
A

Multi-label Classification based on Multi-Objective Optimization

CHUAN SHI, Beijing University of Posts and Telecommunications
XIANGNAN KONG, University of Illinois at Chicago
DI FU, Beijing University of Posts and Telecommunications
PHILIP S. YU, University of Illinois at Chicago,King Abdulaziz University
BIN WU, Beijing University of Posts and Telecommunications

Multi-label classification refers to the task of predicting potentially multiple labels for a given instance.
Conventional multi-label classification approaches focus on single objective setting, where the learning al-
gorithm optimizes over a single performance criterion (e.g. Ranking Loss) or a heuristic function. The basic
assumption is that the optimization over one single objective can improve the overall performance of multi-
label classification and meet the requirements of various applications. However, in many real applications,
an optimal multi-label classifier may need to consider the tradeoffs among multiple inconsistent objectives,
such as minimizing Hamming Loss while maximizing Micro F1. In this paper, we study the problem of
multi-objective multi-label classification and propose a novel solution (called MOML) to optimize over multi-
ple objectives simultaneously. Note that optimization objectives may be inconsistent, even conflicting, thus
one cannot identify a single solution that is optimal on all objectives. Our MOML algorithm finds a set of
non-dominated solutions which are optimal according to different tradeoffs among multiple objectives. So
users can flexibly construct various predictive models from the solution set, which provides more meaningful
classification results in different application scenarios. Empirical studies on real-world tasks demonstrate
that the MOML can effectively boost the overall performance of multi-label classification by optimizing over
multiple objectives simultaneously.

Categories and Subject Descriptors: I.5.2 [PATTERN RECOGNITION]: Design Methodology

General Terms: Classifier design and evaluation, Pattern analysis

Additional Key Words and Phrases: Classification, multi-label classification, multi-objective optimization,
model selection

1. INTRODUCTION
Traditional supervised learning works on the single label scenario. That is, each in-
stance is associated with one single label within a finite set of labels. However, in many
applications, each instance can be associated with more than one label simultaneous-
ly. For example, in text categorization, one document can belong to multiple categories
[Yang et al. 2009]; in image classification, an image is usually associated with multiple
labels which are characterized by different regions in the image [Zha et al. 2008]; in
bioinformatics, one gene sequence may serve multiple functions [Elisseeff and Weston
2002]; in video annotation, an video can be tagged with multiple labels simultaneously

Author’s addresses: Chuan Shi, shichuan@bupt.edu.cn, Beijing, China; Xiangnan Kong, kongxn@gmail.com,
IL, USA; Di Fu, fudi@bupt.edu.cn, Beijing, China; Philip S. Yu, psyu@uic.edu, IL, USA; Bin Wu, wu-
bin@bupt.edu.cn, Beijing, China. It is supported by the National Natural Science Foundation of China
(No. 60905025, 61074128, 71231002). This work is also supported by the National Key Basic Research
Program (973 Program) of China (2013CB329603). Philip Yu is supported in part by NSF through grants
CNS-1115234, DBI-0960443, and OISE-1129076.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ YYYY ACM 1539-9087/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 C. Shi et al.

[Zha et al. 2009]. This setting is called multi-label classification, which corresponds to
the problem of classifying each instance with a set of labels. Multi-label classification
has been drawing increasing attention from the machine learning and data mining
communities in the past decade [Dembczyński et al. 2010a; Petterson and Caetano
2010; Zhang and Zhang 2010].

Conventional multi-label classification approaches focus on the single objective set-
ting, where the learning algorithm trains one model that optimizes over one single ob-
jective. The objective can be a performance evaluation criterion (e.g. Hamming Loss [T-
soumakas et al. 2010]) or a heuristic function (e.g. the posteriori principle in ML-KNN
[Zhang and Zhou 2007]). The basic assumption of single objective multi-label classi-
fication is that one single objective can evaluate the overall performance of a multi-
label classifier. Thus, the optimization over one single objective can comprehensively
improve the classifier’s performance. However, in multi-label classification, many crite-
ria are proposed to evaluate the classification performance from different perspectives
(see Table II) and some criteria are inconsistent [Gao and Zhou 2011] or even conflict
[Dembczyński et al. 2010b]. Gao et al. [Gao and Zhou 2011] prove that none convex
surrogate loss is consistent with the ranking loss. Dembczyński et al. [Dembczyński
et al. 2010b] elaborate the connection among these criteria and point out that some
loss functions are essentially conflicting, such as Hamming Loss [Tsoumakas et al.
2010] and Subset 0/1 Loss [Ghamrawi and McCallum 2005]. So the optimization over
one single objective may not lead to the performance improvement on the other ob-
jectives. For example, in a multi-label classification task where the performances on
Hamming Loss [Tsoumakas et al. 2010] and Micro F1 [Ghamrawi and McCallum 2005]
are concerned, one may minimize Hamming Loss, maximize Micro F1 (i.e. minimize
1−Micro F1), or optimize both of them simultaneously. An example of results is shown
in Figure 1. Due to the inconsistency existing in these two objectives in some condi-
tions, only optimizing over Hamming Loss may lead to bad performance on Micro F1
(e.g. solution B), or vice versa (e.g. solution A). However, it is obvious that the solu-
tion C is better than A and B when we concern the classification performances on both
Hamming Loss and Micro F1. As a consequence, it is necessary to simultaneously opti-
mize over multiple objectives for multi-label classification in such condition where the
concerned objectives are inconsistent or potential conflicting. This helps to balance the
tradeoff among these objectives and comprehensively improve performances of multi-
label classification, not limiting to one single criterion. In addition, the simultaneous
optimization over multiple objectives is also practically needed in many multi-label
classification tasks [Tsoumakas et al. 2010]. For example, in a news filtering applica-
tion, users must be presented with those interesting articles, but it is also important
to only see the most interesting one. So the performances of the multi-label classifier
on One Error [Tsoumakas et al. 2010] and Micro F1 [Ghamrawi and McCallum 2005]
both need to be considered.

In conventional multi-label classification (i.e. single objective multi-label classifica-
tion as shown in Figure 2(a)), one single solution is usually returned to satisfy the re-
quirements of all users. However, it is often the case that users in different application
scenarios can have very different expectations on a multi-label classifier [Petterson
and Caetano 2010]. With multiple optimization objectives employed, there is usually
no single best solution for this multi-label classification task, but instead, a set of non-
dominated solutions that correspond to different tradeoffs among those objectives, so
that users can flexibly select appropriate solutions in items of their different applica-
tions. For example, in Figure 1, one can select A in a Hamming Loss-aware application,
or select C in a Hamming Loss and Micro F1 -aware application.

Formally, the multi-objective multi-label classification (as shown in Figure 2(b)) cor-
responds to simultaneously optimizing over multiple objectives and obtaining a set of

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Multi-label Classification based on Multi-Objective Optimization A:3

Fig. 1. Illustration of optimizing over multiple objectives.

(a) Single objective multi-label classification (b) Multi-objective multi-label classification

Fig. 2. Comparison of single and multiple objective multi-label classification.

multi-label classification models. Despite its value and significance, the multi-objective
multi-label classification has not been studied in this context so far, due to the fol-
lowing research challenges. (1) Most evaluation objectives in multi-label classification
cannot be directly optimized even in the single objective setting [Gao and Zhou 2011].
The loss functions in multi-label classification are usually difficult to optimize directly
because of non-convexity and discontinuity. Many multi-label classification approach-
es work with surrogate loss functions, such as Ranking Loss [Tsoumakas et al. 2010]
and Hamming Loss [Tsoumakas et al. 2010]). (2) Multi-objective optimization is much
more difficult than single objective optimization. It is not easy to effectively tradeof-
f multiple objectives in multi-label classification. Multi-objective optimization can be
converted into single objective optimization with the scalarization method (e.g. weight-
ed sum method [Furnkranz and Flach 2003]) and the tradeoffs among objectives can
be exploited by tuning weights. However, it is hard to choose the weights in real appli-
cations and cannot discover the solutions in the concave Pareto front [Freitas 2006].
For example, the weighted sum method can find A and B in Figure 1, but it cannot
discover C.

In this paper, we study the problem of multi-objective multi-label classification and
propose a novel solution, called MOML (Multi-Objective based Multi-Label algorith-
m). Different from conventional multi-label classification approaches, the proposed
MOML can simultaneously optimize over multiple objectives based on Evolutionary
Multi-objective Optimization (EMO). EMO has unique properties to effectively solve
the above challenges. (1) EMO does not require the optimization objectives to be dif-
ferentiable, and thus any evaluation metric in multi-label classification can be used
as optimization objectives in our MOML. (2) It can automatically balance the tradeoffs
among multiple objectives with population optimization. Due to multiple optimiza-
tion objectives, MOML returns a set of classification models with different preferences
on these objectives, so we propose two model selection strategies to make full use of
these models and make predictions on the testing data. And thus, users can flexibly

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 C. Shi et al.

apply these model selection strategies in different applications. Experiments on seven
real-world multi-label classification tasks justify the effectiveness of our MOML with
nine popular performance evaluation criteria. Results show that MOML can compre-
hensively boost the multi-label classification performance on most of the performance
criteria. Moreover, in comparison experiments of model selection strategies, MOML can
effectively adapt to the user’s preferences in different applications by achieving better
performances on the preferred objectives.

2. RELATED WORK
Multi-label classification has been well developed in the past decade. There are two
basic ways to solve this problem: problem transformation and algorithm adaptation.
In the problem transformation way, a multi-label problem is transformed into multiple
single-label problems. For each single-label problem, a single-label classifier is learnt,
and then these single-label classifiers are combined for the original multi-label prob-
lem. Many base learners have been employed in problem transformation approach-
es, such as Support Vector Machines [Godbole and Sarawagi 2004], Naive Bayes [Ji
et al. 2008] and k Nearest Neighbor methods [Zhang and Zhou 2007]. In the algorith-
m adaptation way, it modifies specific learning algorithms to solve multi-label data
directly. The representative approaches involve decision trees [Vens et al. 2008], Ad-
aBoost [Schapire and Singer 2000] and BP-MLL [Zhang and Zhou 2006]. These algo-
rithms usually optimize only one evaluation metric explicitly or implicitly, whereas our
MOML explicitly optimizes multiple objectives at the same time.

Since ensemble learning can effectively improve learners’ generalization perfor-
mances, it has been widely applied in multi-label learning to build a set of base learn-
ers [Read et al. 2008; Read et al. 2009; Shi et al. 2011; Tsoumakas et al. 2008; T-
soumakas and Vlahavas 2007]. For example, RAKEL [Tsoumakas and Vlahavas 2007]
trains each single-label base learner for the prediction of each element in the powerset
of the label set, and the single-label base learner in EPS [Read et al. 2008] is built for
a pruning label subset. Similar to these approaches, MOML also employs the ensem-
ble method in the model selection phase, whereas MOML generates the solution set
through evolutionary multi-objective optimization. Recently, some researches began to
be aware of conflict existing in measure criteria [Dembczyński et al. 2010b; Petterson
and Caetano 2010; Xu and Xu 2010]. Petterson and Caetano [Petterson and Caetano
2010] point out the evaluation measures are as diverse as the applications. However,
their method still optimizes a single criterion by appropriate surrogate. Different from
ML-2OKM [Xu and Xu 2010] which also optimizes two particular objectives with an
existing EMO, MOML’s optimization objectives can be any evaluation metrics and its
base model is a multi-label classifier. Dembczyński et al. [Dembczyński et al. 2010b]
analyze the connection between loss functions in multi-label classification, which helps
to select appropriate optimization objectives in MOML. In addition, there is an increas-
ing attention on the consistency of multi-label learning [Gao and Zhou 2011; Kotlowski
et al. 2011; Dembczyński et al. 2012]. Since multi-label loss functions are usually d-
ifficult to optimize directly owing to non-convexity and discontinuity, the surrogate
loss functions are widely used in multi-label classification. However, Gao et al. [Gao
and Zhou 2011] find that none convex surrogate loss is consistent with the ranking
loss. Then Dembczyński et al. [Dembczyński et al. 2012] prove that common convex
surrogates used for binary classification are consistent for the minimization of rank
loss. These theoretical analysis further disclose the inconsistency among surrogate loss
functions, which implies the importance of multi-objective multi-label classification.

Multi-objective optimization is the process of simultaneously optimizing two or more
conflicting objectives subject to certain constraints, which is widely existing in many
fields (e.g., decision and optimization). Many methods have been proposed to solve

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Multi-label Classification based on Multi-Objective Optimization A:5

this problem (e.g. weighted sum method [Furnkranz and Flach 2003]), among which
evolutionary algorithm [Goldberg 1989] has been proven to be an effective solution.
This kind of solutions is also called EMO technique [Deb 2001]. EMO simultaneously
optimizes multiple objectives through population evolution, in which individuals re-
produce through evolutionary operation (e.g. crossover and mutation) and obey the
Darwinian evolution: survival of the fittest. Traditional EMO focuses on numerical
optimization problems [Deb et al. 2002]. However, EMO begins to be applied in data
mining problems in recent years [Freitas 2006], such as data clustering [Handle and
Knowles 2007] and click prediction [Agarwal et al. 2011]. Shi et al. [Shi et al. 2011] use
EMO to generate a set of classifiers, while their work focuses on the ensemble of clas-
sifiers. Chen and Yao [Chen and Yao 2010] employ the multi-objective neural network
ensemble to improve classification performances, whereas it focuses on the single-label
classification problem.

3. PROBLEM DEFINITION
Let χ = Rd be the d-dimensional input space and L = {1, 2, · · · , L} be the finite set of L
possible classes. Given a multi-label training set D = {(xi, Yi)|1 ≤ i ≤ m}, where xi ∈ χ
is an instance and Yi ⊆ L is the label set associated with xi. The task of multi-label
learning is to learn a multi-label classifier h : χ → 2L from D which predicts a set of
labels for each unseen instance.

Conventional multi-label classification approaches can be roughly classified into two
categories: (1) One type of the approaches train one single model by explicitly or im-
plicitly optimizing a performance criterion. For example, ML-RBF [Zhang 2009] explic-
itly optimizes the Hamming Loss, while Ranking Loss is optimized in BP-MLL [Zhang
and Zhou 2006] and RANK-SVM [Elisseeff and Weston 2002]. (2) The second type of
approaches do not explicitly optimize those performance criteria, but they implicitly
optimize one single heuristic function which is not directly related to any performance
criteria. For example, ECC [Read et al. 2009] and LEAD [Zhang and Zhang 2010] opti-
mize the generalization risk for multi-label predictions by encoding label correlations,
and ML-KNN [Zhang and Zhou 2007] maximizes the posteriori principle in multi-label
learning. In both types of approaches, the multi-label learning is regarded as a Single
objective Optimization Problem (SOP), which can be defined as follows:

DEFINITION 1. Single objective multi-label classification. It determines a model M∗

through optimizing one single objective function.

minimize O1(M)

s.t. M ∈ Ω
(1)

Ω is the set of feasible models, M is a predictive model in Ω. O1 : Ω → R is an objective
function, which can be a performance criterion (e.g. metrics in Section 5.1.2) or any
other implicit heuristic function. Without loss of generality, we assume O1 is to be
minimized. Most of conventional algorithms are based on solving this SOP. Different
algorithms may vary in the objective function O1 and optimization techniques.

This paper first formulates multi-label learning as a Multi-objective Optimization
Problem (MOP) [Deb 2001], which can be defined as follows.

DEFINITION 2. Multi-objective multi-label classification. It determines models M∗

through simultaneously optimizing multiple objective functions.

minimize O(M) = (O1(M), O2(M), · · · , Ot(M))

s.t. M ∈ Ω
(2)

t is the number of objectives and Oi represents the i-th objective.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 C. Shi et al.

For the MOP, each objective corresponds to an optimal solution. We have to incorpo-
rate the different tradeoffs among the multiple objectives. One fundamental difference
between SOP and MOP is that, for a MOP, we can find a set of optimal solutions where
no single solution can be said to be better than any other. Solving a MOP often im-
plies to search for the set of optimal solutions as opposed to one single solution for a
SOP. Here, we define the concept of domination relation to compare the performance
of multi-label classification models, similar as in [Deb 2001].

DEFINITION 3. Domination. For two models M1,M2 ∈ Ω, M1 dominates M2 (denoted
as M1 ≼ M2) if and only if

∀ i ∈ {1, · · · , t} Oi(M1) ≤ Oi(M2) ∧ ∃ i ∈ {1, · · · , t} Oi(M1) < Oi(M2) (3)

Similarly, if M1 � M2 and M2 � M1, M1 is non-dominated with M2. A model M ∈ Ω
is said to be Pareto optimal [Deb 2001] if and only if M is not dominated by any other
model in Ω. The set of all Pareto optimal models is called the Pareto optimal set, or
Pareto front. An example is shown in Figure 1. Model C dominates the model D, and C
is non-dominated with A and B. A, B, and C are the Pareto optimal set or Pareto front.

4. THE MOML ALGORITHM
In order to solve the multi-objective multi-label classification problem, a simple ap-
proach is to convert multiple objectives into a single objective by using certain schemes
and user-specified parameters, such as the weighted sum method [Furnkranz and
Flach 2003]. However, this method cannot be directly applied to multi-label classifi-
cation problem, since many objectives may not be easily optimized even in SOP setting
and the parameter settings are very difficult for these methods. Here we apply EMO to
solve the multi-objective multi-label classification problem. Although EMO has been
successfully applied in many numeric optimization problems and some data mining
problems, it is seldom applied in classification. The reason lies in these two difficulties:
(1) the classifier model is difficult to be effectively encoded in evolutionary algorithm;
(2) it is far more difficult to tradeoff the self-learning of classifiers and information
exchange among classifiers in EMO.

This paper proposes a method based on EMO to solve the multi-objective multi-
label classification problem. The method is called Multi-Objective Multi-Label algo-
rithm (MOML) which includes two phases: model training and selection. Briefly, MOM-
L designs an effective multi-objective optimization mechanism and a novel method of
generating new solutions based on a modified ml-RBF base model in the model train-
ing phase. In the model selection phase, two model selection strategies are proposed to
help users flexibly select their preferred models in terms of their application scenarios.

4.1. Model Training
A good EMO algorithm needs to generate a set of solutions that uniformly distribute a-
long the Pareto front [Veldhuizen and Lamont 2000], which includes two key issues: (1)
solutions prone to converge to the Pareto front and maintain diversity in the evolution-
ary process; (2) generating promising solutions in each generation. In order to make
EMO fit for multi-label learning, we design many novel mechanisms in the following
two sections.

4.1.1. Multi-objective Optimization Mechanism. Since a good solution is expected to con-
verge to the Pareto front and maintain diversity, the fitness of the solution can be
determined by its convergence and diversity. We apply the non-dominated-sort and
diversity-estimate process to effectively evaluate these two measures. Furthermore,
the proposed select-individuals process selects the best solutions as the next genera-
tion population in terms of these measures.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Multi-label Classification based on Multi-Objective Optimization A:7

Fig. 3. Illustration of non-dominated-sort and diversity-estimate.

Non-dominated-sort. The non-dominated-sort process sorts solutions according to
their raw fitness (i.e. objective value Oi). The different value range of objectives (e.g.
Coverage > 1 and HammingLoss < 1) may lead to the situation that some base mod-
els reproduce too rapidly. Instead of the raw fitness, this paper employs the rank-
based fitness assignment [Goldberg 1989] to reassign the fitness (i.e. a rank value)
to the solutions, because this method behaves in a more robust manner. In the rank-
based fitness assignment, the solution set is divided into different fronts with different
ranks. The solutions in the same front are non-dominated to each other and solutions
in the higher front are always dominated by some solutions in the lower front. Figure
3 shows an example that 12 solutions are divided into three fronts according to their
domination relations. In this way, each solution (i.e. model) Mi in a front Fa has a
rank value Mrank

i = a. It is evident that solution Mi is better than solution Mj when
Mrank

i < Mrank
j . For example, the solutions in F1 are better than those in F2. Note

that the minimization problem is considered in this paper.
Diversity-estimate. Along with convergence to the Pareto front, it is also desired

that an evolutionary algorithm maintains a good spread of solutions. So the solution in
the crowded region is more likely to be deleted. To get a diversity estimate of solutions
surrounding a particular solution in the population, we design the diversity-estimate
process that calculates the average Euclidean distance of two solutions on either side of
this solution along each of objectives. It is simple and effective to estimate the diversity
of solutions. The diversity estimation of solution Mi, Mdistance

i , serves as the perimeter
of the cuboid formed by using the nearest neighbors as the vertices. As shown in Figure
3, the diversity of this i-th solution in its front is the average side length of the cuboid.
The small Mdistance

i means solution Mi is in a more crowded region, which implies a
bad diversity.

Select-individuals. Every solution Mi in the population has two feature values:
(1) non-domination rank Mrank

i ; (2) diversity estimation Mdistance
i . We define a partial

order ≺ to compare two solutions, which comprehensively considers both of features.

DEFINITION 4. partial order ≺. For two solutions Mi and Mj , Mi ≺ Mj , if and only if

Mrank
i < Mrank

j ∨ (Mrank
i = Mrank

j ∧Mdistance
i > Mdistance

j) (4)

That is, between two solutions with different non-domination ranks, we prefer the so-
lution with the lower rank. Otherwise, if both solutions belong to the same front, then
we prefer the solution that is located in a less crowded region. After sorting the pop-
ulation with ≺, the select-individuals process selects top solutions, which guarantees
that good solutions (with low rank and high diversity) will be kept. At the meantime,
those promising solutions are also likely to be contained in the population.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 C. Shi et al.

(a) genetic representation (b) crossover operation

Fig. 4. (a) Architecture of ml-RBF and its genetic representation. (b) The crossover operation. The crossover
point j is selected between two prototype vectors.

4.1.2. Base Model and Evolutionary Operations. In the framework of MOML, many classi-
fication models can be used, such as decision tree [Schietgat et al. 2010], Back Prop-
agation (BP) [Zhang and Zhou 2006] and Radical Basis Function (RBF) [Zhang 2009]
neural network. Different base models will lead to different genetic representation and
operation. Because the structure can be effectively encoded and the weights can be ef-
ficiently calculated in close form, the ml-RBF neural network in ML-RBF [Zhang 2009]
is selected as the base model in MOML, however with an additional regularization term
added to reduce overfitting risks as explained later.

The architecture of ml-RBF is shown in Figure 4(a). It can be briefly summarized as
follows: (1) The input of a ml-RBF corresponds to a d-dimension feature vector. (2) The
hidden layer of ml-RBF is composed of L sets of prototype vectors, i.e.

∪L
l=1 Cl. Here,

Cl consists of kl prototype vectors < cl1, c
l
2, · · · , clkl

>. For each class l ∈ L, the popular
k-means clustering is performed on the set of instances Ul with label l. Thereafter, kl
clustered groups are formed for class l and the j-th centroid (1 ≤ j ≤ kl) is regarded
as a prototype vector clj of basis function ϕl

j(·). (3) Each output neuron is related to a
possible class. In the hidden layer of ml-RBF, the number of clusters kl is settled to be
a fraction α of the number of instances in Ul:

kl = α× |Ul| (5)

The scale coefficient α controls the structure and complexity of ml-RBF model.
Different from the error function in the original ml-RBF, we add a regularization

term into the error function. The regularization term greatly reduces the overfitting
risk and improves the stability of solutions as observed in the experiments.

E =
1

2

m∑
i=1

L∑
l=1

(yl(xi)− til)
2 + γ

K∑
j=0

L∑
l=1

w2
jl (6)

where yl(xi) represents the predicted value of instance xi on label l, til is the real value
of instance i on label l, K =

∑L
l=1 kl, and γ is the regularization coefficient. Similar to

the derivation of minimizing the error function by scaled-conjugate-gradient descent
in [Chen and Yao 2010], the optimal output weights W can be computed in closed form
by

W = (Φ′Φ+ γI)−1Φ′T (7)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Multi-label Classification based on Multi-Objective Optimization A:9

Here Φ = [ϕij]m×(K+1) with elements ϕij = ϕj(xi), W = [wjl](K+1)×L with elements
wjl, and T = [til]m×L with elements til = til. Through extensive experiments, the regu-
larization coefficient γ is fixed at 0.1 in this paper.

Genetic representation. According to the structure of ml-RBF, we propose a nov-
el genetic representation that is the sequence of prototypes < bias, c11, c

2
1, · · · cLkL

>.
An example is shown in Figure 4(a). The genetic representation has the following ad-
vantages. (1) When the prototypes (c) are determined, the basis functions (ϕ) and the
weights (W) can be efficiently computed, which means the performance of RBF mostly
depends on the selection of the prototypes. (2) It is easy to design the crossover and
mutation operators by tuning these prototypes.

Initialization. When the base model is ml-RBF, the initialization operation of
MOML generates a set of ml-RBF models with different scale coefficient α. As suggest-
ed in [Zhang 2009], α is randomly selected from [0.01, 0.02] in the experiments. An
advantage of this Initialization operation is that it generates a set of ml-RBF models
with different structures, which contributes to the population diversity.

Generate-individuals. Generating new solutions is realized by the generate-
individuals process. The basic idea is to randomly select parent solutions from the
current population based on the roulette wheel selection [Baker 1985] and do crossover
and mutation operation to generate new solutions with the ratio of cro Rat and
1− cro Rat, respectively. In this paper, cro Rat is fixed at 0.8, which helps to converge
to the Pareto front and maintain the appropriate diversity of the population. MOML
applies the roulette wheel selection [Baker 1985] to assign each solution with an ap-
propriate selection pressure. That is, the solutions in the lower front have a higher
selection probability. It guarantees that the better solution has a high yet appropriate
selection probability.

Since different ml-RBFs may have different numbers of prototypes, this paper
adapts the cut and splice crossover [Goldberg et al. 1993] which randomly chooses
a crossover point for two ml-RBFs and swaps their prototypes beyond this point. D-
ifferent from the traditional cut and splice crossover, the crossover point in MOML
is randomly selected between two prototype vectors, rather than in an arbitrary po-
sition. Figure 4(b) shows such an example, in which the crossover point j is selected
between the prototype vector < ci1, · · · , ciai

> and < ci+1
1 , · · · , ci+1

ai+1
>. It guarantees that

each prototype vector in the newly generated ml-RBF is unabridged cluster centroid.
The width of the centroid of the new ml-RBF is recalculated as in [Zhang 2009]. The
weights are calculated following Equation 7.

According to the structure of ml-RBF, two mutation operations are designed. The
mutation operator randomly selects some prototype vectors in a ml-RBF and does the
following two structural mutation operations with the same probability. (1) Delete one
prototype. Randomly select one prototype and delete it. (2) Add one prototype. The
center of the new prototype is determined by a random combination of all centroids in
this prototype vector.

Although the crossover and mutation operations may not generate the optimal com-
bination of prototypes, they provide an effective method to search the prototypes s-
pace of ml-RBF. The crossover operator reassembles the prototypes of parent solution-
s, which not only maintains the good genes but also generates new combinations. The
mutation operator deletes and adds new prototypes, which helps to extend the search
space and maintain diversity. Once a good solution is found in the space of prototypes,
it will be kept in population until it becomes a bad one.

4.1.3. Algorithm Framework. The training phase of MOML is described in Algorithm 1.
MOML transforms the t optimization objectives to a fitness measure by the creation
of a number of fronts, sorted according to non-dominated-sort. After the fronts have

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 C. Shi et al.

Algorithm 1 MOML-Training
Input: D: training data; M: base model; N : # base models; G: # generations
Output: model set P
procedure TRAINING

Randomly generate P = {M1,M2, · · · ,MN}
for t = 1 : G do

Q=generate-individuals(P)
R = P

∪
Q

F = (F1,F2, · · ·)=non-dominated-sort(R)
diversity-estimate(F)
P=select-individuals(F)

end for
return P

end procedure

Algorithm 2 MOML-Testing-DYN
Input: U : testing data; O: preference objective; P : model set; k: # top models
Output: label set Y
procedure TESTING

Sort P in an ascending order by O
Select top-k models {M1, · · · ,Mk} from P
for x ∈ U do

Y (x) = {l| 1k
∑k

i=1 Mi(x, l) > 0, l ∈ L}
end for

end procedure

Algorithm 3 MOML-Testing-EN
Input: U : testing data; P : model set; N : # models
Output: label set Y
procedure TESTING

for x ∈ U do
Y (x) = {l| 1

N

∑N
i=1 Mi(x, l) > 0,Mi ∈ P, l ∈ L}

end for
end procedure

been created, diversity-estimate assigns its members density value later to be used
for diversity maintenance. In each generation, N new solutions are generated with
generate-individuals. Of the 2N solutions, select-individuals selects the N best solu-
tions for the next generation. In this way, a huge elite can be kept from generation to
generation.

In MOML, the multi-objective optimization mechanism guides the solutions to con-
verge to Pareto front and maintain the diversity. The genetic operations effectively
search the prototypes space of ml-RBF and generate promising solutions. A particular
advantage of MOML is that any function can be used as the optimized objective, only
if the function can be calculated, without the requirement of being differentiable.

4.2. Model Selection
The model training phase of MOML returns a solution set, which is a unique feature
of the multi-objective multi-label classification. The user can make full use of these
solutions in terms of their applications. For example, users can select one good model
according to some criteria, such as AUPRC [Vens et al. 2008]. Here we design two
strategies to select a set of prediction models according to users’ preferences.

The dynamic model selection strategy (called DYN) selects the top k models on the
preference objective and then makes predictions with a majority vote. Assume that in-
stances are independently and identically distributed, these selected models will also
perform well on the corresponding objective on the testing data. This dynamic model
selection strategy not only can flexibly select the preferred models in terms of user-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Multi-label Classification based on Multi-Objective Optimization A:11

s’ applications but also can improve the generalization performances with ensemble
learning. Note that, the preference objective may be or not be the optimization objects.
As we know, the model training process is expensive and is not often done. The op-
timization objectives are usually fixed ahead of time. In different applications, users
have diverse preference on performances, so they can flexibly determine their prefer-
ence objectives. Since the prediction process is fast, it can be done online according
to different user preferences. The DYN strategy is shown in Algorithm 2, in which
Mi(x, l) means the output of model Mi on label l for instance x.

The ensemble model selection strategy (called EN) combines all models and then
makes predictions with a majority vote, which can be seen in Algorithm 3. On the one
hand, this strategy can be used for users without obvious preferences. The EN strategy
ensembles all models, so it may have no preference on a certain objective. On the other
hand, it is promising to uniformly promote the performances on all criteria, since the
ensemble learning is employed.

4.3. Complexity Analysis
Let d be the number of features of instances, m and n be the number of training and
testing instances respectively, L be the number of labels. We consider the time complex-
ity of ml-RBF first. Two main time-consuming components of ml-RBF are the k-means
clustering and calculating Φ = [ϕij]m×(K+1) for all training instances. For simplicity,
suppose each label has the same number of instances m

L , and thus the number of cen-
troid is αm

L . The complexity of a k-means clustering is O(α(mL)
2
) (the iteration number

in k-means is fixed, so it is omitted here). L k-means clustering are needed, so the total
complexity is O(αm2/L). ϕij needs to calculate the distance to each prototype vector cj
for each instance xi, and thus its complexity is O(αdm2). In all, the ml-RBF has the
following complexity:

O(αm2/L+ αdm2) (8)
For MOML, it needs to generate N ml-RBFs and evaluate NG new ml-RBFs. The

complexity of MOML in ml-RBF is O(αNm2/L + αNGdm2). The complexity of the ge-
netic operation in MOML is O(GN2). Since N ≪ m, the total time complexity of MOML
in the training phase is

O(αNm2/L+ αNGdm2) (9)
There are k models to make predictions on the testing data (k is N for the EN strategy),
so the time complexity of the testing phase is

O(αkdn2) (10)
Since k ≪ NG, the testing phase is much faster than the training phase.

5. EXPERIMENTS
5.1. Experimental Setup

5.1.1. Data Collection. We tested our algorithm on seven real-world multi-label
datasets from three different domains as summarized in Table I. The first dataset
is Yeast [Read et al. 2009; Zhang 2009; Zhang and Zhang 2010; Zhang and Zhou 2006]
in biology, where the task is to predict the gene functional classes of the Yeast Saccha-
romyces cerevisiae. The second dataset Image [Read et al. 2009; Zhang 2009; Zhang
and Zhang 2010; Zhang and Zhou 2006] involves the task of automatic image annota-
tion for scene images. The other five datasets RCV1-1–RCV1-5 are the subset of RCV1
[Yang et al. 2009; Zhang and Zhang 2010], where the task is to predict topic categories
of each text document. These five datasets have different multi-label distributions,
such as label cardinality and density [Zhang and Zhang 2010].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 C. Shi et al.

Table I. Summary of the experimental datasets.

Dataset

Property Yeast Image RCV1-1 RCV1-2 RCV1-3 RCV1-4 RCV1-5

instances 2417 2000 3000 3000 3000 3000 3000
features 103 294 472 472 472 472 472
labels 14 5 101 101 101 101 101
Domain biology media text text text text text

Table II. Summary of metrics in multi-label classification.

Criteria Description Formula

Hamming Loss (HL)↓
[Tsoumakas et al. 2010]

Evaluate the average error rate over all the
binary labels.

HammingLoss(h,U) = 1
n

∑n
i=1

1
L
∥h(xi)

⊕
yi∥1⊕

stands for the symmetric difference of two sets
(XOR operation), and ∥.∥1 denotes the l1-norm.

Micro F1 (MicF1)↑
[Ghamrawi and McCallum 2005]

Evaluate a classifier’s label set prediction per-
formance, which considers both micro-average
of precision and recall on all binary labels with
equal importance.

Micro− F1(h,U) =
2×

∑n
i=1 ∥h(xi)

∩
yi∥1∑n

i=1 ∥h(xi)∥1+
∑n

i=1 ∥yi∥1

Macro F1(MacF1)↑
[Ghamrawi and McCallum 2005]

Evaluate a classifier’s label set prediction per-
formance, which considers both macro-average
of precision and recall with equal importance.

Macro− F1(h,U) = 1
L

∑L
k=1

2×
∑n

i=1 hk(xi)y
k
i∑n

i=1 hk(xi)+
∑n

i=1 yk
i

yki is the k-th entry of yi and hk(xi) is the k-th entry
of h(xi).

Subset 0/1 Loss (SL)↓
[Ghamrawi and McCallum 2005]

Evaluate the average percentage when a clas-
sifier’s label set prediction is exactly correct.

SubsetLoss(h,U) = 1
n

∑n
i=1 I(h(xi) ̸= yi)

I(·) denotes the indicator function, i.e. I(π) = 1
iff π holds, otherwise I(π) = 0.

Accuracy (Acc)↑
[Tsoumakas et al. 2010]

Evaluate the average fraction of correct labels
across all examples. Accuracy(h,U) = 1

n

∑n
i=1

|h(xi)
∩

yi|
|h(xi)

∪
yi|

Ranking Loss(RL)↓
[Tsoumakas et al. 2010]

Evaluate the average fraction of label pairs
that are disordered for an example.

RankingLoss(h,U) = 1
L

∑L
i=1

1
|Yi||Yi|

|Ri|
Ri = {(y1, y2)|h(xi, y1) ≤ h(x, y2), (y1, y2) ∈ Yi × Yi}.
Yi denotes the complementary set of Yi in Y .

One Error (OE)↓
[Elisseeff and Weston 2002]

Evaluate how many times the top-ranked la-
bel by a classifier is not in the true label set of
an example.

OE(h,U) = 1
L

∑L
i=1 ∥argmaxy∈Y h(xi, y) /∈ Yi∥

∥π∥ equals 1 if π holds and 0 otherwise.

Coverage (Cov)↓
[Elisseeff and Weston 2002]

Evaluate how many steps are needed, on av-
erage, to move down the label list in order to
cover all the true labels of an example.

coverage(h,U) = 1
L

∑L
i=1 maxy∈Yi

rankh(xi, y)− 1

Average Precision (AP)↑
[Elisseeff and Weston 2002]

Evaluate the average fraction of true labels
ranked above a particular label.

avgprec(h,U) = 1
L

∑L
i=1

1
|Yi|

× |Pi|
rankh(xi,y)

Pi = {y′|rankh(xi, y
′) ≤ rankh(xi, y), y

′ ∈ Yi}

5.1.2. Evaluation Metrics. The performance evaluation for multi-label learning is much
more complicated than single-label problems. Here, we adopt nine state-of-the-art
multi-label evaluation metrics which are most popular in the literature. To the best of
our knowledge, few works on multi-label learning have conducted experimental eval-
uation on such comprehensive comparisons over the nine metrics. These metrics are
briefly summarized in Table II, where “↓” indicates the smaller the value the better
the performance; “↑” indicates the larger the value the better the performance. As-
sume we have a multi-label dataset U containing n multi-label instances (xi, yi), where
yi ∈ {0, 1}L(i = 1, · · · , n). Let h(xi) denote a multi-label classifier’s predicted label set
for xi.

5.1.3. Compared Methods. We compare our method with four baseline methods which
optimize over different single objectives. In MOML, any subset of metrics listed above
can be used as the optimization objectives. Here, we employ two pairs representative
subsets of evaluation metrics, i.e.,{HL,RL} and {MicF1, AP}. The {HL,RL} objective
subset includes two popular objectives that have already been directly optimized in

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Multi-label Classification based on Multi-Objective Optimization A:13

previous single objective approaches [Elisseeff and Weston 2002; Zhang 2009; Zhang
and Zhou 2006]. The {MicF1, AP} objective subset includes two most useful perfor-
mance criteria which are not often been directly optimized before. In addition, these
two pairs of objectives are potentially conflicting. Here the DYN model selection strat-
egy is employed. These compared methods are summarized as follows.r MOML{HL,RL}: The proposed MOML approach with the first objective subset ({HL,RL}), which outputs
a set of models with different preferences on each objective. In order to verify the quality of the outputted
solution set, we report two versions of the DYN model selection based on the top k models in terms of HL
and RL, respectively. The corresponding algorithms are called MOML{HL,RL} and MOML{HL,RL}. These
two combined models correspond to the two application preferences over the two optimization objectives.r MOML{MicF1,AP}: The proposed MOML approach with the second objective subset {MicF1, AP}. Sim-
ilarly, we report two versions of the DYN model selection in terms of MicF1 and AP and the corresponding
algorithms are called MOML{MicF1,AP} and MOML{MicF1,AP}, respectively. Note that, in order to be fit
for the minimization problem, 1−MicF1 and 1−AP are used in MOML.r ML-RBF [Zhang 2009]: Based on ml-RBF neural network, the method explicitly optimizes the HL crite-
rion.r BP-MLL [Zhang and Zhou 2006]: This method is based on BP neural network, which explicitly optimizes
the RL criterion.r ML-KNN [Zhang and Zhou 2007]: The KNN based lazy multi-label learning method optimizes a posterior
principle which is not directly related to any single performance criterion.r ECC [Read et al. 2009]: It is an ensemble of classifier chains which encode the multi-label correlations
in the multi-label classification process.

The population size and running generation of MOML are set as 30 and 10. k is 9
(i.e. 30% of the population size) in the top k model selection. ML-RBF is implemented
with fixed parameters of α = 0.01 and µ = 1.0, as suggested in the literature [Zhang
2009]. For BP-MLL, as indicated in the literature [Zhang and Zhou 2006], the number
of hidden neurons is set to be 20% of the number of input neurons, and the number
of training epochs is fixed at 100 with learning rate of 0.05. For ML-KNN, the number
of nearest neighbors considered is set to 10 and Euclidean distance is used as the
distance measure [Zhang and Zhou 2007]. For ECC, the ensemble size is set to 10 and
sampling ratio is set to 67% [Read et al. 2009].

5.2. Performance Comparison
Ten-fold cross-validation is performed on each experimental dataset. On each dataset,
we report the average values of each algorithm with the ranks based on its results. All
experiments are conducted on machines with Intel Xeon Quad-Core CPUs of 2.26 GHz
and 24 GB RAM.

Due to the limited space, we only show the results of the average values of 9 met-
rics on Yeast, Image and RCV1-1 in Tables III-V, where ‘*’ indicates the best result on
each criterion and ‘ ’ indicates the performance of MOML on its preference objective.
The other four datasets on RCV1 have similar results with RCV1-1. From these ta-
bles, we can observe that the four versions of the MOML method rank among the first
four on most metrics and they always have the best average ranks on each dataset.
Furthermore, Table VI summarizes the mean and standard deviation of the rank val-
ues for each method over 9 metrics on all seven datasets. To statistically measure the
significance of performance improvement, pairwise t-test at 5% significance level are
conducted between MOML and other compared algorithms for each dataset. Here the
MOML’s performances are the average performances of four versions of MOML. Table
VII illustrates the number of win/tie/loss of MOML against other compared algorithms
on all seven datasets. The results indicate that, although MOML only optimizes two ob-
jectives, the performances of MOML are significantly better than the baselines on most
metrics. Moreover, Table VI shows that each variant of the four MOML algorithms does
provide the best average rank on its primary objective, such as MOML{HL,RL} on HL,
MOML{HL,RL} on RL, etc. Other methods may occasionally outperform our approach

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 C. Shi et al.

Table III. Results of different algorithms on the Yeast dataset. The results are reported as “average performance + (rank)”,
where “↓” indicates that the smaller the value, the better the performance; “↑” indicates the larger the better.

Methods

Criteria MOML{HL,RL} MOML{HL,RL} MOML{MicF1,AP} MOML{MicF1,AP} ML-RBF BP-MLL ML-KNN ECC

HL ↓ 0.1883 (1)* 0.1887 (3) 0.1885 (2) 0.1889 (4) 0.1935 (5) 0.2120 (8) 0.1949 (6) 0.2056 (7)
RL ↓ 0.1596 (2) 0.1595 (1)* 0.1600 (3) 0.1603 (4) 0.1621 (5) 0.1723 (7) 0.1669 (6) 0.2776 (8)
SL ↓ 0.8051 (5) 0.8039 (3) 0.7997 (2) 0.8047 (4) 0.8163 (6) 0.8519 (8) 0.8167 (7) 0.7968 (1)*
OE ↓ 0.2197 (6) 0.2172 (2) 0.2193 (5) 0.2180 (3) 0.2189 (4) 0.2308 (8) 0.2304 (7) 0.1742 (1)*
Cov ↓ 6.2027 (3) 6.2122 (4) 6.1868 (2) 6.1861 (1)* 6.2465 (5) 6.3562 (7) 6.2647 (6) 7.1431 (8)

MicF1 ↑ 0.6572 (3) 0.6562 (5) 0.6576 (1)* 0.6569 (4) 0.6486 (6) 0.6468 (7) 0.6398 (8) 0.6574 (2)
AP ↑ 0.7752 (4) 0.7753 (3) 0.7756 (2) 0.7759 (1)* 0.7720 (5) 0.7534 (7) 0.7650 (6) 0.7313 (8)
Acc ↑ 0.5267 (2) 0.5248 (5) 0.5261 (3) 0.5257 (4) 0.5170 (7) 0.5185 (6) 0.5087 (8) 0.5404 (1)*
MacF1 ↑ 0.3888 (3) 0.3871 (4) 0.3889 (2) 0.3897 (1)* 0.3668 (6) 0.3457 (8) 0.3737 (5) 0.3647 (7)

AveRank↓ (3.22) (3.33) (2.44) (2.89) (5.44) (7.33) (6.56) (4.78)

Table IV. Results of different algorithms on the Image dataset. The results are reported as “average performance +
(rank)”, where “↓” indicates that the smaller the value, the better the performance; “↑” indicates the larger the better.

Methods

Criteria MOML{HL,RL} MOML{HL,RL} MOML{MicF1,AP} MOML{MicF1,AP} ML-RBF BP-MLL ML-KNN ECC

HL ↓ 0.1581 (1)* 0.1591 (4) 0.1589 (3) 0.1583 (2) 0.1653 (5) 0.2559 (8) 0.1703 (6) 0.1786 (7)
RL ↓ 0.1468 (2) 0.1454 (1)* 0.1476 (3) 0.1479 (4) 0.1558 (5) 0.3532 (8) 0.1708 (6) 0.2411 (7)
SL ↓ 0.5695 (2) 0.5750 (4) 0.5765 (6) 0.5745 (3) 0.6020 (7) 0.7890 (8) 0.5755 (5) 0.5385 (1)*
OE ↓ 0.2695 (4) 0.2655 (2) 0.2680 (3) 0.2650 (1)* 0.2860 (5) 0.5700 (8) 0.3150 (7) 0.2935 (6)
Cov ↓ 0.8615 (3) 0.8610 (2) 0.8650 (4) 0.8570 (1)* 0.8955 (5) 1.6790 (8) 0.9500 (6) 0.9715 (7)

MicF1 ↑ 0.6062 (3) 0.6038 (5) 0.6067 (2) 0.6052 (4) 0.5798 (7) 0.3524 (8) 0.5925 (6) 0.6380 (1)*
AP ↑ 0.8223 (3) 0.8232 (2) 0.8219 (4) 0.8241 (1)* 0.8118 (5) 0.6139 (8) 0.7967 (7) 0.7977 (6)
Acc ↑ 0.5126 (2) 0.5083 (6) 0.5084 (5) 0.5096 (4) 0.4778 (7) 0.2769 (8) 0.5097 (3) 0.5985 (1)*
MacF1 ↑ 0.6065 (2) 0.6033 (5) 0.6048 (4) 0.6054 (3) 0.5773 (7) 0.2687 (8) 0.5936 (6) 0.6441 (1)*

AveRank ↓ (2.44) (3.44) (3.78) (2.56) (5.89) (8.00) (5.56) (4.33)

Table V. Results of different algorithms on the RCV1-1 dataset. The results are reported as “average performance +
(rank)”, where “↓” indicates that the smaller the value, the better the performance; “↑” indicates the larger the better.

Methods

Criteria MOML{HL,RL} MOML{HL,RL} MOML{MicF1,AP} MOML{MicF1,AP} ML-RBF BP-MLL ML-KNN ECC

HL ↓ 0.0147 (1)* 0.0149 (3) 0.0148 (2) 0.0150 (4) 0.0165 (5) 0.0320 (8) 0.0222 (7) 0.0214 (6)
RL ↓ 0.0180 (1)* 0.0181 (2) 0.0183 (4) 0.0182 (3) 0.0196 (5) 0.0826 (7) 0.0684 (6) 0.2506 (8)
SL ↓ 0.6423 (4) 0.6410 (2) 0.6373 (1)* 0.6411 (3) 0.6873 (6) 1.0000 (8) 0.7770 (7) 0.6673 (5)
OE ↓ 0.0647 (3) 0.0650 (4) 0.0640 (2) 0.0637 (1)* 0.0743 (5) 0.5340 (8) 0.2850 (7) 0.1033 (6)
Cov ↓ 6.7567(1)* 6.7630 (2) 6.7893 (3) 6.7993 (4) 6.9390 (5) 20.597 (7) 17.523 (6) 35.973 (8)

MicF1 ↑ 0.7097 (2) 0.7082 (3) 0.7098 (1)* 0.7081 (4) 0.6774 (5) 0.4177 (8) 0.5421 (7) 0.6483 (6)
AP ↑ 0.8620 (4) 0.8629 (1)* 0.8624 (3) 0.8628 (2) 0.8443 (5) 0.4717 (8) 0.6666 (7) 0.6990 (6)
Acc ↑ 0.6070 (2) 0.6063 (3) 0.6079 (1)* 0.6058 (4) 0.5689 (6) 0.2655 (8) 0.4113 (7) 0.5820 (5)
MacF1 ↑ 0.2546 (2) 0.2537 (4) 0.2553 (1)* 0.2543 (3) 0.2203 (5) 0.0539 (8) 0.1960 (7) 0.2177 (6)

AveRank ↓ (2.22) (2.67) (2.00) (3.11) (5.22) (7.78) (6.78) (6.22)

Table VI. The average ranks (mean±std) for each method over 7 datasets.

Methods

Criteria MOML{HL,RL} MOML{HL,RL} MOML{MicF1,AP} MOML{MicF1,AP} ML-RBF BP-MLL ML-KNN ECC

HL 1.14±0.38* 3.14±0.38 2.00±0.58 3.71±0.76 5.00±0.00 8.00±0.00 6.71±0.49 6.29±0.49
RL 1.71±0.49 1.29±0.49* 3.57±0.53 3.43±0.53 5.00±0.00 7.14±0.38 6.00±0.00 7.86±0.38
SL 3.43±1.40 2.43±0.98 2.14±1.77* 3.29±0.49 6.14±0.38 8.00±0.00 6.71±0.76 3.86±1.95
OE 3.57±1.13 3.43±0.98 2.57±1.13 1.29±0.76* 4.86±0.38 8.00±0.00 6.86±0.38 5.43±1.99
Cov 2.00±1.29* 2.29±0.76 3.00±0.58 2.71±1.60 5.00±0.00 7.14±0.38 6.00±0.00 7.86±0.38

MicF1 2.14±0.38 3.57±0.98 1.29±0.49* 4.00±0.67 5.43±0.79 7.86±0.38 7.00±0.58 4.71±2.21
AP 3.86±0.38 1.86±0.69 2.86±0.69 1.43±0.79* 5.00±0.00 7.57±0.53 6.43±0.53 7.00±1.00
Acc 2.00±1.32 3.71±1.25 1.86±1.57* 4.00±0.58 6.29±0.49 7.71±0.76 6.57±1.62 3.86±1.95
MacF1 2.14±0.69 4.14±0.38 1.57±1.13* 2.71±0.76 5.71±0.76 8.00±0.00 6.57±0.79 5.14±1.95

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Multi-label Classification based on Multi-Objective Optimization A:15

Table VII. The win/tie/loss results for MOML against the compared algorithms based on pairwise
t-test at 5% significance level on seven datasets in terms of different evaluation metrics.

MOML against Criteria

compared methods HL RL SL OE Cov MicF1 AP Acc MacF1 In Total

ML-RBF 7/0/0 7/0/0 7/0/0 6/1/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 62/1/0
BP-MLL 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 63/0/0
ML-KNN 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 7/0/0 6/1/0 7/0/0 62/1/0
ECC 7/0/0 7/0/0 5/0/2 6/0/1 7/0/0 5/0/2 7/0/0 5/0/2 6/0/1 55/0/8

Table VIII. Average running time (second).

Methods

Data MOML{HL,RL} ML-RBF BP-MLL ML-KNN ECC

Set Training Testing Training Testing Training Testing Training Testing Training Testing

Yeast 757 3.9 15.6 0.6 12,100 17.5 2.5 1.2 39.7 5.9
Image 343 1.6 2.8 0.2 12,500 5.3 9.1 1.2 39.3 4.2
RCV1-1 34,400 89 816 10.5 62,300 164 149 4.2 273 137

on some of the metrics in a few of the datasets, but not consistently. These results val-
idate our intuition that the multi-objective optimization in our MOML can effectively
tradeoff among multiple objectives and avoid the local optimal to improve the overall
performance almost on all metrics.

Table VIII shows the average running time. We only show one result of four versions
of MOML, since the four versions have the same time complexity. Although MOML is
slower than ML-RBF, ML-KNN and ECC, it is still faster than BP-MLL in the training
phase. In the testing phase, MOML is faster than BP-MLL and ECC.

10 20 30 40 50

0.178

0.179

0.180

0.181

0.182

generations

H
am

m
in

g
Lo

ss

N=10
N=20
N=30
N=40
N=50
N=60

(a) Hamming Loss ↓

10 20 30 40 50
0.135

0.136

0.137

0.138

0.139

0.140

generations

R
an

ki
ng

 L
os

s

N=10
N=20
N=30
N=40
N=50
N=60

(b) Ranking Loss ↓

10 20 30 40 50
1500

1550

1600

1650

1700

1750

generations

W
ei

gh
ts

N=10
N=20
N=30
N=40
N=50
N=60

(c) Weights

10 20 30 40 50
0

2000

4000

6000

8000

10000

generations

R
un

ni
ng

 ti
m

e(
se

c.
)

N=10
N=20
N=30
N=40
N=50
N=60

(d) Running Time
Fig. 5. The impact of the running generations and population size on performance. “↓” indicates the smaller
the better; “↑” indicates the larger the better.

5.3. Parameter Settings
There are two genetic operation related parameters governing the MOML, i.e., the
population size N and the running generations G. Figure 5 illustrates the evolutionary
characteristics of MOML{HL,RL} on the Yeast data with ten-fold cross-validation, under
different parameter configurations. Specifically, when the population size N increases
from 10 to 60 with an interval of 10, we report the average of performances, running
time and weights (the sum of absolute value of W) by combining all the models in the
population.

It is evident from Figure 5 that, when the population size N is fixed, the performance
(i.e. Hamming Loss and Ranking Loss) of MOML consistently improves as the running
generation increases. At the meantime, the weights of ml-RBF and running time also
increase. Figure 5 also clearly shows that the large population size usually leads to
better performances accompanying with the increase of weights and running time.
Observing the trend of weight curves in Figure 5(c), we can find that, although the
weights consistently increase, the rate of increase becomes small. If we do not add the
regularization term in the error function of ml-RBF (see Equation 6), the weights will

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 C. Shi et al.

increase sharply, which means these models are overfitting. Figure 5(d) illustrates that
the running time of MOML increases linearly with the population size N and running
generation G, which validates the time complexity of MOML in Equation 9.

In addition, the number of top models k also affects the performance of MOML. In
order to observe its effect on performance, we do experiments on Image data with
MOML{HL,RL} method. Figure 6 show the performance of MOML{HL,RL} on different
k. Note that MOML{HL,RL} has the same parameter setting with that in Section 5.2
and k is the ratio of selected models. Figure 6(a) clearly illustrates that MOML{HL,RL}
has the best performance on criteria Hamming Loss and Ranking Loss when k are 0.3
and 0.4. The same phenomenon is also shown in Figure 6(b). When k is small, there are
only few classifiers to make a prediction. When k becomes larger, more classifiers will
be ensembled, which usually leads to better performances. However, ensembling more
classifiers makes the prediction have less preference to the optimization objective, so
the performance of MOML{HL,RL} on criteria Hamming Loss and Ranking Loss will
degrade for large k. This is the reason why the performances of MOML{HL,RL} increase
first and then decrease as the k increases. The experiments also imply that MOML will
achieve better performance when k is 0.3 and 0.4. In this setting, the model selection
process not only has the benefit of ensembling classifiers but also keeps the preference
on optimization objectives.

0.2 0.4 0.6 0.8
0.1584

0.1586

0.1588

0.159

0.1592

H
am

m
in

g
Lo

ss

k

0.2 0.4 0.6 0.8
0.1445

0.145

0.1455

0.146

0.1465

R
an

ki
ng

 L
os

s

Hamming Loss
Ranking Loss

(a) Dynamic model selection on HL

0.2 0.4 0.6 0.8
0.1585

0.1587

0.1589

0.1591

0.1593

H
am

m
in

g
Lo

ss

k

0.2 0.4 0.6 0.8
0.1446

0.145

0.1454

0.1458

0.1462

R
an

ki
ng

 L
os

s

Hamming Loss
Ranking Loss

(b) Dynamic model selection on RL

Fig. 6. The effect of the parameter k on the performance of MOML{HL,RL}.

5.4. Influence of The Number of Objectives
Our previous experiments only show the cases with a pair of objectives. However, more
objective functions also can be included in MOML. In order to study the performances
of MOML with different number of objectives, here we consider four objective func-
tions (i.e. HL, RL, MicF1, and AP) and three versions of MOML which optimize the
first 2, 3 and 4 objectives respectively. The corresponding algorithms are called MOM-
L-{HL,RL}, MOML-{HL,RL,MicF1}, and MOML-{HL,RL,MicF1, AP}. We also con-
sider a special case of MOML, called MOML-{Ens}, where the running generation of
MOML is 0. That is, MOML-{Ens} does not do any genetic operation and multi-objective
optimization. So it is just the ensemble of multiple ml-RBFs, and its performances are
constant along the evolutionary process. Considering MOML-{Ens} as baseline, we ob-
serve the improvement rate of performances of other algorithms against MOML-{Ens}.
Ten-fold cross-validation are reported on the Yeast data.

10 20 30 40 50
1.4%

1.8%

2.2%

2.6%

generations

Im
pr

ov
em

en
t r

at
e

MOML−{HL,RL}
MOML−{HL,RL,MicF1}
MOML−{HL,RL,MicF1,AP}

(a) Hamming Loss

10 20 30 40 50
2.5%

3.0%

3.5%

4.0%

4.5%

generations

Im
pr

ov
em

en
t r

at
e

MOML−{HL,RL}
MOML−{HL,RL,MicF1}
MOML−{HL,RL,MicF1,AP}

(b) Ranking Loss

10 20 30 40 50
1.0%

1.4%

1.8%

generations

Im
pr

ov
em

en
t r

at
e

MOML−{HL,RL}
MOML−{HL,RL,MicF1}
MOML−{HL,RL,MicF1,AP}

(c) Micro F1

10 20 30 40 50
0.4%

0.6%

0.8%

1%

generations

Im
pr

ov
em

en
t r

at
e

MOML−{HL,RL}
MOML−{HL,RL,MicF1}
MOML−{HL,RL,MicF1,AP}

(d) Average Precision
Fig. 7. Influence of the number of objectives on MOML. It shows the improvement rate of performances of
MOML against the ensemble of multiple base models.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Multi-label Classification based on Multi-Objective Optimization A:17

The results are shown in Figure 7. It is obvious that the three versions of MOML
achieve the consistent and steady performance promotion against MOML-{Ens} on all
four objectives. It illustrates that the genetic operation and multi-objective optimiza-
tion in MOML is really helpful to train better models. We can also find that MOML
has better performances on the optimization objectives than on non-optimization ob-
jectives. However, when more objectives are included in MOML, the performance of
MOML on the optimization objectives will degrade. For example, compared to MOM-
L-{HL,RL}, MOML-{HL,RL,MicF1, AP} can achieve better performances on MicF1
and AP by including them in its objective set, while its performances are slightly worse
than MOML-{HL,RL} on HL and RL. As the number of optimization objectives in-
creases, the search space is greatly extended, which results in the non-dominated so-
lutions exponentially increase [Saxena et al. 2013]. So the domination based selection
operators in EMO do not work well in this case [Saxena et al. 2013].

5.5. Influence of Regularization Term
As we noted, a regularization term is added in the error function of MOML (see Equa-
tion 6), which is different from the error function in the original RRF [Zhang 2009].
This section will validate the effect of the regularization term on MOML. We run MOM-
L{HL,RL} with and without the regularization term on all seven datasets. The same
parameters are set with that in Section 5.2. Note that we only need to set γ with 0 (see
Equation 6) for MOML{HL,RL} without the regularization term.

The experiment results are shown in Figure 8. It is clear that MOML with the reg-
ularization term is better than that without the regularization term for almost al-
l dataset. Particularly, the superiority is more obvious for the text data D3-D7 (i.e.
RCV1(1-5)). The experiments illustrate the importance of the regularization term for
MOML. Compared to ML-RBF [Zhang 2009], MOML has more overfitting risk, since
MOML trains models more times due to its evolution process. The regularization ter-
m effectively reduces the overfitting risk, which helps MOML to achieve good perfor-
mances.

D1 D2 D3 D4 D5 D6 D7
0

0.05

0.1

0.15

0.2

Dataset

H
am

m
in

g
Lo

ss

γ=0
γ=0.1

D1 D2 D3 D4 D5 D6 D7
0

0.05

0.1

0.15

0.2

R
an

ki
ng

 L
os

s

Dataset

γ=0
γ=0.1

(a) Performance on MOML{HL,RL}

D1 D2 D3 D4 D5 D6 D7
0

0.05

0.1

0.15

0.2

H
am

m
in

g
Lo

ss

Dataset

γ=0
γ=0.1

D1 D2 D3 D4 D5 D6 D7
0

0.05

0.1

0.15

0.2

R
an

ki
ng

 L
os

s

Dataset

γ=0
γ=0.1

(b) Performance on MOML{HL,RL}

Fig. 8. The effect of the regularization term on the performance of MOML{HL,RL}. When γ is 0, there is no
regularization term. The datasets D1-D7 denote the Yeast, Image and RCV1(1-5), respectively.

5.6. Comparison of MOML and Weighted Sum Method
We know that a direct approach for the multi-objective multi-label classification prob-
lem is the weighted-sum method [Furnkranz and Flach 2003]. This section will com-
pare the MOML{HL,RL} with the weight-sum method. The weight-sum method opti-
mizes the objective:

w1 ∗HL+ w2 ∗RL

s.t. : w1 + w2 = 1
(11)

The optimization technique employs the same evolutionary algorithm framework with
MOML{HL,RL}. The experiments are done on Image data and the two methods have the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 C. Shi et al.

same parameters setting with that in Section 5.2. The weighted-sum method varies w1

from 0 to 1 with the interval 0.1. For each weight setting, it obtains a best solution and
employs the solution to make a prediction. So the weighted-sum method generates 11
results for varying weights. After one run, MOML{HL,RL} returns a set of solutions,
from which we select the Pareto optimal solutions to make predictions. Figure 9 shows
the prediction performance on Hamming Loss and Ranking Loss. It clearly shows that
the solutions generated by MOML overwhelmingly dominate those of the weighted-sum
method. Moreover, the MOML’s solutions are widely spread, which implies that users
can flexibly select prediction models in terms of their preferences. The experiment not
only illustrates the MOML’s potential to generate better solutions compared to the
weighted-sum method but also shows MOML’s advantages in computational efficiency.
The MOML only needs to run once to generate these solutions. However, the weighted-
sum method needs to be run many times through varying weights. As a consequence,
MOML is much more convenient and efficient than the weighted-sum method.

0.15 0.154 0.158 0.162

0.124

0.128

0.132

0.136

Ranking Loss

H
am

m
in

g
Lo

ss

Weighted Sum
MOML

Fig. 9. The comparison of MOML and weighted-sum method.

5.7. Comparison of Model Selection Strategies
This section will compare different model selection strategies and clarify their char-
acteristics and application scenarios. In experiments, we use the same model training
phase with the optimization objectives HL and RL (see Algorithm 1) and different
model selection strategies (see Algorithm 2-3). These compared strategies and meth-
ods are summarized as follows.r DYN(HL) and DYN(RL): These two dynamic model selection strategies select the optimization objective
as the preference objective. The DYN(HL) denotes the strategy selects the top models according to the
optimization objective HL. Similarly, the DYN(RL) selects models according to RL. In fact, DYN(HL) and
DYN(RL) are MOML{HL,RL} and MOML{HL,RL} in Section 5.2, respectively.r DYN(MicF1) and DYN(AP): The preference objective in these two dynamic model selection strategies is
not the optimization objective. The DYN(MicF1) and DYN(AP) denotes the strategy selects the top models
according to the preference objective MicF1 and AP , respectively.r EN: This is the ensembling model selection strategy.r ML-RBF [Zhang 2009]: This is the base model in our algorithm, which is used as baseline.

We do experiments on all seven datasets with the same parameters in Section 5.1.3.
Similarly, we test the average values of all strategies on 9 metrics and summarize
their rank values. We only show the average rank results in Table IX due to the space
limitation. Generally, these strategies achieve their best performances on different cri-
teria and they consistently and significantly outperform the baseline ML-RBF. In ad-
dition, we can find that MOML usually achieves best performances on its preference
objective no matter the preference objective is or not the optimization objective. For
example, DYN(HL) and DYN(RL) perform best on their preference objectives HL and
RL, DYN(MicF1) and DYN(AP) have the performance improvement on the preference
objectives (i.e. MicF1 and AP) as well as other objectives (e.g. SL, Cov, Acc). Compared
to the baseline ML-RBF, the ensembling model selection strategy (i.e. EN) overall im-
proves performances on almost all objectives, but it cannot achieve best performances

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Multi-label Classification based on Multi-Objective Optimization A:19

Table IX. The average ranks (mean±std) for each model selection strategy over 7 datasets. The “*”
indicates the best rank for each criterion.

Ave. ranks Methods

for criteria DYN(HL) DYN(RL) DYN(MicF1) DYN(AP) EN ML-RBF

HL 1.71±1.11* 3.43±1.71 4.00±1.52 2.43±0.78 2.71±1.38 6.00±0.00
RL 3.71±1.25 2.29±1.70* 2.29±1.11* 2.57±1.27 3.86±1.46 6.00±0.00
SL 2.71±1.11 3.00±1.41 2.00±1.73* 3.00±1.15 4.14±1.21 6.00±0.00
OE 2.29±1.97* 2.71±1.38 3.43±1.13 4.14±1.46 2.57±1.27 5.57±0.78
Cov 3.86±0.69 3.86±0.89 1.86±0.69 1.29±0.48* 4.29±1.38 5.86±0.37

MicF1 2.29±0.75 3.57±0.97 1.43±1.13* 3.29±1.25 4.43±0.97 6.00±0.00
AP 2.57±1.13 2.57±1.27 4.00±1.73 1.17±0.95* 4.00±0.57 6.00±0.00
Acc 2.43±0.97 4.29±0.48 2.57±1.13 1.29±0.48* 4.43±0.78 6.00±0.00
MacF1 2.00±1.15* 3.14±1.46 3.86±1.34 3.86±1.34 2.14±0.89 6.00±0.00

on any special objectives. As we have noted, the time-consuming model training phase
can be done off-line, whereas the model selection phase is fast, which can be done on-
line according to user’s preference. If a user has apparent preference, he can employ
the preference objective in the DYN strategy to make better classification on his pref-
erence. If users have no obvious preferences, the EN strategy can be adopted.

6. CONCLUSION
In this paper, we first studied the multi-objective multi-label classification problem and
proposed a novel algorithm MOML. MOML can simultaneously optimize over multiple
objectives and return a set of solutions. In applications, users can flexibly select models
in terms of their preferences. Experiments show that MOML not only achieves the bet-
ter performances on the optimization objectives, but also improves the performances
on most of the other state-of-the-art criteria for multi-label classification.

REFERENCES
AGARWAL, D., CHEN, B. C., ELANGO, P., AND WANG, X. 2011. Click shaping to optimize multiple objectives.

In KDD. 132–140.
BAKER, J. 1985. Adaptive selection methods for genetic algorithms. In ICGA. 100–111.
CHEN, H. AND YAO, X. 2010. Multiobjective neural network ensembles based on regularized negative cor-

relation learning. Transactions on Knowledge and Data Engineering 22, 12, 1738–1751.
DEB, K. 2001. Multiobjective Optimization using Evolutionary Algorithms. Wiley, UK.
DEB, K., PRATAB, A., AGARWAL, S., AND MEYARIVAN, T. 2002. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation 6, 2, 182–197.
DEMBCZYŃSKI, K., CHENG, W., AND HULLERMEIER, E. 2010a. Bayes optimal multilabel classification via

probabilistic classifier chains. In ICML. 279–286.
DEMBCZYŃSKI, K., KOTLOWSKI, W., AND HULLERMEIER, E. 2012. Consistent multilabel ranking through

univariate loss minization. In ICML. 1319–1326.
DEMBCZYŃSKI, K., WAEGEMAN, W., CHENG, W., AND HULLERMEIER, E. 2010b. Regret analysis for per-

formance metrics in multi-label classification: the case of hamming and subset zero-one loss. In ECM-
L/PKDD. 280–295.

ELISSEEFF, A. AND WESTON, J. 2002. A kernel method for multilabelled classification. In NIPS. 681–687.
FREITAS, A. A. 2006. A critical review of multi-objective optimization in data mining: a position paper.

SIGKDD Exploration 6, 2, 77–86.
FURNKRANZ, J. AND FLACH, P. A. 2003. An analysis of rule evaluation metrics. In ICML. 202–209.
GAO, W. AND ZHOU, Z. 2011. On the consistency of multi-label learning. In COLT. 341–358.
GHAMRAWI, N. AND MCCALLUM, A. 2005. Collective multilabel classification. In CIKM. 195–200.
GODBOLE, S. AND SARAWAGI, S. 2004. Discriminative methods for multi-labeled classification. In PAKDD.

22–30.
GOLDBERG, D., DEB, K., KARGUPTA, H., AND HARIK, G. 1993. Rapid, accurate optimization of difficult

problems using fast messy genetic algorithms. In ICGA. 56–64.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 C. Shi et al.

GOLDBERG, D. E. 1989. Genetic Algorithms in Search Optimization and Machine Learning. Wesley, USA:
Boston.

HANDLE, J. AND KNOWLES, J. 2007. An evolutionary approach to multiobjective clustering. Transaction on
Evolutionary Computation 11, 1, 56–76.

JI, S., TANG, L., YU, S., AND YE, J. 2008. Extracting shared subspace for multi-label classification. In KDD.
381–389.

KOTLOWSKI, W., DEMBCZYNSKI, K., AND HULLERMEIER, E. 2011. Bipartite ranking through minimization
of univariate loss. In ICML. 1113–1120.

PETTERSON, J. AND CAETANO, T. 2010. Reverse multi-label learning. In NIPS. 1912–1920.
READ, J., PFAHRINGER, B., AND HOLMES, G. 2008. Multi-label classification using ensembles of pruned

sets. In ICDM. 995–1000.
READ, J., PFAHRINGER, B., HOLMES, G., AND FRANK, E. 2009. Classifier chains for multi-label classifica-

tion. In ECML. 254–269.
SAXENA, D., DURO, J. A., TIWARI, A., DEB, K., AND ZHANG, Q. 2013. Objective reduction in many-objective

optimization: Linear and nonlinear algorithms. IEEE Transation on Evolutionary Computation 17, 1,
77–99.

SCHAPIRE, R. E. AND SINGER, Y. 2000. Boostexter: A boosting-based system for text categorization. Ma-
chine Learning 2, 39, 135–168.

SCHIETGAT, L., VENS, C., STRUYF, J., BLOCKEEL, H., KOCEV, D., AND DZEROSKI, S. 2010. Predicting
gene function using hierarchical multi-label decision tree ensembles. BMC Bioinformatics 11, 2, 38–47.

SHI, C., KONG, X., YU, P. S., AND WANG, B. 2011. Multi-label ensemble learning. In ECML/PKDD. 223–
239.

TSOUMAKAS, G., KATAKIS, I., AND VLAHAVAS, I. 2010. Mining multi-label data. In Data Mining and
Knowledge Discovery Handbook. 667–685.

TSOUMAKAS, G., KATAKIS, I., AND VLAHAVAS, I. P. 2008. Effective and efficient multilabel classification in
domains with large number of labels. In ECML/PKDD Workshop.

TSOUMAKAS, G. AND VLAHAVAS, I. P. 2007. Random k-labelsets: an ensemble method for multilabel clas-
sification. In ECML. 406–417.

VELDHUIZEN, D. A. V. AND LAMONT, G. B. 2000. Multiobjective evolutionary algorithms: Analyzing the
state-of-the-art. Evolutionary Computation 18, 2, 125–147.

VENS, C., STRUYF, J., SCHIETGAT, L., DZEROSKI, S., AND BLOCKEEL, H. 2008. Decision trees for hierar-
chical multi-label classification. Machine Learning 3, 73, 185–214.

XU, H. AND XU, J. 2010. Designing a multi-label kernel machine with two-objective optimization. In AICI.
282–291.

YANG, B. S., SUN, J. T., WANG, T. J., AND CHEN, Z. 2009. Effective multi-label active learning for text
classification. In KDD. 917–925.

ZHA, Z., MEI, T., WANG, J., WANG, Z., AND HUA, X. 2009. Graph-based semi-supervised learning with
multiple labels. Journal of Visual Communication and Image Representation 20, 2, 97–103.

ZHA, Z.-J., HUA, X.-S., MEI, T., WANG, J., QI, G.-J., AND WANG, Z. 2008. Joint multi-label multi-instance
learning for image classification. In CVPR. 1–8.

ZHANG, M.-L. 2009. ML-RBF: RBF neural networks for multi-label learning. Neural Process Letters 29, 2,
61–74.

ZHANG, M.-L. AND ZHANG, K. 2010. Multi-label learning by exploiting label dependency. In KDD. 999–
1007.

ZHANG, M.-L. AND ZHOU, Z.-H. 2006. Multilabel neural networks with applications to functional genomics
and text categorization. Transactions on Knowledge and Data Engineering 18, 10, 1338–1351.

ZHANG, M.-L. AND ZHOU, Z.-H. 2007. ML-kNN: a lazy learning approach to multi-label learning. Pattern
Recognition 40, 7, 2038–2048.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

