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ABSTRACT

With the recent advances in information networks, the prob-
lem of community detection has attracted much attention in
the last decade. While network community detection has
been ubiquitous, the task of collecting complete network
data remains challenging in many real-world applications.
Usually the collected network is incomplete with most of
the edges missing. Commonly, in such networks, all nodes
with attributes are available while only the edges within a
few local regions of the network can be observed. In this
paper, we study the problem of detecting communities in
incomplete information networks with missing edges. We
first learn a distance metric to reproduce the link-based dis-
tance between nodes from the observed edges in the local
information regions. We then use the learned distance met-
ric to estimate the distance between any pair of nodes in
the network. A hierarchical clustering approach is proposed
to detect communities within the incomplete information
networks. Empirical studies on real-world information net-
works demonstrate that our proposed method can effectively
detect community structures within incomplete information
networks.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Application-
Data Mining

General Terms

Algorithms, Experimentation

Keywords

Community detection, incomplete information networks, dis-
tance metric learning

1. INTRODUCTION

Information networks arise naturally in a wide range of
domains. Examples include biological networks, publica-
tion networks and social networks. In these networks, fea-
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ture vectors are usually available which are associated with
nodes. Links represent relationships between the nodes.
Identifying communities in information networks is a crucial
step to understand the network structures. The community
is defined as a group of nodes which are densely connected
inside the group, while loosely connected with the nodes
outside the group.

Community detection in network data has been exten-
sively studied in the literature [17, 19, 3, 18, 2, 21, 14]. Con-
ventional approaches focus on detecting communities based
upon linkage information. They assume that the complete
linkage information within the entire network is available.
However, in many real-world networks, such as terrorist-
attack information networks, the complete linkages are very
difficult or even impossible to obtain. Instead, the complete
linkage information is only available within a few small lo-
cal regions. We notice that a similar problem has also been
studied in [13]. However, in this paper, we focus on incom-
plete information networks with local information regions.
For example, in work relation networks, it is usually impos-
sible to obtain the complete linkage information among all
the people. But usually we can afford to obtain the work
relationships within a small number of local regions, such as
groups or organizations. These networks are called incom-
plete information networks in this paper. The local regions
with complete linkage information are called local informa-
tion regions. An incomplete information network with local
information regions is shown in the upper left level of Fig-
ure 1. Some real-world examples for community detection
in incomplete information networks are listed as follows:

e Terrorist-attack network. Let us consider a ter-
rorist attack activity networks within a period in a
certain country. Each node in the network represents
a terrorist activity. Terrorist attacks committed by
the same terrorist organization are linked with each
other. Investigating the community structures within
these networks is a challenging problem, since most of
the connections/links between attacks are not clearly
resolved. Detecting the communities in these incom-
plete information networks is crucial for analyzing the
structures of terrorist-attack activities.

e Food Web The food web of a large ecosystem is usu-
ally a highly complex network. Each node in the net-
work represents a living organism, while the links rep-
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Figure 1: Comparison of different clustering methods on
incomplete information networks with missing edges.

resent, the relations between them. Usually, it is very
difficult to resolve all of the links within a food web.
However, it is relatively easier to figure out some local
regions within the food web. Discovering communities
in these incomplete food webs can help us identify mi-
cro ecosystems and the corresponding living organisms
of each micro ecosystem.

Finding communities in incomplete information networks
is a challenging task. Conventional graph-based clustering
methods can not be directly applied to it. The reason is
that traditional graph clustering methods, such as normal-
ized cut based methods [24] and modularity based methods
[19], mainly focus on the topological structure of the net-
work. Since most of the links are absent in incomplete infor-
mation networks, it is impossible to cluster the network with
this kind of methods. As shown in the middle level of Fig-
ure 1, if we cluster the nodes using the traditional attribute
based methods such as k-means, the most likely result is that
we place nodes with the most similar attributes in the same
cluster. However, the nodes which are densely connected
in structure may not necessarily mean they have the most
similar attributes, i.e., they may be only similar on a subset
of the attributes. For example, in the food web networks,
a community usually stands for a micro ecosystem and can
contain various kinds of living organisms, which can have
very different attributes. Recently, some new algorithms
[31] which perform clustering based on both structures and
the attributes of the network are proposed. However, they
can not be applied on incomplete information networks due
to the absence of the complete linkage structure.

Given the assumption that the structure of the network
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has a close relation with attributes of each object in the
information network, in this paper, we propose a novel ap-
proach for community detection in incomplete information
networks. To the best of our knowledge, this is the first
attempt to formulate and address the incomplete informa-
tion network problem. The main idea of our approach is
that, since the structure of the network has a strong rela-
tion with the attributes of the objects in the network, we
can learn a global distance metric from the local informa-
tion regions with complete linkage information. Then, we
use the global metric to measure the distance between any
pair of nodes in the network. Because the metric is learned
from the structure of the network, the distance will reflect
the hidden linkage structure in the network. Finally, we
propose a distance-based clustering algorithm to cluster the
nodes in the incomplete information network. The different
clustering results are shown in Figure 1. To summarize, this
work contributes on the following aspects:

o We identify and define the problem of community de-
tection in incomplete information networks with local
information regions, i.e., an incomplete information
network that still has a few tiny local regions where
the complete linkage information is available.

e In order to find a measurement, which can reflect the
structural relation between the nodes in incomplete in-
formation networks, we cast the side information of the
network into an optimization problem. Then a metric,
which can be used to measure the distance between
any pair of nodes, is learned.

e Based on the learned metric, we devise a distance-
based modularity function to evaluate the quality of
the communities.

e Finally, we propose a distance-based algorithm DSHRINK

which can discover the hierarchical and overlapped com-
munities. Moreover, in order to speedup the clustering
process, an effective strategy is also taken.

This paper is organized as follows. We introduce the re-
lated work in Section 2. The formal definition of our problem
is presented in Section 3. In Section 4, we introduce how to
make use of the side information to learn a global metric.
In Section 5, we explain the distance-based clustering algo-
rithm. The experimental results are presented in Section 6.
Finally, we conclude in Section 7.

2. RELATED WORK

Community detection in networks and graphs has been
widely studied in recently years[16, 4]. Many approaches
mainly focused on the topological structures based on var-
ious criteria including modularity [19], normalized cut [24],
structural density [30] and partition density [3]. Given a
graph, which is clustered into k£ communities, the modular-
ity function @ is defined as:

NI
=3[t ()
where L is the number of edges in the graph, [; is the number

of edges between nodes within community ¢, and d; is the
sum of the degrees of the nodes in community 7. The optimal

(1)
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clustering result is achieved by maximizing the modularity
value which ranges from 0 to 1. In general, maximizing @ is a
NP-hard problem. Hence, many heuristic approaches, which
try to approximate the optimal modularity value, were pro-
posed [10]. Such approaches include greedy agglomeration
[19, 28], mathematical programming [1], spectral methods
[25], simulated annealing [11], sampling techniques [22], etc.
However, modularity is not a scale-invariant measure, and
therefor, by relying on its maximization, can not detect com-
munities smaller than a certain size [8]. Besides, Palla et.
al. [20] proposed a clique percolation method, which can
detect overlapped communities, but is not suitable for de-
tecting hierarchical structures. Huang et. al. [12] proposed
a parameter-free algorithm SHRINK, which can not only
discover overlapped and hierarchical communities but also
the hub nodes and outliers among them. Rosvall et. al. [21]
tried to compress the information of the graph by optimizing
the minimum description length of the random walk and pro-
posed a highly accurate algorithm namely Infomap. Ahn et
al. [3] insisted that link communities are fundamental build-
ing blocks, and the overlapped and hierarchical communities
in networks are two aspects of the same phenomenon. They
proposed a link-based approach which reveals the real world
communities effectively. Other link-based methods were also
devised by [6].

There are also some graph clustering methods which based
on attributes. Tian et al. [26] proposed an OLAP-style ag-
gregation approach to summarize large graphs by grouping
nodes based on user-selected attributes and relationships.
This method achieves homogeneous attribute values within
clusters but ignores the intra-cluster topological structures.
Tsai et al. [27] proposed a feature weight self-adjustment
mechanism for k-means clustering. In that study, finding
the appropriate weight is modeled as an optimization prob-
lem which tries to minimize the separations within clusters
and maximize the separations between clusters. Since most
of the attributes based methods mainly focus on the homo-
geneity of the clusters, the cohesive internal structure of the
clusters can not be guaranteed.

Recently, some clustering methods based on both links
and attributes were also proposed. [9] introduced the con-
nected k-center(CkC) problem, which checks whether an at-
tributed graph can be partitioned or not by considering both
attributes and the links. Since the CkC problem is NP-
complete, the authors proposed a constant factor approx-
imation algorithm and a heuristic algorithm for the large
data sets. [31] proposed SA-Cluster, which is based on both
structural and attribute similarities through a unified dis-
tance measure. In that study, a graph is partitioned into
k clusters so that each cluster contains a densely connected
subgraph with homogeneous attribute values. Then, in or-
der to learn the degree of contributions of structural sim-
ilarity and attribute similarity automatically, an effective
method was proposed.

3. PROBLEM DEFINITION

In this section, we formally define our problem and intro-
duce several related concepts.

Definition 1 (Information Network) An information
network is denoted as G = (V, E, A), where V is the set of
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is the set of node attributes which describe the properties of
vertices in V.

For convenience, we use A(v) to denote the attribute vector
of node v and E(U) to represent the edges among nodes in
Uucv).

Definition 2 (IIN) Incomplete Information Networks with
Local Information Regions (IIN) are defined as follows: given
an information network G = (V, E, A) and a network G' =
(V' E', A", network G’ is called an incomplete information
network with local information regions of G iff (1) V' =
V,E' CE 2)W € Vi ,Vv eV, ifv="1, then A/(V)) =
A(v). (3) V" C V', for Ve € E(V"), then e € E'(V").
Specifically, we call the local subnetwork g(V', E", A") as
the local information region denoted by L, where E' =
EWV") and A" = A(V").

From Definition 2, we know that an incomplete information
network with local information regions is a network G’ =
(V' E', A") with a small set of connected regions V"' C V',
where the edges in E' — E(V"') are missing. There can be
many different types of incomplete information networks. In
this paper, we focus on the incomplete information network
that has some local information regions, where the linkage
structures are completely preserved as in Definition 2. For
the remaining of the paper, we will just refer to this type of
“incomplete information network with local information re-
gions” as incomplete information network. Obviously, there
can be more than one local information regions in an in-
complete information network G’. Furthermore, when we
are talking about an incomplete information network, we
assume that there is a corresponding information network,
potentially. A typical incomplete information network is
shown in the upper left level in Figure 1.

Definition 3 (Dissimilar Node Pair) Given an infor-
mation network G = (V, E, A) and its k clusters C1,Cs, ..., Cy,
where Ule V(C;) = V(G), any pair of nodes (vi,v;) is a
dissimilar node pair iff (1) vi € Cm Av; € Cn Am #n(l <
m,n < k); (2) E{uvi,v;}) = 0. We denote the dissimilar
node-pair set as D.

For an information network G, if C = C4,Cy,...,C} is the
set of clusters which are based on the linkage structures of G,
we formalize our community detection problem as: given an
incomplete information network G’ of G and the dissimilar
node-pair set D, based on some similar criteria, the objective
is to find the set C’ which should be as similar as possible
to C.

4. OPTIMIZATION FRAMEWORK

In this section, we address the problem of how to learn a
global metric which is used to measure the distance between
any pair of nodes in an incomplete information network G’.
This goal is achieved by solving an optimization problem,
which makes use of the side information getting from the
link relations of G’ and the dissimilar node-pair set D.

Definition 4 (Structure Similarity) Given a network
G = (V,E), for any pair of nodes vi,v; € V, the structure
similarity between node v; and v; is defined as

_ Il(wi) N T(w;)|

s(vi,vj) = m ?

vertices, E C VXV is the set of edges, and A = {al, as, ..., a‘v‘} where T'(v) is the set containing v and its neighbors.
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We compute the structure similarity between any pair of
nodes wu;, v; in local information region L; by Equation (2).
Then, we define the similar node-pair set S as a 3-tuple set
about the structure similarity as follows:

S = {(ui, i, 8i)|si = s(us, vi), ui,vi € V(L;)} (3)

Based on the similar node-pair set S and the dissimilar
node-pair set D, our objective is to find a metric by which,
the similar nodes should be close together and the dissimilar
nodes should be far away from each other. Moreover, the
extent of closeness between any pair of similar nodes should
be based on the structure similarity between them. Inspired
by [29], this objective can be achieved by learning a distance
metric. Let the matrix M € R™*™ represent the distance
metric. Then, the distance between any two nodes u;,v; € V'
is defined by

dM(ui7vi) = ||u1 — ’Uz”M = \/(Uz - Ui)TM(ui - Ui) (4)

In order to make sure the distance metric defined by Equa-
tion (4) satisfies non-negativity and the triangle inequality,
we constraint M to be positive semi-definite. Now, we can
formalize our objective as an optimization problem as fol-

lows:
min D> (sillus —villao)®
(u;,v;)ES
s.t. Z |ui — viljam > w (5)
u;,v; ED

M=0

where w is a constant.

We notice that our objective function (5) is a linear func-
tion of M. Further more, both of the constraints given in
Equations (5) are convex. Hence, our optimization problem
is convex, which enables us to compute the global optimal
resolution.

Despite our optimization problem falls into the category of
convex programming, it does not fall into any special class
of convex programming, e.g., quadratic programming and
semi-definite programming. Hence, the global solution can
only be solved by a generic approach. We also notice that
the learned optimal M can appear in two forms, which are
diagonal matrix and full matrix.

In order to get the diagonal form of M, we give the equiv-
alent Equations (5) similar to [29]:

fM) = f(Max, ecc, Man)

2 2
> st — il 3 — log

u;, v, ES

(6)

>

(uz,v;)€ED

[, —vil| m

Minimizing Equation (6) can be resolved by using the Newton-
Raphson method. Furthermore, in order to keep the semi-
definite characteristics of M, we replace the Newton update
H ! vf by aH ! vf, where « is the a step-size parameter
optimized via a line-search which gives the largest downhill
steps subject to M;; > 0 [29].

In order to get the full matrix of M, we give the equivalent
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Equations (5) similar to [29]:

max  g(M) = > i villa
(u;,v;)ED
st. A(M)= > (sillusvim)? <w  (T)
(ui,vi)ES
M*=0

The reason for giving the transformation of the original opti-
mization problem is for efficiently finding the global optimal
full matrix M by using gradient descent and the idea of iter-
ative projections [5]. We first use a gradient ascent on g(M)
to optimize (7). Then, we project the intermediate results
to hold the constraints (7). The similar tricks are also used
in [29].

Besides, we notice that in Equations (5) and (7), w is
a constant whose value is not important. This is because
the distance between any pair of nodes in network G’ is a
relative variable. Changing the value of w only makes the
distance between any pair of nodes u; and v; change from
llws — villm to w?|lu; — vil|am. Hence, we choose w = 1 in
this paper. For the convenience of discussion, we denote the
incomplete information network as G = (V, E, A, M) in the
rest of the paper.

S. DISTANCE-BASED CLUSTERING

By optimizing our objective function, we have learned a
matrix M in section 4. In other words, we have gotten a
metric which can be used to measure the distance between
any two nodes in graph G. Inspired by the density-based
clustering approaches, e.g., [30, 12], which cluster nodes
from the higher density to lower density, in this section,
we propose a distance-based clustering approach DSHRINK
which can detect the overlapped and hierarchical communi-
ties hidden in the graph.

5.1 Distanced-based Modularity

The distance-based clustering approach DSHRINK places
the nodes which have the shorter distance with each other
into the same cluster, and the nodes which have the longer
distance between them into different clusters. In order to
evaluate the quality of clusters, we define the distance-based
modularity as follows:

Definition 5 (Distance-based Modularity) Given an
incomplete information network G = (V,E, A, M) and its
cluster C = {C1,Cy,...,Ck}, the distance-based modularity

Qa is defined as
5 (5]

where k is the number of clusters, D} = >wvec, dm(u,v)
is the sum of distance between any pair of nodes within clus-
ter C;, DS = ZuECi,UGV dm(u,v) is the sum of distance
between any node in cluster C; and any node in the net-
work G, and D" =3, 1 dm(u,v) is the sum of distance
between any two nodes in the network G.

k

Q=Y

=1

DI
DT

D¢
DT

(8)

Obviously, in contrast to the original modularity defined
by Newman [19], the value range of Distance-based Modu-
larity is [—1,0]. If Qq = 0, it means all the nodes are either
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placed into one cluster or placed into different clusters ran-
domly. The smaller value of Q4 means the better quality of
clustering.

Similar to [7, 12], if we combine any two modules Cs and
Ct, the distance-based modularity gain AQq achieved from
the combination can be computed by

_ 2DY;

Cy 2D Df
— Q% = =

AQa= Q7 — Q% DTy

(9)

where DY, = > uec. vec, dm(u,v) is the sum of distance
between any two nodes in modules Cs and C} respectively.

According to Equation (9), we compute the gain of distance-

based modularity AQq for combing j clusters C1, Co, ..., Cj
into a new community by

U C NnC
tetitst 25t Do reqn,y,ene 205 Di
DT (DT)2

(10)

5.2 Clustering Algorithm

Before addressing our algorithm in detail, we give the fol-
lowing definitions.

Definition 6 (Nearest Neighbor) Given an incomplete
information network G = (V, E, A, M), the nearest neighbor
set for Vv € V is defined as

NN(w) = {yly = argmindm(v,z),x € V Az #v}. (11)

Definition 7 (Mutual Nearest Neighbor) Given an
incomplete information network G = (V, E, A, M), any pair
of nodes u,v € V is said to be mutual nearest meighbor,
denoted by u <> v, i ffo € NN (u) Au € NN (v) Adp(u,v) =
7y, where v € RY.

Definition 8 (Local Community) Given an incomplete
information network G = (V, E, A, M), we call the subgraph
C(v) = (V',E'A', M,v) of G as a local community iff (1)
veV; (2)Vue V', Fv e V' Alu & v); (3) {ulu € V' Au &
vAv € V'} = 0. v € RT is the radius of the local community
C(v).

The distance-based shrinking approach DSHRINK is pre-
sented in Figure 3. Our approach can be divided into two
phases. At the first phase, we compute the distance be-
tween any pair of nodes in graph G and store the distance
as a 3-tuple (v, vj,drm(vi,v5)) into a map structure (see
Figure 2). For any v; € V, the sum of the distance between
node v; and any other node v; € V is saved in SZ-T. Since
D¢ = Zviecs,vjev dm(vi,v5) =32, co. ST, computing S7
in advance can speed up computing D¢ when computing Qq.
For the same purpose, the total distance DT between any
pair of node is also be computed.

At the second phase, (1) we first begin at an arbitrary
node and span the node to a local community based on Def-
inition 8. All the nodes, which are in the local community,
will be tagged as “visited”. Then, we choose the next un-
visited node in graph G and repeat the above step. This
process will not stop until all the nodes are visited. (2)
Secondly, for each local community discovered by the first
step, we view each single node in it as a community. Then
AQq is computed according to Equation (10). If AQq < 0,
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Clusters Node Set Distance Map
i -

G Vi (V5,v),d j)

C, 2 ((V5,v2),d )

Ci Vj' ((Vlj ) VN)sdjN)

Figure 2: Data structure used in DSHRINK

which means the combination of the communities can de-
crease the total distance-based modularity @4, we shrink the
local community as a super node. Otherwise, the local com-
munity will not be shrunk. (3) Thirdly, we tag all the nodes
including super nodes and the common nodes as "unvisited”
and repeat the first and second steps. The above steps will
be repeated many times until shrinking any local maximal
community can not decrease the Q4 any more. Finally, the
nodes condensed in a super node form a community, and
different super nodes stand for different communities.
According to the definition of local community, we know
that the order of traversing the nodes in the incomplete in-
formation network G does not change the final members of
the local community. Moreover, from the clustering process,
we know that the local community, in which nodes have a
shorter distance, will be shrunk at the prior or the same
iteration than the local community, in which nodes have a
longer distance. Single nodes, which have not been shrunk
to any other super nodes, are viewed as hubs or outliers de-
pending on how many communities they are close to. If we
want to form the overlapped communities, the hub nodes
will be placed into more than one communities. Otherwise,
each hub node will only be placed into the community which
makes the most decrease of Q4 by adding the hub node. If
we view the distance between each pair of nodes as the struc-
ture similarity, the above shrinking process is similar to [12].

5.3 Speeding up the Clustering Process with
Approximation

It is possible to speed up the clustering process by allowing
some approximation in the determination of the local com-
munity. We define e-approximate mutual nearest neighbor
and e-approximate local community as follows:

Definition 9 (e-approximation Mutual Nearest
Neighbor) Given an incomplete information network

G = (V,E,A,M), any pair of nodes u,v € V is said to be
e-approximation mutual nearest neighbor in G, denoted by
u v, iff (v € NN(u) Alda(u,v) —dm(v,z)| <€)V (ue
NN () A |dm(u,v) — dm(u,y)| < €), where z € NN(v),
y € NN(u),e e RT.

Obviously, e-approximate mutual nearest neighbor is an ex-
tended version of mutual nearest neighbor.

Definition 10 (e-approximation Local Community)

Given an incomplete information network G = (V, E, A, M),
C(v) = (V' E', A", M,€) is a subgraph of network G. C(v)
is said to be a e-approximation local community of G ff (1)
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DSHRINK(G = (V, E, A, M))

Input:
G = (V,E, A, M) : Incomplete information network.
Output:
C ={C1,Cq,...,Ci} : Cluster set.
HO : Hubs and outliers.
Process:
1 Initialize each v; € V as a community and put it in C}
2 for each v; € V do
3 for each v; € V Av; # v; do
4 Compute daq(vs,v;) according to Equation 4;
Store (key(vi,v;), value(da (vi,vj))) with
ascending order into the distance map.

5 ST+ = dam(vi,v5);
6 DT+ = dpm(vi, v5);
7 end
8 end
9 while true do
10 for each v; € V do
11 if v;.visited then continue
12 Span a local community C(v;) according to
Definition §;
13 for each v; € V(C(v;)) do
14 vj.visited = ture;
15 end
16 C+ CUC(vy);
17 end
18 Qq.descrease = false;
19 for each C; € C do
20 Compute AQq according to Equation 10;
21 if AQg4 < 0 then
22 vs < V(Cy);
23 C+ (C—=Cj)Uws;
24 Qat+ = AQq;
25 Qq.descrease = true;
26 vs.visited = false;
27 end
28 end
29 if 1(Qq.descrease) then break;
30 end
31  Get single nodes from C' and put them into HO

return C, HO;

Figure 3: The Description of DSHRINK

veV;2)VueV eV A(u+v); (3) {ulue V' Au+
vAv g V' =0; (4) let f(r) = {r|r =dm(s,t),s < tAs€

VAt € V'}, [Max(f(r)) — Min(f(r))] < € (5)when (3)
and (4) can not be held at the same time, (4) is prior to (3)
to be guaranteed. e,r € R™T.

We note that this relaxation of the definition of local com-
munity can greatly speed up the clustering process. In order
to take advantage of e-approximation local community, the
only difference in DSHRINK is to span a e-approximation
local community instead of a local community in step (12).
When we span the e-approximation local community (e > 0),
the final clustering result may rely on the visiting sequence
of the nodes. In this paper, we give priority to the shorter
distance nodes among all of the e-approximation neighbours
when spanning the e-approximation local communities. Our
experimental results show that the final clustering effect is
almost not affected by the order of the visiting sequence of
nodes by taking the above strategy. Furthermore, given an
appropriate parameter €, we find that this relaxation does
not affect the practical quality of the communities obtained.
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Table 1: Summary of experimental data sets

Dataset # Nodes # Links # Attributes # Classes
DBLP-A 4638 16,447 102 6
DBLP-B 4559 14,407 102 6

6. EXPERIMENTS

In this section, we use two real-world data sets to validate
the effectiveness and efficiency of our approach. All the ex-
periments are conducted on a machine with Intel 8-core 2.7
GHz processors and 28GB memory.

6.1 Data Sets

DBLP-A Dataset: DBLP-A is the data set extracted
from DBLP database! which provides bibliographic infor-
mation on computer science journals and proceeding. We
extract paper information from 16 top conferences which
cover 6 research fields including Artificial Intelligence, In-
formation Retrieval, Computer Vision, etc. We create the
coauthor network by choosing authors, who published at
least 2 papers during 2000 — 2010, as the nodes of the net-
work. Any pair of authors who have coauthored are linked
in this coauthor network. This coauthor network contains
4638 nodes and 16447 links in total. Each node is attached
with a bag-of-words which extracted from the paper titles
published by him/her. We first apply the standard text pre-
processing such as stemming, stop words removal. Then we
reduce the dimension of the bag-of-words to 100 by PCA
and use them as the features of the corresponding node. In
addition, the number of co-authors and publications are also
used as features of the nodes.

DBLP-B Dataset: We also extract paper information
from 16 top conferences of 6 research fields such as Algo-
rithms & Theory, Natural Language Processing, Bioinfor-
matics, etc. The same setups with DBLP-A are also used
here to build the coauthor network as our second data set,
called DBLP-B.

We summarize our data sets in Table 1.

6.2 Incomplete Information Network Gener-
ation

In order to simulate the incomplete information networks
with local information regions, we use the following experi-
ment setting. If we perform random sampling on the nodes,
the sampled network usually ends up being sparsely con-
nected, without local information regions. In this paper, we
use the snowball sampling [23] to sample a group of con-
nected local region at a time. We randomly sample one
node and use BFS to include its neighboring nodes into the
sampled region until a fixed number of nodes are sampled.
We repeat this process until a number of local regions are
sampled. Then we assume the links within the local in-
formative regions are available to the algorithms, while the
remaining links in the network are removed. In order to
control the total number of nodes being sampled, we intro-
duce a parameter p, called sample ratio, i.e., the ratio of the
nodes in the network being sampled into the local region.
In addition, we introduce another parameter ¢, called local
information region size, to control the size of each local in-
formation region. In detail, we first randomly choose a node

"http://www.informatik.uni-trier.de/~ley /db/
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Figure 5: Accuracy comparison between different methods (p% = 10%).

in the network. We then include ¢% nodes from its neigh-
bors using BFS search. Common neighbors of any pair of
nodes in the sampled region are further included into the
sampled local region. The above sampling process contin-
ues until we sample p% of the nodes in the network. In
addition to the local regions, we sample the same number
of nodes and use them to generate dissimilar pairwise con-
straints. In the sampled group, the pairs of nodes that are
in different classes are then used as the dissimilar node-pair
set D. More concretely, for DBLP-A and DBLP-B datasets,
we choose the pair of authors, whose research fields are not
overlapped as the dissimilar node pair.

6.3 Evaluation Measures

In order to measure the effectiveness of our approach, we
adopt Purity to evaluate the quality of the communities gen-
erated by different approaches. The definition of purity is
as follows: each cluster is first assigned with the most fre-
quent class in the cluster, and then the purity is measured
by computing the number of the instances assigned with the
same labels in all clusters. Formally:

k
1
Purity = — Cinly 12
ey = 53 max G| (12)
where {C1, -+ ,Cy} is the set of clusters, [; is the j-th class
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label. The value of purity ranges from 0 to 1. The com-
munity structure generated by each compared method will
be evaluated using the true label of each node such that
the higher purity value means the higher accuracy of the
method. Since each author can have multiple research areas
as its class labels. We computed the purity of the cluster-
ing results based on each label separately, and the average
results over 6 labels are reported.

6.4 Compared Methods

In order to demonstrate the effectiveness and efficiency of
our approach, we compare our approach with the following
methods:

e Kmeans: We use the default Euclidean metric to mea-
sure the distance between any node x; and the centroid
zr. The K value used in the dataset of DBLP-A and
DBLP-B is 6, which is the same number of clusters
with the ground truth.

e M;+ DSHRINK: We learn a diagonal Mahalanobis
matrix M4 and use it as the input of M for DSHRINK.

e M+ DSHRINK: We learn a full Mahalanobis matrix
My and use it as the input of M for DSHRINK.
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6.5 Effectiveness Results

The variation of purity scores under different values of
p% is given in Figure 4. In this experiments, ¢% = 0.3% is
used. Since the accuracy of KMeans is not affected by the
number of sampling nodes, the purity value of the KMeans
is a horizontal line in all cases. We notice that the pu-
rity scores of M ;+DSHRINK and Mg+DSHRINK ascend
quickly with the increasing number of local information re-
gions sampled. Especially, when p% > 2%, the purity val-
ues of My+DSHRINK and M 4+DSHRINK exceed kmeans
over all data sets. That is because, firstly, the learned Ma-
halanobis matrix M rescales all of the nodes into a new fea-
ture space, where the similar nodes are closer, and the dis-
similar nodes are further away than the original Euclidean
space. Secondly, DSHRINK can automatically detect the
most appropriate number of communities by minimizing the
distance-based modularity. Since the number of commu-
nities in the networks is unknown, M;+DSHRINK and
Mi+DSHRINK have more advantage for discovering the
most appropriate community structures than Kmeans. An-
other observation is that, in most of the cases, with the same
value of p%, the purity scores of M ;+DSHRINK are a little
higher than M;+DSHRINK in both DBLP-A and DBLP-
B data sets. This demonstrates that the full Mahalanobis
matrix performs better rescaling function for separating the
similar nodes from the dissimilar nodes than diagonal Ma-
halanobis matrix in DBLP-A and DBLP-B data sets. How-
ever, this principle dose not not always hold. For instance,
in DBLP-A data set, the purity score of M ;+DSHRINK is
less than M 4+DSHRINK when p% = 8%.

In Figure 5, given a specified value of p% = 10%, we also
present the changes of purity scores with the different value
of q%. We notice that, on the one hand, for a specified
p% = 10%, the larger value of ¢% makes more similar node
pairs be captured in each local information region, but fewer
local information regions get chosen in the whole incomplete
information network. On the other hand, with the smaller
value of q%, fewer similar node pairs can be captured in
each local information region, but more local information
regions can be sampled. Since both the number of local
information regions and the number of similar node pairs
can affect the learning of the metric, finding the balance
point of ¢% is critical for achieving a better clustering result.
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From Figures 5 (a) to (b), we know that the balance point
of ¢% can be gotten between 0.5% to 0.7%.

6.6 Efficiency Results

We notice that, computing the optimal Mahalanobis ma-
trix and the distance between any pair of nodes can be
accomplished in advance before clustering process. In this
part, we mainly focus on the clustering process and test how
e-approximation local community speeds up the clustering
process and affects the quality of clusters. The distance here
is relative and changeable according to different values of w
in Equation (5). Hence, discussing the value of € is meaning-
less with a special value of w. Fortunately, we find the top k
nearest nodes of each node is a good base for us to compute
the appropriate € value. In order to compute an appropriate
€ value, we average the sum of distance between each node
and its corresponding top k£ nearest nodes as follows:

N
B Dic1 2ajeropr (i) Am(vis vs)

I K]

(13)

where TopK (i) is the set of node index, whose distance to
v; ranks in the top k among all of the nodes to v;, and |N|
is the total number of nodes in the incomplete information
network. In this paper, we choose k = 10 and give the value
of € as € = d x b. For a specified incomplete information
network G and a metric M, the value of d is a constant.
Therefor, changing the value of b is equivalent to change the
value of e.

In Figures 6(a) to (b), we have illustrated the variation in
the efficiency of different b values for M ;+DSHRINK and
M +DSHRINK. We observe that the computation time de-
creases quickly with the increasing value of b. It is because
relaxing the definition of local community to a certain ex-
tent can decrease the iteration times in the clustering pro-
cess. We also find that the purity score are not changed
dramatically with differenct b values.

7. CONCLUSION

In this paper, we presented the first approach for com-
munity detection in incomplete information networks with
local information regions. While the traditional community
detection algorithms make the assumption of the full knowl-
edge of linkage information, they can not solve the problem
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of community detection in incomplete information networks.
In order to resolve this problem, we explored the metric
learning idea and learned a global metric from the side in-
formation of the incomplete information network. Moreover,
we proposed the distance-based modularity function. Based
on this function, we further devised a distance-based cluster-
ing algorithm DSHRINK. In order to speed up the cluster-
ing process, some helpful approximation strategies were also
proposed. Experimental results illustrated the effectiveness
and efficiency of our approach.
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