain
is conceivable, it also faces the challenge of matching local
neighborhoods, as pointed out in [10]. On the other hand, the
convolution theorem defines convolutions as linear operators
that diagonalize in the Fourier basis (usually represented by
the eigenvectors of the Laplacian operator), which provide a
well-defined translation operator on graphs. However, it is
difficult to represent the local neighborhoods in the spectral
domain. Recent works [10, 33] tried some localized filter-
s to overcome the problem, which inspired our algorithm.
There also exist other deep models which are applied to
collective classification problem. Wang [35] proposed a deep
network embedding method, which can be used to solve the
classification problem on networks. Kipf [23] proposed a semi-
supervised classification method based on graph convolution,
while Moore [36] proposed a semi-supervised classification
method based on RNN model. However, all of them focused
on homogeneous networks. Pham [20] proposed a collective
classification method on multi-relational networks based on
stacked model [30] and highway networks [11]. In this work,
we also chose three representative algorithms in [11, 20, 23]
as competing algorithms.

7 EXPERIMENTS

7.1 Data Collection

In order to validate the collective classification performances,
we apply our algorithm to four real-world HINs. Note that
the IMDB dataset is a multi-label dataset, and the rest are
multi-class datasets.
•DBLP Dataset: The first dataset, i.e., DBLP four ar-
eas [19], is a bibliographic information network extracted

Table 3: Types of models, based on the kinds of fea-
tures used.

Method Self Neigh. deep HINs Publication
attr. labels nets &year

LR X —

Highway Network X X Srivastava. 2015

ICA X X Sen. 2008
HCC X X X Kong. 2012
Stacked Learning X X X Choetkiertikul. 2015

CLN X X X X Pham. 2017
GCN X X X Kipf. 2017
GCN (metapath) X X X X This paper
GraphInception X X X X This paper

from DBLP1, which involves three types of nodes: conference,
paper and author, connected by two types of relations/links:
authoredBy link and publishedIn link. We treat authors as
our target instances, with the research area of the authors
as the instances labels. We also extract a bag-of-words repre-
sentation of all the paper titles published by the author as
local features, which include 209 words (terms). For detailed
description of the DBLP dataset, please refer to [19], and the
network schema is shown in Figure 8(a).
•IMDB Dataset: The second dataset is a movieLens dataset2,
which contains four types of nodes: movie, director, actor and
actress, connected by two types of relations/links: directed
link and actor/actress staring link. The target instance type
is movie instance, which assigned with a set of class labels,
indicating genres of the movie. For each movie, we also ex-
tract a bag-of-words vector of all the plot summary about
the movie as local features, which include 1000 words. The
network schema of IMDB dataset is shown in Figure 8(b).
For detailed description of the IMDB dataset, please refer
to [20].
•SLAP Dataset: The third dataset is a bioinformatic dataset
SLAP [21]. As showed in Figure 8(c), the SLAP dataset con-
tains integrated data related to chemical compound, gene,
disease, tissue, pathway etc. We treat genes as our target
instances. Each gene can belong to one of the gene family.
We extract 15 most frequent gene families as the instances
labels, and extract 3000 gene ontology terms (GO terms) as
the features of each gene instance. For detailed description
of the SLAP dataset, please refer to [8].
•ACM Conference Dataset: The last dataset is also a
bibliographic information network, ACM Conference dataset3,
and the network schema is shown in Figure 8(d). This network
includes 196 conference proceedings (e.g., KDD’10, KDD’09,
etc.), 12.5K papers and 17K authors. On each paper node,
we extract a bag-of-words representation of the paper title
and abstract to use as local features, which include 300 words.
Each paper node in the network is assigned with a class label,
indicating the ACM index term of the paper including 11
categories. For detailed description of the ACM Conference
dataset, please refer to [8].

1http://dblp.uni-trier.de/db/
2http://www.imdb.com
3http://dl.acm.org/
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Figure 8: Schema of datasets.
Table 4: Results on the DBLP, SLAP and ACM Conference datasets. “↓” indicates the smaller the value the
better performance; “↑” indicates the larger the value the better performance.
(a) Results (mean (rank)) on the DBLP dataset.

Algorithms
Evaluation Criteria Ave.

Acc.↑ F1↑ Rank

GraphInception 0.923 (1) 0.917 (1) 1
Stacked learning 0.916 (2) 0.911 (2) 2
CLN 0.912 (3) 0.906 (3) 3
HCC 0.906 (4) 0.898 (4) 4
ICA 0.807 (5) 0.799 (5) 5
GCN 0.803 (6) 0.797 (6) 6
GCN (metapath) 0.794 (7) 0.788 (7) 7
Highway network 0.781 (8) 0.773 (8) 8
LR 0.776 (9) 0.770 (9) 9

(b) Results (mean (rank)) on the SLAP dataset.

Algorithms
Evaluation Criteria Ave.

Acc.↑ F1↑ Rank

GraphInception 0.349 (1) 0.317 (1) 1
HCC 0.345 (2) 0.312 (2) 2
ICA 0.344 (3) 0.310 (3) 3
Highway network 0.338 (4) 0.307 (4) 4
LR 0.337 (5) 0.305 (5) 5
Stacked Learning 0.297 (7) 0.216 (6) 6.5
GCN 0.263 (8) 0.222 (6) 7
CLN 0.282 (7) 0.191 (8) 7.5
GCN (metapath) 0.182 (9) 0.175 (9) 9

(c) Results (mean (rank)) on the ACM dataset.

Algorithms
Evaluation Criteria Ave.

Acc.↑ F1↑ Rank

GraphInception 0.733 (2) 0.369 (1) 1.5
HCC 0.740 (1) 0.298 (5) 3
GCN (metapath) 0.664 (5) 0.366 (2) 3.5
Stacked learning 0.724 (3) 0.310 (4) 3.5
ICA 0.682 (4) 0.233 (6) 5
GCN 0.618 (8) 0.314 (3) 5.5
LR 0.653 (6) 0.212 (7) 6.5
Highway network 0.624 (7) 0.176 (8) 7.5
CLN 0.521 (9) 0.065 (9) 9

7.2 Compared Algorithms

To demonstrate the effectiveness of our method, we compare
with the following state-of-the-art algorithms (summarized
in Table 3):
• Logistic Regression (LR for short): baseline algorithm.
• Highway Network [11]: A type of neural network layer that
uses a gating mechanism to control the information flow
through a layer. Stacking multiple highway layers allow for
training of deep networks. We share parameters for each
layer.
• ICA [1]: A basic collective classification method in homo-
geneous networks.
• HCC [8]: This is a collective classification approach, which
works on HIN by exploiting dependencies based on multiple
meta paths in the network.
• Stacked Learning [22]: This is a multi-step learning pro-
cedure for collective classification. In each step, the predict
labels of the neighbor nodes and the local features of the
target node are fed into a standard classifier (LR) to make
predictions.
• Column Network (CLN for short) [20]: This is a deep feed-
forward network for collective classification in multi-relational
domains, with shared parameters for each layer. It also im-
plements the highway layer into the model.
• GCN [23]: This is a graph convolution-based semi-supervised
classification algorithm. The model extracts the 1-localized
information for each node in each convolution layer, and
extracts the deeper relational features through stacked mul-
tiple convolution layers. However, it focuses on homogeneous
networks.
• GCN (metapath): In order to compare with the GCN
method more fairly, we extend the GCN method into HINs
with meta path, as described in section 3.1.
• GraphInception: This is our method proposed in Section 5.

In practice, we make use of Keras for an efficient GPU-
based implementation of all algorithms. For a fair comparison,

we train all models for 1500 epochs (training iterations) using
RMSprop with a learning rate of 0.01. All neural nets use
ReLU in the hidden layers. The maximum inference iteration
𝑀𝐴𝑋𝐼𝑡 is 10, we also search for the number of stacked layers
for stacked-based methods (CLN, stacked learning, highway
network): 5, 10, 15, 20. The maximum of the metapath length
𝑝𝑚𝑎𝑥 is 4. The hidden dimension of the convolutional filters
is 4 times the number of label types, i.e., 𝐹 = 4 * 𝐶. Each
inception module has two convolutional filters, and the kernel
size 𝐾 is 1 and 2 respectively. For hyper-parameter tuning, we
search for the number of inception layers 𝑇 : 1, 2, 3, 4. 5-fold
cross validation is used in all experiments, and the results
are reported by the mean results of 10 runs. Code for our
model can be found on Github4.

Table 5: Results (mean (rank)) on the IMDB dataset.
“↓” indicates the smaller the value the better perfor-
mance; “↑” indicates the larger the value the better
performance.

Algorithms
Evaluation Criteria Ave.

Hamming Micro F1↑ Subset 0/1 Rank
loss↓ loss ↓

GraphInception 0.227 (1) 0.551 (1) 0.879 (1) 1
Stacked learning 0.251 (3) 0.533 (3) 0.901 (2) 2.67
GCN (metapath) 0.242 (2) 0.512 (5) 0.903 (3) 3.33
HCC 0.289 (4) 0.550 (2) 0.945 (4) 3.33
ICA 0.317 (5) 0.524 (4) 0.957 (6) 5
LR 0.341 (6) 0.503 (6) 0.967 (7) 6.33
CLN 0.406 (8) 0.417 (9) 0.954 (5) 7.33
GCN 0.388 (7) 0.479 (7) 0.968 (8) 7.33
Highway network 0.481 (9) 0.435 (8) 0.994 (9) 8.67

7.3 Multi-class Classification Performance

In our first experiment, we evaluate the effectiveness of the
proposed GraphInception method on three multi-class clas-
sification problem: predicting the research area for authors
in DBLP network, predicting the gene family for genes in
SLAP network, and predicting the ACM index for papers in

4https://github.com/zyz282994112/GraphInception.git
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ACM Conference network. The evaluation metrics include
accuracy and F1-score. The results are reported in Table 4.
Performance ranks of each model on each of the evaluation
criteria are also listed.

On DBLP dataset, GraphInception works best with 4
inception layers. On SLAP dataset, GraphInception works
best with 1 inception layers. On ACM Conference dataset,
GraphInception works best with 4 inception layers. The first
observation in the Table 4 is: Almost all have better perfor-
mance than the baseline logistic regression, which demon-
strates that both deep learning models and collective classi-
fication models can improve classification performance. We
also find that HCC, Stacked learning are significantly out-
performs than Highway network and ICA method. These
results support that the heterogeneous dependencies among
instances can improve classification performance. Although
the CLN and GCN methods can capture the deep relational
features in networks which use the local features as input,
but they don’t perform well on some datasets. One possible
reason is that the node labels are more closely related to
the labels of the neighboring nodes, rather than the features
of the neighboring nodes. Compared with all above algo-
rithms, GraphInception always has best performance in the
multi-class classification task.

7.4 Multi-label Classification Performance

In our second experiment, we evaluate the effectiveness of
the proposed GraphInception method on a multi-label clas-
sification problem: predicting the film genres for movies in
IMDB network. The evaluation metrics include: hamming
loss, micro F1-score and subset 0/1 loss. The results are
reported in Table 5. Performance ranks of each model on
each of the evaluation criteria are also listed.

On IMDB dataset, GraphInception works best with 1 in-
ception layers. The first observation in Table 5 we have
is that most collective classification methods have better
performance than the methods which do not consider the
correlations among instances, i.e., LR and highway network.
We also find that HCC, Stacked learning and GCN (with
metapath) are significantly outperform than GCN and I-
CA method. These results support that the heterogeneous
dependencies among instances can improve classification per-
formance. Overall, GraphInception has best performance on
all metrics in the multi-label classification task.

7.5 Relational Features Visualization

To better understand the learned relational features of our
model, we use 𝑡 − 𝑆𝑁𝐸 [24] to visualize the hidden layer
activations of Eq. 8 be trained on DBLP dataset. We also
compare the visualization results with other deep learning
models, including: highway network, stacked learning and
CLN. The results are shown in Figure 9, colors denote re-
search area class of authors. We can find our GraphInception
model can effectively gather the same type nodes together
(same color). The results demonstrate the effectiveness of the
proposed Eq. 8 on learning the deep relational features. We

-20 0 20
-20

-10

0

10

20
Highway Network

-20 0 20
-20

-10

0

10

20

30
Stacked Learning

-20 0 20
-20

-10

0

10

20
CLN

-20 0 20
-20

-10

0

10

20
GraphInception

Figure 9: Visualize the hidden layer activations on
DBLP dataset.
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Figure 10: Performances of different kernel sizes.

Hidden dimension
4 8 12 16 20

A
cc

ur
ac

y

0.8

0.85

0.9

0.95

(a) DBLP dataset
Hidden dimension

9 18 27 36 45

H
am

m
in

g 
lo

ss

0.1

0.15

0.2

0.25

0.3

(b) IMDB dataset

Figure 11: Performances of different hidden dimen-
sion.
do not compare with GCN which utilizes both local features
and neighbor nodes labels in hidden layer, while other mod-
els (including our model) only use neighbor nodes labels in
hidden layer, which is unfair to other models.

7.6 Parameters Sensitivity

There exist two essential hyper-parameters in GraphIncep-
tion: the convolutional kernel size 𝐾 and the hidden dimen-
sion of convolutional filters 𝐹 . To test the stability of the
performances of GraphInception method, we test different
values of 𝐾 and 𝐹 on both DBLP and IMDB dataset. Similar
trend holds for the other two datasets which cannot be shown
due to space limitation. The results are shown in Figure 10
and Figure 11. In Figure 10, we can find that it is not sen-
sitive to the kernel sizes on both DBLP dataset and IMDB
dataset. In Figure 11, we can find that more hidden filters
can achieve better performance on both DBLP dataset and
IMDB dataset.



WWW’2018, April 2018, Lyon, France Yun Xiong1,2 Yizhou Zhang1 Xiangnan Kong3 Shanshan Li4 Yangyong Zhu1,2

8 CONCLUSION

In this paper, we proposed a graph convolution-based model
for learning the deep relational features in HINs, which mainly
focus on collective classification problem. We further proposed
the graph inception module to mix both complex and simple
dependencies among the instances. Empirical studies on real-
world tasks demonstrate the effectiveness of the proposed
GraphInception algorithm in learning deep relational features
in HINs.
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