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ABSTRACT
Location-based social networks (LBSNs) are one kind of on-
line social networks offering geographic services and have
been attracting much attention in recent years. LBSNs usu-
ally have complex structures, involving heterogeneous nodes
and links. Many recommendation services in LBSNs (e.g.,
friend and location recommendation) can be cast as link
prediction problems (e.g., social link and location link pre-
diction). Traditional link prediction researches on LBSNs
mostly focus on predicting either social links or location
links, assuming the prediction tasks of different types of links
to be independent. However, in many real-world LBSNs,
the prediction tasks for social links and location links are
strongly correlated and mutually influential. Another key
challenge in link prediction on LBSNs is the data sparsity
problem (i.e., “new network” problem), which can be en-
countered when LBSNs branch into new geographic areas or
social groups. Actually, nowadays, many users are involved
in multiple networks simultaneously and users who just join
one LBSN may have been using other LBSNs for a long time.
In this paper, we study the problem of predicting multiple
types of links simultaneously for a new LBSN across par-
tially aligned LBSNs and propose a novel method TRAIL
(TRAnsfer heterogeneous lInks across LBSNs). TRAIL can
accumulate information for locations from online posts and
extract heterogeneous features for both social links and lo-
cation links. TRAIL can predict multiple types of links si-
multaneously. In addition, TRAIL can transfer information
from other aligned networks to the new network to solve the
problem of lacking information. Extensive experiments con-
ducted on two real-world aligned LBSNs show that TRAIL
can achieve very good performance and substantially out-
perform the baseline methods.
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Figure 1: Example of collective link transferring
across two aligned location-based social networks.

Keywords
Location-Based Social Networks, Link Prediction, Transfer
Learning, Data Mining

1. INTRODUCTION
Location-based social networks (LBSNs) are one kind of

online social networks that can provide geographic services,
e.g., location check-ins and posting reviews, and have been
attracting much attention in recent years [20, 16, 19, 5, 21].
LBSNs usually have very complex structures, including mul-
tiple kinds of nodes (e.g., users, locations, etc.) and different
types of links among these nodes (e.g., social links among
users and location links between users and locations). For
example, Foursquare1 is a mainstream LBSN. It involves
millions of users and locations. Foursquare users can add
friends, check in at different locations with cellphones, write
reviews and share with others.

Link prediction, which aims at predicting whether two en-
tities have certain relationships, has become a hot topic in
recent years [3, 12, 7, 15, 18, 14, 9]. Many important services
offered by LBSNs can be cast as link prediction problems.
For example, friend recommendation involves predicting so-
cial links among users; location recommendation aims at
predicting location links between users and locations. LB-
SNs can benefit a lot from the high-quality social link and
location link prediction results. The reason is that well-
established social ties can improve user’s engagement in so-
cial networks [13]. Meanwhile, in location-based social net-
works, high-quality predicted location links can enhance the
value of the location services of the networks.

1https://foursquare.com



Table 1: Summary of related problems.
Transferring Collective Link Collaborative Predicting Social Inferring Anchor

Heterogeneous Prediction across Recommendation Links across Links across
Property Links across LBSNs Multi-Domains [4] for Networks[12, 7] Aligned Networks [22] Networks [11]
# networks multiple multiple single multiple multiple
network type heterogeneous bipartite graph heterogeneous heterogeneous heterogeneous
network aligned? partially aligned no no fully aligned fully aligned
predicted links multiple kinds multiple kinds multiple kinds single kind single kind

(social and location links) (social link) (anchor link)
settings transfer learning transfer learning unsupervised learning transfer learning transfer learning
knowledge network structure network structure n/a network structure network structure
to transfer through anchor links via task similarities through anchor links through anchor links

Conventional link prediction researches on LBSNs mostly
focus on predicting either social links [16, 19] or location
links [21, 5] and usually assume that the prediction tasks
of different types of links to be independent. However, in
many real-world LBSNs, the link prediction tasks for social
links and location links are strongly correlated and mutually
influential. For example, if two users are friends with each
other, they are more likely to check-in at similar locations.
Thus the performance of location recommendation can be
significantly improved if we could make accurate friendship
predictions. Similarly, if two users often check-in at similar
locations, they are more likely to know each other and have
friend links in real life. The performance of friend recom-
mendation can be greatly improved if we could make accu-
rate location-link predictions.

Another major challenge in link prediction for LBSNs is
the information sparsity problem, where the linkage infor-
mation within the network can be very sparse. Conventional
link prediction methods usually assume that there are suf-
ficient links within the network to compute features (e.g.,
common neighborhoods) between each pair of nodes. How-
ever, LBSNs often encounter “new network” problems when
they branch into new geographic areas or social groups. For
example, when a LBSN decides to extend services in a new
geographic area (e.g., Foursquare’s expansion into Chinese
market), the linkage information within the area (both so-
cial links and location links) can be very sparse. Similarly,
when a LBSN decides to promote in a new group of users
(e.g., Facebook’s expansion from college students to white
collar), the linkage information within the social group can
be largely missing. The constituent of a LBSN is not quite
connected to the existing members, and it can be considered
to be a “new network”.

In order to solve the “new network” problems, we need to
utilize additional information sources to facilitate the link
prediction process. Actually, nowadays, many people are
involved in multiple LBSNs to enjoy specific services offered
by different ones. Users who just joined one LBSN may have
been using other LBSNs for a long time. For example, in
Figure 1, we have two LBSNs. The LBSN on the top is
a new network, e.g., Foursquare, and the social links and
location links in it are very sparse. However, some users
have joined another LBSN that has already existed in the
geographic area or social group for a long time with abun-
dant linkage information. We refer such users as “anchors”
and the link between the two accounts of the same user as
an “anchor link”. For simplicity, the new network is called
the target network and the developed network is called the
source network.

In this paper, we study the collective link prediction prob-
lem for a new network across aligned LBSNs and the links

to be predicted include both social links and location links.
This problem has not been studied before. Meanwhile, it is
also very challenging to solve in the following aspects:

1. Collective link prediction. The first challenge mainly
lies in the fact that social links and location links in
LBSNs are correlated instead of being independent.
The prediction tasks on social links and location links
should be considered at the same time. Many exist-
ing works focus on predicting one single type of links
in LBSNs [16, 19, 21, 5], which do not consider the
correlation between different link prediction tasks.

2. Lack of information in the target network. The target
network is a new network, information in which is quite
rare. We need to overcome the information sparsity
problem in the target network. Existing works on link
prediction mainly focus on one single network [16, 19,
21, 5, 12, 7]. In real-world LBSNs, the anchor users
between two networks can serve as a bridge to transfer
information from one LBSN to the other LBSN. Such
knowledge transfer can benefit the link prediction for
both social links and location links.

A more detailed comparison with previous works is shown
in Table 1.

In this paper, we propose a supervised collective linkage
transferring method, TRAIL, to address the above chal-
lenges. TRAIL can accumulate auxiliary information for
locations from online posts which have check-ins at them
and can extract heterogeneous features for both social links
and location links. TRAIL can predict social links and loca-
tion links simultaneously. In addition, TRAIL can use both
information in the target network and that transferred from
the aligned source network at the same time.

2. PROBLEM FORMULATION

2.1 Location-Based Social Networks
A location-based social network (LBSN) can be modeled

as a heterogeneous network G = (V,E,W ), where V =⋃
i Vi is the union of different types of nodes and Vi, i ∈
{1, 2, · · · , |V |} is the set of nodes of the ith type. E =

⋃
j Ej

is the union of link sets among nodes in V and Ej , j ∈
{1, 2, · · · , |E|} is the set of links of the jth type, W : E → R
denotes the weight of links in E.

Specially, for a LBSN, node set V = U ∪ L ∪ T ∪ W is
the union of node sets of users, locations, time and words.
The link set E = Es ∪El ∪Et ∪Ew is the union of link sets
consisting of social relationships, location check-ins, active
time and published words of users, W denotes the weight of
links in E.



Nice shot of Francois' 
langur baby Pierre! 
You can see another 
picture of him at 
http://www.lpzoo.org/
blog/lincoln-park-
zoo/photo-week-
august-2-2013 …

10:28 AM - 14 Aug 13

This place totally 
violates capacity 
laws! Shitty dance 
floor and weak 
drinks... It's like a 
smaller, less classy 
minibar. Stay away!

10:57 PM - 7 Aug 13

If you like trashy 
people, sticky 
floors, ghetto 
music, and 
shoulder-to-
shoulder space... 
Then this is your 
bar.

1:32 AM - 5 Aug 13

Even tigers know 
how to beat the heat! 
pic.twitter.com/
DVr0WtwFNS

11:50 AM - 11 Aug 13

Scarlet BarLincoln Park 
Zoo

Text: 
picture, tiger, 

langur baby, ...

Timestamps: 
10:28 AM - 14 Aug 13 
11:50 AM - 11 Aug 13

Text: 
dance, floor, bar, 
drinks, music, ...

Timestamps: 
10:57 PM - 7 Aug 13 
1:32 AM - 5 Aug 13

Figure 2: Example of information accumulation for
locations from online posts.

2.2 Aligned LBSNs
Based on the definition of heterogeneous network, the

aligned LBSNs can be definied as G = (Gset, Aset), where

network set Gset = {G1, G2, · · · , G|Gset|} is the set of |Gset|
different LBSNs, anchor link setA = {A1,2, A1,3, · · · , A1,|Gset|,

A2,1, · · · , A|Gset|,|Gset|−1} contains the directed anchor links
between pairwise networks in Gset. Ai,j ⊆ U i × Uj is the
set of directed anchor links from network Gi to Gj , where
U i,Uj are the sets of users in network Gi and Gj . Link
(uim, u

j
n) ∈ Ai,j is an anchor link between Gi and Gj iff.

(uim ∈ U i)∧ (ujn ∈ Uj)∧ (uim and ujn are accounts owned by
the same user in Gi and Gj).

Given two aligned heterogeneous networks Gi and Gj , if
all user accounts in one network are related to accounts in
the other network by anchor links mutually, then Gi and Gj

are fully aligned, in which case |U i| = |Uj | = |Ai,j | and the
anchor links in Ai,j have an inherent one-to-one property
[2]. While, if some users in Gi do not have the correspond-
ing accounts in Gj or some users in Gj do not have the
corresponding accounts in Gi, then Gi and Gj are partially
aligned and |Ai,j | ≤ min{|U i|, |Uj |}.

2.3 Collective Link Prediction
Fully aligned social networks merely exist in the real world.

In this paper, we are predicting multiple kinds of links for
new networks across two partially aligned LBSNs. Let G =
({Gt, Gs}, {At,s, As,t}) be the networks studied in this pa-
per, where Gt is the target network, which is very new, and
Gs is the aligned well-established source network, At,s, As,t

are the sets of directed anchor links between Gt and Gs.
The set of users and locations in Gt are denoted as U t and
Lt, while the sets of existing social links and location links
in Gt are represented as Ets and Etl . What we want to pre-
dict are a subset of potential social links among users in
Gt: Lts ⊂ (U t × U t − Ets) and a subset of potential loca-
tion links in Gt: Ltl ⊂ (U t × Lt − Etl ). In other words, we
want to build a mapping: f : {Lts,Ltl} → {−1, 1} to decide
whether potential links in {Lts,Ltl} exist or not and a con-
fidence score function P : {Lts,Ltl} → [0, 1] denoting their
existence probabilities.

3. PROPOSED METHODS
In this section, we will introduce the supervised collective

link transferring method, TRAIL, in details.

3.1 Information Accumulation and Feature Ex-
traction

TRAIL is based on a supervised setting, as a result, we
need to extract features for both social links and location
links using the heterogeneous information in the network.
Before introducing the extracted features, we will introduce
a method to accumulate information for locations at first.

3.1.1 Information Accumulation for Locations
Locations are represented as (latitude, longitude) pairs in

our problem, which possess no auxiliary information except
location links with users in the network. As a result, we will
confront problems of lacking auxiliary information when ex-
tracting heterogeneous features for location links. Actually,
we notice users can publish online posts at the locations.
And we propose to accumulate the text and timestamps in-
formation of the online posts checked in at a certain location
as the auxiliary information possessed by that location.

From a statistical point of view, information from posts
published at a certain location, including both timestamps
and text contents, can reveal some properties of the loca-
tion. For example, the timestamps of most posts published
at nightlife sites are after 6:00 PM. While, those of posts
published at restaurants serving brunch are during the day-
time. Posts published at national parks can contain some
phrases depicting the scenes, while posts published at bas-
ketball court may be mostly talking about games, teams and
players. So, we can know more about the locations from the
information accumulated from online posts.

For example, in Figure 2, we have two totally different
locations: the Lincoln Park Zoo2 and Scarlet Bar3. The
Lincoln Park Zoo is the largest free zoo in Chicago and is
open during 10:00 AM - 5:00 PM. The Scarlet Bar is one
of the most famous bar in Chicago, where people can drink
with friends, dance to enjoy their night life, and it is open
during 8:00 PM - 2:00 AM.

We also have 4 online posts published by people at these
two places in either Foursquare or Twitter. From the content
of these posts, we find that people usually publish words
about animals, pictures and the scene at the Lincoln Park
Zoo. However, people who visit the Scarlet Bar mainly talk
about the atmosphere in the bar, the drinks, the dance floor
and the music there. So, users who frequently talk about
animals in daily life can be interested in the Lincoln Park
Zoo, while those who usually post words about the drinks
may like the Scarlet Bar more. Meanwhile, we can also
accumulate the timestamps of posts published at these two
places. The timestamps of posts published at the Lincoln
Park Zoo are mostly during the daytime, while those of posts
published at the Scarlet Bar are at night. So, users who are
usually active in the daytime can be more likely to visit the
Lincoln Park Zoo, while people who are active during the
night may prefer the Bar.

3.1.2 Heterogeneous Features
In this part, we will extract 4 different categories of fea-

tures for both social links and location links from the het-
erogeneous information in the network networks, which in-
clude social features, spatial distribution features, text us-
age features and temporal distribution features. A summary

2http://www.lpzoo.org
3http://www.scarletbarchicago.com



Table 2: Features extracted from vector x and y
Features Descriptions

Extended Degree Count (EDC) ||x||1, ||y||1
Extended Degree Ratio (EDR) ||x||1/||y||1
Extended Common Neighbour (ECN) x · y
Extended Jaccard’s Coefficient (EJC) x·y

‖x‖1·‖y‖1
Extended Preferential Attachment (EPA) ||x||1 · ||y||1
Euclidean Distance (ED) (

∑
k (xk − yk)2)1/2

Cosine Similarity (CS) x·y
‖x‖2+‖y‖2

of frequently used features is available in Table 2, where

||x||p = (
∑|x|
i=1 |xi|

p)1/p is the Lp-norm of vector x.

• Features of Social Links: For a certain social link
(ui, uj), we can get their followers from the network:
Γ(ui) and Γ(uj). Based on Γ(ui), we can construct the
social link weight vector s̃(ui) for ui, where s̃(ui) =
(p1,i, p2,i, · · · , pk,i, · · · , pn,i)T , n = |U| is the size of
user set and pk,i is the weight of social link (uk, ui), ∀uk ∈
U : if uk ∈ (U − Γ(ui)), pk,i = 0.0; if uk ∈ Γ(ui) and
link (uk, ui) exists originally, then pk,i = 1.0; other-
wise, pk,i is the existence probability of link (uk, ui).
Similarly, we can construct vector s̃(uj) for user uj ,
which is of the same length as s̃(ui). From s̃(ui) and
s̃(uj), we extract 7 different social features for social
link (ui, uj), which are summarized in Table 2.
In a similar way, for a certain social link (ui, uj), we
can get the set of locations visited by user ui and uj :
Φ(ui) and Φ(uj), from which we can obtain their lo-

cation link weight vectors: l̃(ui) and l̃(uj). From the
timestamps of posts published by users, we can obtain
the users’ active patterns. Each day is divided into 24
slots and the ratio of online posts published by user u
in each hour is saved in a temporal distribution vector
t̃(u), whose length is 24. For social link (ui, uj), we
can construct the temporal distribution vectors: t̃(ui)
and t̃(uj) for ui and uj . In addition, we transform
the words used by two users ui and uj into two text
usage vectors: w̃(ui) and w̃(uj) weighted by TF-IDF,
which are of the same length. From these vectors, we
can extract the spatial distribution features, temporal
distribution features and text usage features similar to
the social link features summarized in Table 2 for so-
cial link (ui, uj).

• Features of Location Links: Similarly, we can ob-
tain the set of users who have visited a location and
regard them as the “neighbours” of that location. And
for a location link (ui, lj), we can get the sets of neigh-
bours of ui and lj : Γ(ui) and Ψ(lj), from which we
can construct the social link weight vectors: s̃(ui) and
s̃(lj). From the accumulated text and timestamps in-
formation of locations and the auxiliary information
owned by users, we can also constract the temporal
distribution vectors: t̃(ui) and t̃(lj) and the text us-
age vectors: w̃(ui) and w̃(lj) for location link (ui, lj).
From these vectors, we can extract the social features,
temporal distribution features and text usage features
for location link (ui, lj).
In addition, according to previous definitions, we can
get the locations that user u has visited in the past:
Φ(u) and the location link weight vector of u: l̃(u) as

well as the neighbors of a location l: Ψ(l) and its so-
cial link weight vector: s̃(l). For a certain location link
(ui, lj), we extract 3 spatial distribution features from
the network:

(1) average weighted geographic distance between lo-
cations in Φ(ui) and lj∑

lk∈Φ(ui)
GeoD(lk, lj) · l̃(ui)lk

||l̃(ui)||1 · |Φ(ui)|

where, GeoD(lk, lj) is the geographic distance of lk
and lj and l̃(ui)lk is the weight of location link (ui, lk)

saved in ui’s location link weight vector l̃(ui).

(2) weighted number of users who have visited both
locations in Φ(ui) and lj∑

lk∈Φ(ui)

s̃(lk) · s̃(lj) · l̃(ui)lk

(3) average weighted number of users who have visited
both locations in Φ(ui) and lj∑

lk∈Φ(ui)
s̃(lk) · s̃(lj) · l̃(ui)lk

||l̃(ui)||1 ·
∑
lk∈Φ(ui)

||l̃(sk)||1

3.2 Collective Link Predictions
In this section, we will analyze and formulate the correla-

tion between the social link prediction task and the location
link prediction task.

3.2.1 Correlation Between Different Tasks
When predicting a link, the classifiers will give a score

within range [0, 1] to show its existence probability. Newly
predicted social links will update the social link existence
probability information in the network, which can affect
other location link prediction tasks. For example, these
updated social link existence probabilities can change the
extended common neighbours of a location and a user. Sim-
ilarly, the location link prediction task can also influence the
social link prediction result.

For example, in Figure 3, we show an example of different
link prediction methods. Figure 3(a) is the input aligned
networks, in which there are 4 users and some existing so-
cial links (u3, u4), (u1, u4) and location links (u2, l1), (u3, l1),
(u1, l2), (u1, l3) as well as many other potential links to be
predicted. Based on the information in the network, includ-
ing social information (e.g., common neighbours), location
information (e.g., co-checkins) and other auxiliary informa-
tion, traditional link prediction methods can predict social
links and locate links independently. Figure 3(b) shows the
result of independent social link prediction result, in which
social link (u2, u3) and (u1, u3) are predicted to be exis-
tent, while social link (u1, u2) and (u2, u4) are predicted to
be nonexistent. Figure 3(c) shows the independent loca-
tion link prediction result and in the result, location links
(u2, l2), (u1, l1), (u4, l3) are predicted to be existent, while
(u2, l3) and (u3, l3) is predicted to be nonexistent.

From the results in Figures 3(b) and 3(c), we can find
some problematic phenomena. For example, user u2 and u1

are predicted to have visited locations l1, l2 and they are
also predicted to share a common neighbour: u3. Based on
the result, it is highly likely that the potential social link
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Figure 3: An example of different link prediction methods. (a) is the input network. (b)-(c) is independent
social link and location link prediction result. (d) shows the collective link prediction result.

(u2, u3) will be predicted to be existent. However, it is pre-
dicted to be nonexistent in Figure 3(b). Another example is
that many neighbours of user u3, both the originally exist-
ing u4 and the newly predicted u1 both have visited or are
predicted to have visited l3. By using Friend-based Collabo-
rative Filtering (FCF) [21], u3 is highly likely to be predicted
to have visited l3. However, the location link between u3 and
l3 is predicted to be nonexistent in Figure 3(c).

If we consider the correlation between these two link pre-
diction tasks and predict social links and location links si-
multaneously, the predicted results of social link (u1, u2) and
location link (u3, l3) are highly likely to be predicted as exis-
tent. In Figure 3(d), we show a potential result of collective
link prediction methods.

3.2.2 Collective Link Prediction
We formulate the sets of potential social links and poten-

tial location links to be predicted as Lts ⊂ (U t × U t − Ets)
and Ltl ⊂ (U t×Lt−Etl ) in the problem formulation section.
For links lts ∈ Lts and ltl ∈ Ltl , the supervised models built
with the existing information in the network will give them
the predicted labels: y(lts) and y(ltl ), as well as the existence
probability scores: P (y(lts) = 1) and P (y(ltl ) = 1). Tra-
ditional methods predicting social links and location links
independently aims at finding the set of labels achieving the
maximum probability scores for each kind of links. In other

words, let Ŷts ⊂ {−1, 1}|L
t
s|, Ŷtl ⊂ {−1, 1}|L

t
l | be the sets of

optimal labels

Ŷts = argmax
Yts

P (y(Lts) = Yts)

Ŷtl = argmax
Yt
l

P (y(Ltl) = Ytl )

where, P (y(Lts) = Yts) and P (y(Ltl) = Ytl ) denote the prob-
ability scores achieved when links in Lts and Ltl are assigned
with labels in Yts and Ytl .

However, considering connections between these two link
prediction tasks, the inferred social link or location link in-
formation should all be used in other link prediction tasks.
The optimal selection of label sets Ŷts and Ŷtl will be

Ŷts, Ŷtl = arg max
Yts,Ytl

P (y(Lts) = Yts|y(Ltl) = Ytl )

× P (y(Ltl) = Ytl |y(Lts) = Yts)

3.3 Collective Linkage Transfer across LBSNs

3.3.1 Supervised Link Prediction

Traditional supervised link prediction methods by using
one single network implicitly or explicitly assume that in-
formation in the target network itself is enough to build
effective link prediction models. These methods use the ex-
tracted features of existing links in the traget network to
train classifiers, which will be applied to predict other po-
tential links. For example, we want to predict the existence
probability of a social link (uti, u

t
j) in the target network Gt,

which is:

P (y(uti, u
t
j) = 1|Gt)

where y(uti, u
t
j) is the label of link (uti, u

t
j). From Gt, we

can extract a set of heterogeneous features for social link
(uti, u

t
j). Then

P (y(uti, u
t
j) = 1|Gt) = P (y(uti, u

t
j) = 1|x(uti, u

t
j))

where x(uti, u
t
j) = [x(uti, u

t
j)

1
, x(uti, u

t
j)

2
, · · · , x(uti, u

t
j)
n
]T , n =

|x(uti, u
t
j)| and x(uti, u

t
j)
k
, k ∈ {1, 2, · · · , n} is the kth feature

extracted from the target network for social link (uti, u
t
j).

Usually, feature x(uti, u
t
j)
k

can be the summarized properties
of social link (uti, u

t
j), e.g., extended common neighbours.

Similarly, for a certain location link (uti, l
t
j) in Gt, we can

also use the extracted features for it from the target network,
x(uti, l

t
j), to predict its existence probability.

P (y(uti, l
t
j) = 1|Gt) = P (y(uti, l

t
j) = 1|x(uti, l

t
j))

If the target network is quite new, the features vectors
extracted for both social links and location links can be very
sparse, which can hardly build good link prediction models.
Next, we will transfer information from the aligned source
network to solve the problem.

3.3.2 Linkage Transfer across LBSNs
With the anchor links, we can locate users’ correspond-

ing accounts in the aligned source network, information in
which can be transferred to the target network. Suppose, for
instance, we want to predict a potential social link (uti, u

t
j)

by using information in both networks. By taking advan-
tages of the anchor links, we can obtain the corresponding
accounts of uti and utj in the aligned source network: usi and
usj . If usi and usj both exist in Gs, then we will only transfer
information related to the corresponding social link (usi , u

s
j)

in the aligned source network to the target network, which
is represented as a feature vector extracted from Gs for link
(usi , u

s
j): x(usi , u

s
j). We notice that the existence information

of link (usi , u
s
j) in the aligned source network, y(usi , u

s
j), is

very useful, which is defined as pseudo label of link (uti, u
t
j).



Algorithm 1 TRAIL

Input: two aligned heterogeneous LBSNs, Gs, Gt.
existing social links and location links: Ets, Etl
anchor links between Gt and Gs: At,s, As,t

potential social links and location links: Lts, Ltl
Output: the inferred labels and existence probabilities of links in Lts

and Ltl : Ŷ
t
s, P̂

t
s, Ŷ

t
l , P̂

t
l

1: construct training sets, test sets with Ets, Etl , Lts and Ltl .
2: converge← False
3: while converge is False do
4: extract features xt(Ets) and xt(Lts) for social links in Ets and

Lts from Gt.

5: extract features xs(Ets) and xs(Lts) for social links in Ets and

Lts from Gs by utilizing anchor links in At,s.

6: Cs ← train([xt(Ets),x
s(Ets), y

s(Ets)], y
t(Ets))

7: Ŷts, P̂
t
s ← Cs.classify([xt(Lts),x

s(Lts), y
s(Lts)])

8: update Gt with Ŷts, P̂
t
s

9: Accumulate information for locations
10: extract features xt(Etl ) and xt(Ltl) for location links in Etl

and Ltl from Gt.

11: extract features xs(Etl ) and xs(Ltl) for location links in Etl
and Ltl from Gs by utilizing anchor links in At,s.

12: Cl ← train([xt(Etl ),x
s(Etl ), y

s(Etl )], y
t(Etl ))

13: Ŷtl , P̂
t
l ← Cl.classify([xt(Ltl),x

s(Ltl), y
s(Ltl)])

14: update Gt with Ŷtl , P̂
t
l

15: if Ŷts, P̂
t
s, Ŷ

t
l , P̂

t
l all converge then

16: converge← True
17: end if
18: end while
19: Return Ŷts, P̂

t
s, Ŷ

t
l , P̂

t
l

Definition 1 (Pseudo Label): Let (nti, n
t
j) be a link in Gt,

where nti, n
t
j are nodes in it and they can be users, locations,

etc., the corresponding link of (nti, n
t
j) in the aligned source

network Gs will be (nsi , n
s
j). The existence indicator of link

(nsi , n
s
j) in Gs: y(nsi , n

s
j) is defined as the pseudo label of link

(nti, n
t
j).

The pseudo label is used as an extra feature added to the
extended feature vector, obtained by merging feature vectors
extracted from Gt and Gs.

P (y(uti, u
t
j) = 1|Gt, Gs)

= P
(
y(uti, u

t
j) = 1|

[
x(uti, u

t
j),x(usi , u

s
j), y(usi , u

s
j)
]T)

Similarly, for a certain location link (uti, l
t
j), we have

P (y(uti, l
t
j) = 1|Gt, Gs)

= P
(
y(uti, l

t
j) = 1|

[
x(uti, l

t
j),x(usi , l

s
j ), y(usi , l

s
j )
]T)

Actually, we can also use pseudo label as the prediction
result of link (nti, n

t
j) in Gt and the method is called the

Naive, which will be used as a baseline in our experiment.

3.3.3 Collective Linkage Transfer across LBSNs
By using two aligned networks, the optimization equation

will be revised as follows

Ŷts, Ŷtl = arg max
Yts,Ytl

P (y(Lts) = Yts|Gt, Gs,y(Ltl) = Ytl )

× P (y(Ltl) = Ytl |Gt, Gs,y(Lts) = Yts)

For the given optimization equation, there are many differ-
ent solutions. In this part, we will give an iterative method,
TRAIL, to approach it, which can predict the social links
and location links iteratively until convergence. Let τ be
the τth iteration and the optimal label sets of social links

Table 3: Properties of the Heterogeneous Social
Networks

network

property Twitter Foursquare

# node
user 5,223 5,392
post 9,490,707 48,756
location 297,182 38,921

# link
follow 164,920 31,312
write 9,490,707 48,756
locate 615,515 48,756

and location links achieved in the τth iteration be Ŷt(τ)
s and

Ŷt(τ)
l , then

Ŷt(τ)
s = argmax

Yts
P (y(Lts) = Yts|Gt, Gs,y(Lts) = Ŷt(τ−1)

s ,

y(Ltl) = Ŷt(τ−1)
l )

Ŷt(τ)
l = argmax

Yt
l

P (y(Ltl) = Yts|Gt, Gs,y(Lts) = Ŷt(τ)
s ,

y(Ltl) = Ŷt(τ−1)
l )

The pseudo code of TRAIL is available in Algorithm 1.

4. EXPERIMENTS
To testify the effectiveness of TRAIL in dealing with

real-world aligned LBSNs, in this section, we will conduct
extensive experiments on two real-world network datasets:
Foursquare and Twitter.

4.1 Datasets Description
The networks used in this paper are: Foursquare, a fa-

mous LBSN, and Twitter, the hottest micro-blogging social
network. Users play the key roles in both networks and
they can follow/make friends with others, write posts online.
Foursquare is constructed mainly around locations and can
offer many location-related services, e.g., location check-ins
and posting online reviews. Affected by the success of LB-
SNs, Twitter also starts to offer location-related services,
e.g., online tweets can attach location check-ins. The lo-
cations in both of these social networks are represented as
(latitude, longitude) pairs.

1. Foursquare: Users together with their online tips are
crawled from Foursquare, whose numbers are 5,392
and 94,187 respectively. All these tips can attach loca-
tion check-ins and the total number of locations crawled
from Foursquare is 38,921. The bidirectional friend
link in Foursquare is decomposed into two unidirec-
tional follow link and the original follow links are pre-
served. Detailed information about the Foursquare
network is available in Table 3.

2. Twitter: Similarly, 5,223 users and all their online
tweets are crawled from Twitter. The number of tweets
crawled by us is 9,490,707, among which 615,515 tweets
contain location check-ins and they account about 6.5%
of all the tweets. The total number of locations ob-
tained from the tweets is 297,182. The numbers of
follow link among users, write link between users and
tweets and the location link between tweets and loca-
tions are available in Table 3.



Both of these two networks are obtained from the web-
pages crawled with a shell script during the November, 2012.
Meanwhile, if users display their Twitter accounts on their
Foursquare homepages, we treat the connections between
the accounts of Foursquare and Twitter as the anchor links
between these two social networks. So, the anchor links
are obtained by crawling the users’ twitter IDs from their
Foursquare homepages by using a shell script and the num-
ber of anchor links crawled is 3,388.

4.2 Experiment Settings
In this section, we will talk about the comparison meth-

ods, the evaluation measures and setups of the experiments
in details.

4.2.1 Comparison Methods
To show that TRAIL can work well and outperform other

state-of-art link prediction methods, we will compare TRAIL
with many comparison methods, which can be divided into
two categories: (1) supervised methods; (2) unsupervised
methods.

• TRAIL: Method TRAIL is the link prediction method
proposed in this paper. TRAIL is a supervised method
and it can extract different categories of features for
social links and location links from the heterogeneous
networks. TRAIL can predict social links and location
links simultaneously and can utilize both information
in the target network and that transferred from the
aligned source network.

• Supervised Methods: To show that predicting mul-
tiple kinds of links collectively can achieve better per-
formance than predicting each kind of links indepen-
dently, we compare TRAIL with SCAN (Supervised
Cross Aligned Networks link prediction) [22], which
is a supervised methods and can predict each kind of
link independently across aligned networks. To demon-
strate that using information in two aligned networks
at the same time can achieve better performance than
using one single network, we compare TRAIL with
collective link prediction methods TRAILs (TRAns-
fer heterogeneous lInks for LBSNs with Source net-
work), TRAILt (TRAnsfer heterogeneous lInks for
LBSNs with Target network) and compare SCAN with
SCANs (Supervised Cross Aligned Link Prediction with
Source network), SCANt (Supervised Cross Aligned
Link Prediction with Target network). Methods TRAILt
and SCANt utilize information in the target network
only, while TRAILs and SCANs only use that trans-
ferred from the aligned source network.

• Unsupervised Methods: Some traditional unsuper-
vised social link prediction methods are also used as
the baseline methods to be compared with TRAIL,
which include Common Neighbour (CN ) [10]: CN(x, y) =
|Γ(x) ∩ Γ(y)|, Jaccard Coefficient (JC ) [10]: JC(x, y) =
|Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)| and Adamic/Adar (AA) [1]: AA(x, y) =

|Γ(x)| |Γ(y)|, where Γ(x),Γ(y) are sets of neighbours
of user x and y. A traditional unsupervised location
recommendation method: FCF (Friend based Collabo-

rative Filtering) [21]: ri,j =
∑
uk∈Γ(ui)

rk,jwi,k∑
uk∈Γ(ui)

wi,k
is used

as the location link prediction baseline method, where

ri,j is the rating of user ui on location lj and wi,k is the
similarity of user ui and uk. Naive introduced before
is used as a baseline method.

4.2.2 Evaluation Methods
To measure the effectiveness of these methods in predict-

ing links, we will use two evaluation methods to assess their
performance, which include AUC (Area Under ROC Curve)
and Accuracy. Traditional unsupervised socal link and lo-
cation link prediction methods CN, JC, AA and FCF can
only output scores of potential links and their results are
assessed by AUC only. Meanwhile, Naive can only produce
labels of potential links and its performance is evaluated by
Accuracy only. All other methods are evaluate by both AUC
and Accuracy.

4.2.3 Setups
In the experiment, Foursquare is used as the target net-

work and Twitter is used as the aligned source network. Ex-
isting social links and location links in Foursquare are used
as the ground-truth.

We delete all the users’ reposted tweets in Twitter about
users’ activities in Foursquare. Then, we group existing so-
cial links and location links in the target network as the
positive social link set and positive location link set. Con-
sidering that users can visit a certain place multiple times
which can , we delete all the duplicated location links and
preserve on one copy. Sets of non-existent social links and
location links collected from the target network are used as
the negative social link set and negative location link set,
which are of the same size as the positive sets. All these
link sets are partitioned into two subsets by the 5-fold cross
validation partitioned by links. To show that TRAIL can
work well when the training pairs are quite limited, we use
1 fold as the training set and the remaining 4 folds as the
test set. The target network studied in this paper is a new
network and to simulate the different degrees of newness of
it, we randomly sample a proportion of information in it to
use under the control of parameter remaining information
rate σ, which can include temporal activities, words used,
locations visited etc. For example, if σ = 0.1, then the net-
work is very new and only 10% of the information in original
the network is available; if σ = 0.8, then the network is not
that new as 80% of the information exists. To control the
existence of anchor links between these two aligned social
networks, we use another parameter: anchor link sample
rate ρ ∈ [0, 1.0] in the experiment. If ρ = 0.0, then these
two networks are totally independent and have no anchor
links between them; if ρ = 1.0, then these two networks are
fully aligned; otherwise they are partially aligned. From the
networks, different categories of features are extracted for
each kind of pairs in the training set and test set. To solve
the problem of lacking information in the target network, we
transfer information from the aligned to the target network
via the anchor links. The feature vectors obtained from both
the target network and the aligned source network together
with the pseudo label are merged into an expended feature
vector to make use of information in both networks simul-
taneously. We train and classify social links and location
links with iterative update until convergence or meet a cer-
tain maximum iteration number, which is set as 10 in our
experiment.

4.3 Experiment Results



Table 4: Performance comparison of different methods for inferring social and location links for Foursquare
of different remaining information rates. The anchor link sample rate ρ is set as 1.0.

remaining information rates σ

link measure methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7

s
o
c
ia

l

A
U

C
TRAIL 0.810±0.012 0.824±0.009 0.837±0.008 0.844±0.009 0.832±0.003 0.852±0.009 0.847±0.009

TRAILt 0.691±0.040 0.684±0.039 0.704±0.033 0.729±0.006 0.718±0.020 0.732±0.005 0.730±0.008
TRAILs 0.572±0.007 0.578±0.007 0.580±0.004 0.575±0.012 0.580±0.011 0.583±0.009 0.578±0.009

SCAN 0.772±0.050 0.788±0.004 0.811±0.009 0.830±0.005 0.809±0.004 0.825±0.008 0.824±0.012
SCANt 0.524±0.023 0.559±0.008 0.559±0.017 0.554±0.044 0.630±0.008 0.599±0.007 0.627±0.004
SCANs 0.583±0.005 0.579±0.003 0.583±0.010 0.562±0.005 0.579±0.004 0.585±0.003 0.584±0.003

CN 0.494±0.002 0.500±0.015 0.504±0.006 0.496±0.012 0.495±0.018 0.491±0.015 0.489±0.018
JC 0.497±0.003 0.503±0.004 0.501±0.002 0.502±0.010 0.496±0.008 0.496±0.019 0.492±0.008
AA 0.494±0.002 0.499±0.014 0.501±0.006 0.494±0.012 0.492±0.018 0.489±0.015 0.493±0.022

A
c
c
u
r
a
c
y

TRAIL 0.855±0.002 0.849±0.004 0.850±0.008 0.854±0.005 0.850±0.003 0.851±0.001 0.852±0.004
TRAILt 0.622±0.046 0.627±0.036 0.655±0.022 0.676±0.009 0.674±0.019 0.677±0.004 0.679±0.008
TRAILs 0.548±0.004 0.551±0.006 0.552±0.004 0.549±0.000 0.551±0.002 0.553±0.003 0.544±0.001

SCAN 0.747±0.003 0.752±0.007 0.748±0.000 0.754±0.008 0.746±0.005 0.745±0.007 0.747±0.003
SCANt 0.512±0.009 0.522±0.002 0.520±0.001 0.537±0.006 0.554±0.008 0.542±0.003 0.567±0.007
SCANs 0.557±0.002 0.547±0.006 0.553±0.002 0.545±0.006 0.552±0.007 0.551±0.002 0.551±0.004

Naive 0.525±0.014 0.526±0.006 0.525±0.008 0.526±0.007 0.525±0.013 0.525±0.009 0.525±0.013

lo
c
a
t
io

n

A
U

C

TRAIL 0.848±0.005 0.856±0.010 0.870±0.010 0.878±0.007 0.899±0.007 0.886±0.022 0.887±0.009
TRAILt 0.839±0.006 0.850±0.003 0.857±0.009 0.866±0.008 0.862±0.005 0.871±0.005 0.869±0.003
TRAILs 0.631±0.003 0.632±0.002 0.631±0.001 0.634±0.001 0.634±0.002 0.634±0.002 0.635±0.001

SCAN 0.712±0.010 0.757±0.002 0.758±0.009 0.770±0.005 0.775±0.005 0.784±0.004 0.792±0.003
SCANt 0.676±0.009 0.711±0.005 0.730±0.005 0.749±0.003 0.756±0.001 0.763±0.005 0.769±0.003
SCANs 0.633±0.003 0.633±0.003 0.633±0.001 0.636±0.001 0.637±0.000 0.633±0.001 0.634±0.001

FCF 0.598±0.008 0.638±0.015 0.638±0.005 0.654±0.012 0.664±0.007 0.661±0.007 0.664±0.010

A
c
c
u
r
a
c
y

TRAIL 0.719±0.004 0.736±0.001 0.749±0.006 0.754±0.003 0.753±0.002 0.760±0.002 0.761±0.002
TRAILt 0.674±0.009 0.697±0.004 0.706±0.005 0.709±0.001 0.717±0.006 0.716±0.007 0.717±0.002
TRAILs 0.536±0.003 0.527±0.001 0.537±0.005 0.553±0.003 0.560±0.002 0.565±0.000 0.566±0.001

SCAN 0.658±0.000 0.670±0.002 0.682±0.001 0.697±0.003 0.699±0.003 0.723±0.003 0.723±0.007
SCANt 0.610±0.001 0.623±0.001 0.631±0.001 0.647±0.001 0.653±0.002 0.671±0.003 0.676±0.002
SCANs 0.536±0.025 0.531±0.008 0.535±0.002 0.547±0.004 0.557±0.004 0.565±0.001 0.566±0.001

Naive 0.536±0.014 0.536±0.002 0.536±0.001 0.537±0.008 0.536±0.012 0.536±0.009 0.537±0.019

Experiment results are available in Table 4, which is under
the setting that anchor link sample rate ρ is set as 1.0 and
the remaining information rate σ changes from 0.1 to 0.8,
and in Table 5, which is under the setting that remaining
information rate σ is set as 1.0 and the anchor link sample
rate ρ changes from 0.0 to 1.0 with an increasing step of 0.2.
The results in these two tables can be divided into two parts:
the first part is about the social links and the seciond part is
about the location links, whose performance are evaluated
by AUC and Accuracy.

In Table 4, compared with traditional unsupervised meth-
ods, like FCF, CN, JC and AA, supervised method TRAIL
can substantially outperform them under the evaluation met-
ric. For example, when σ = 0.5, the evaluation metric
(AUC) of TRAIL is over 60% higher than that of CN,
JC, AA and the evaluation metric (Accuracy) achieved by
TRAIL is about 34% higher than that FCF. And compared
with Naive, TRAIL can also perform far better, e.g., the
evaluation metric (Accuracy) is over 40% higher than that
of Naive when σ = 0.5 in Table. 4 By comparing TRAIL
with SCAN, TRAILs with SCANs, TRAILt with SCANt
in predicting both social links and location links, we can find
that the methods predicting links collectively with iterative
update can achieve better performance consistently than
methods predicting each type of links independently. By
comparing TRAIL with TRAILs and TRAILt, we can find
that TRAIL using information in both the target network
and the aligned source network can achieve better perfor-
mance than using information in one single network, which
can also be obtained by comparing SCAN with SCANs and
SCANt. Similar results can be obtained in Table 5 as the
anchor link sample rate ρ changes.

So, TRAIL can outperform all these state-of-art super-

vised baseline methods and traditional unsupervised meth-
ods for networks of different remaining information rate and
different anchor link sample rate in Table 4 and Table 5,
when the training cases is very limited under the evaluation
of AUC and Accuracy.

In addition, the prediction result of method TRAIL can
also converge very quickly. In Figure 4, we show the social
and location link prediction results of TRAIL evaluated by
Accuracy and AUC. Figures 4(a)- 4(d) are the results ob-
tained by TRAIL when σ = 0.5 and ρ = 1.0. While, Fig-
ures 4(e)- 4(h) show the results obtained by TRAIL when
σ = 1.0 and ρ = 0.5. We can find that all the results can
converge quickly in less than 5 iterations.

5. RELATED WORK
Link prediction first proposed by D. Liben-Nowell et al.

[14] has become a significant research topic in social network
studies in recent years. M. A. Hasan et al. [9] are the
first to study the link prediction problem as a supervised
problem. However, their method is based on a homogeneous
network and many networks are heterogeneous nowadays.
Y. Sun et al. [17] propose a meta path-based prediction
model to predict co-author relationship in the heterogeneous
bibliographic network.

As the Location-based social networks (LBSNs) are be-
coming more and more popular in recent years, many works
have been done on such kind of social networks. M. Ye et al.
[20] study the semantic annotation of locations in location-
based social networks. Meanwhile, some works have also
been done on predicting links for LBSNs. S. Scellato et al.
[16] predict social links by using heterogeneous information
in the network. D. Wang et al. [19] try to predict social
links by utilizing the moving pattern of users. These works
are all predicting social links and some other works focus



Table 5: Performance comparison of different methods for inferring social and location links for Foursquare
of different anchor link sample rates. The remaining informaiton rate σ is set as 1.0.

anchor link sample rates ρ

link measure methods 0.0 0.2 0.4 0.6 0.8 1.0

s
o
c
ia

l

A
U

C

TRAIL 0.712±0.004 0.733±0.019 0.761±0.017 0.782±0.007 0.821±0.012 0.855±0.008
TRAILt 0.712±0.012 0.711±0.007 0.711±0.012 0.711±0.010 0.712±0.014 0.712±0.005
TRAILs 0.500±0.000 0.507±0.005 0.524±0.005 0.555±0.036 0.577±0.028 0.583±0.015

SCAN 0.603±0.020 0.621±0.036 0.539±0.022 0.664±0.026 0.748±0.027 0.827±0.002
SCANt 0.603±0.009 0.603±0.014 0.603±0.016 0.603±0.027 0.603±0.006 0.604±0.011
SCANs 0.500±0.000 0.496±0.001 0.513±0.013 0.515±0.015 0.570±0.060 0.572±0.007

CN 0.525±0.000 0.525±0.008 0.524±0.013 0.525±0.005 0.525±0.013 0.525±0.007
JC 0.527±0.008 0.527±0.011 0.527±0.010 0.528±0.002 0.527±0.016 0.528±0.009
AA 0.493±0.006 0.490±0.006 0.490±0.012 0.490±0.009 0.493±0.013 0.490±0.006

A
c
c
u
r
a
c
y

TRAIL 0.654±0.014 0.746±0.009 0.756±0.009 0.764±0.008 0.768±0.012 0.839±0.002
TRAILt 0.655±0.004 0.653±0.008 0.655±0.014 0.655±0.008 0.655±0.008 0.655±0.005
TRAILs 0.500±0.000 0.501±0.003 0.535±0.009 0.529±0.006 0.535±0.004 0.545±0.014

SCAN 0.554±0.028 0.567±0.009 0.563±0.007 0.605±0.014 0.656±0.011 0.748±0.012
SCANt 0.553±0.002 0.553±0.004 0.553±0.003 0.554±0.002 0.553±0.001 0.553±0.003
SCANs 0.500±0.000 0.498±0.003 0.515±0.008 0.529±0.003 0.536±0.003 0.541±0.005

Naive 0.500±0.000 0.508±0.001 0.514±0.006 0.517±0.002 0.519±0.003 0.526±0.000

lo
c
a
t
io

n

A
U

C

TRAIL 0.871±0.020 0.876±0.011 0.891±0.006 0.881±0.028 0.916±0.016 0.925±0.007
TRAILt 0.871±0.015 0.872±0.004 0.872±0.013 0.872±0.003 0.872±0.017 0.872±0.014
TRAILs 0.500±0.000 0.492±0.002 0.479±0.004 0.504±0.002 0.580±0.001 0.652±0.003

SCAN 0.745±0.005 0.746±0.011 0.773±0.010 0.788±0.012 0.796±0.016 0.797±0.009
SCANt 0.745±0.021 0.744±0.011 0.745±0.025 0.744±0.020 0.743±0.011 0.744±0.010
SCANs 0.500±0.000 0.490±0.002 0.481±0.002 0.504±0.001 0.578±0.005 0.651±0.005

FCF 0.682±0.006 0.683±0.002 0.682±0.007 0.683±0.002 0.683±0.006 0.682±0.003

A
c
c
u
r
a
c
y

TRAIL 0.734±0.008 0.754±0.005 0.765±0.006 0.775±0.003 0.789±0.008 0.797±0.010
TRAILt 0.735±0.002 0.734±0.007 0.734±0.007 0.734±0.006 0.735±0.004 0.735±0.004
TRAILs 0.500±0.000 0.509±0.003 0.514±0.006 0.511±0.001 0.533±0.000 0.569±0.001

SCAN 0.731±0.002 0.753±0.001 0.754±0.002 0.755±0.002 0.767±0.002 0.777±0.003
SCANt 0.732±0.013 0.732±0.010 0.732±0.016 0.732±0.009 0.732±0.004 0.732±0.004
SCANs 0.500±0.000 0.511±0.002 0.516±0.006 0.517±0.005 0.534±0.001 0.568±0.002

Naive 0.500±0.000 0.509±0.001 0.517±0.001 0.517±0.005 0.525±0.010 0.536±0.004

on predicting location links. M. Ye et al. [21] study lo-
cation recommendation problem by using friend-based col-
laborative filtering method. E. Cho et al. [5] regard the
location recommendation problem as a supervised link pre-
diction problem. Y. Zheng et al. propose to mine interesting
locations and travel sequences from GPS trajectories in [24]
and gives a tutorial in [23].

Most existing works focus on predicting one single type
of link but some other works can predict multiple kinds of
links simultaneously. I. Konstas et al. [12] propose to use
collaborative filtering method to recommend multiple kinds
of links for networks. While, F. Fouss et al. [7] use a tra-
ditional method: random walk to predict multiple kinds of
links. B. Cao et al. [4] propose to predict links in differ-
ent domains simultaneously with transfer learning. Some
works propose to combine link prediction with other classi-
fication tasks. For example, M. Bilgic et al. [3] propose to
do collective classification and link prediction for networks
simultaneously.

All these works are based on one single network. Now,
many researchers start to shift their attention to multiple
networks. Tang et al. [18] focus on inferring the type of
links over multiple heterogeneous networks. Z. Lu et al. [15]
propose to do supervised link prediction by using multiple
information sources. Y. Dong et al. [6] propose to pre-
dict and recommend links across heterogeneous social net-
works. To deal with the differences in information distribu-
tions of multiple networks, G. Qi et al. [8] propose to use
biased cross-network sampling to do link prediction across
networks.

When studying multiple social networks, the first prob-
lem will be how to construct the bridges between networks
to transfer information across them. X. Kong et al. [11] pro-
pose a method to infer the links between the accounts owned

by the same users in different social networks and they are
the first one to introduce the concepts of “anchor links” and
“multiple aligned heterogeneous networks”. J. Zhang et al.
propose to predict social links for new users with informa-
tion transferred from aligned source network through anchor
links to solve the cold start problem in [22] and they are the
first one to propose to transfer information across “aligned
networks” through “anchor links”.

6. CONCLUSION
In this paper, we study the collectively link prediction

problem for new networks across aligned LBSNs and the
links to be predicted in this paper include both social links
and location links. We propose method TRAIL to deal
with the challenges and solve the problem. TRAIL can
accumulate information for locations and can extract differ-
ent categories of features for both social links and location
links from the networks. By taking advantage of the anchor
links, TRAIL can utilize the information transferred from
the aligned source network to ease the information sparsity
problem. TRAIL can predict social links and location links
by iterative updating the network with newly predicted re-
sults. Extensive experiments conducted on two real-world
data sets demonstrate that TRAIL can achieve good pre-
diction result for the target network of different degrees of
newness and different anchor link sample rates.

7. FUTURE WORKS
In our future investigation, we plan to unite our anchor

link based transfer model across networks and traditional
feature space based transfer method across domains. In
the unified transfer model, we want to make use of the an-
chor links as well as solving the domain difference problems
within the transfer process.



2 4 6 8 10
iteration

0.80
0.81
0.82
0.83
0.84

au
c

(a) AUC of social links

2 4 6 8 10
iteration

0.75
0.80
0.85

ac
cu

ra
cy

(b) acc. of social links

2 4 6 8 10
iteration

0.75
0.80
0.85
0.90
0.95

au
c

(c) AUC of location links

2 4 6 8 10
iteration

0.70
0.72
0.74
0.76
0.78
0.80

ac
cu

ra
cy

(d) acc. of location links

2 4 6 8 10
iteration

0.50
0.55
0.60
0.65
0.70
0.75
0.80

au
c

(e) AUC of social links

2 4 6 8 10
iteration

0.50
0.55
0.60
0.65
0.70
0.75
0.80

ac
cu

ra
cy

(f) acc. of social links

2 4 6 8 10
iteration

0.70
0.75
0.80
0.85
0.90

au
c

(g) AUC of location links

2 4 6 8 10
iteration

0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80

ac
cu

ra
cy

(h) acc. of location links

Figure 4: Social link and location link prediction results of each iteration under the evaluation of AUC and
Accuracy. (a)-(d) are the results when σ = 0.5 and ρ = 1.0; (e)-(h) are the same results when σ = 1.0 and
ρ = 0.5, where σ is the remaining information rate and ρ is the anchor link sample rate.
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