
CiNet: Redesigning Deep Neural Networks for

Efficient Mobile-Cloud Collaborative Inference

Xin Dai∗ Xiangnan Kong∗ Tian Guo∗ Yixian Huang∗

Abstract

Deep neural networks are increasingly used in end de-
vices such as mobile phones to support novel features,
e.g., image classification. Traditional paradigms to sup-
port mobile deep inference fall into either cloud-based or
on-device—both require access to an entire pre-trained
model. As such, the efficacy of mobile deep inference
is limited by mobile network conditions and compu-
tational capacity. Collaborative inference, a means to
splitting inference computation between mobile devices
and cloud servers, was proposed to address the limita-
tions of traditional inference through techniques such as
image compression or model partition.

In this paper, we improve the performance of collab-
orative inference from a complementary direction, i.e.,
through redesigning deep neural networks to satisfy the
collaboration requirement from the outset. Specifically,
we describe the design of a collaboration-aware convolu-
tional neural network, referred to as CiNet, for image
classification. CiNet consists of a mobile-side extractor
submodel that outputs a small yet relevant patch of the
image and a cloud-based submodel that classifies on the
image patch.

We evaluated the efficiency of CiNet in terms of
inference accuracy, computational cost and mobile data
transmission on three datasets. Our results demonstrate
that CiNet achieved comparable inference accuracy
while incurring orders of magnitude less computational
cost and 99% less transmitted data, when comparing to
both traditional and collaborative inference approaches.

1 Introduction

To leverage deep neural networks to provide novel fea-
tures, mobile applications either use powerful cloud
servers, i.e., cloud-based inference, or directly run them
on-device, i.e., mobile-based inference, as shown in Fig-
ure 1. Cloud-based inference allows the use of com-
plex models [7, 12, 17, 18] (thus higher inference ac-
curacy), but requires mobile applications to send non-
trivial amount of data over mobile networks, leading

∗Worcester Polytechnic Institute

la
ye

r
1

la
ye

r
2

la
ye

r
i+

1

la
ye

r
n ...

la
ye

r
1

la
ye

r
2

la
ye

r
3

la
ye

r
n ...

la
ye

r
1

la
ye

r
2

la
ye

r
3

la
ye

r
n ...

la
ye

r
1

la
ye

r
2

la
ye

r
3

la
ye

r
n ...

 feature map100 × 100 × 3

Mobile device Cloud server

100 × 100 × 3

Mobile device

100 × 100 × 3

Mobile device Cloud server
100 × 100 × 3

Mobile device

10×10×3

Cloud server

Data transimission cost

la
ye

r
i ...

High Low

O
n-

de
vi

ce
 c

om
pu

ta
tio

na
l c

os
t

H
ig

h
L

ow
100 × 100 × 3

Figure 1: The problem of mobile-cloud collaborative
inference. The goal is to perform image classification on
a mobile device by collaborating with a cloud server. The
mobile device can send some data to the server to aid in the
inference process, which will reduce the computational cost
on the mobile device but increase the data transmission cost.

to high data transmission. To use mobile-based infer-
ence, one needs to use mobile-specific models such as
MobileNet, SqueezeNet, or ShuffleNet [8, 9, 22]; even so
mobile-based inference performance can be hindered by
limited on-device resources, e.g., CPU and battery life.

To address the limitations of cloud-based and
mobile-based inference, an inference paradigm called
collaborative inference was proposed recently [11, 13].
Collaborative inference allows inference execution to
be split between mobile devices and cloud servers as
demonstrated in Figure 1. Prior work on collabora-
tive inference focuses on either reducing network data
transmission and the impact on inference accuracy of
such reduction or partitioning schemes that split the
inference computation across mobile devices and cloud
servers [11, 14, 21]. In this work, we approach the
problem of collaborative inference from a complemen-
tary perspective, by considering the collaboration re-
quirement from the outset and redesigning the deep neu-
ral networks.

Designing deep learning models that effectively sup-
port collaborative inference has the following two key
challenges. First, the on-device submodel needs to bal-
ance mobile bandwidth consumption, on-device com-
putational cost, and inference accuracy. For example,
using more complex on-device model structure can ef-

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

fectively reduce the required network data transmis-
sion, but can also increase on-device computation. Sec-
ond, both the on-device and cloud submodels should be
trained in tandem without requiring additional time-
consuming and manual annotations. Prior work on ob-
ject detection [4, 5, 16] is a potential candidate for de-
tecting image regions to send to the cloud, but often re-
quires access to annotated locations during training [5].

Our design of models that are suitable for collabora-
tive inference is centred around two key insights. First,
in many real-world scenarios, the results of image clas-
sification often only depend on a small image portion.
Second, the task to identify the important image por-
tion, i.e., extraction, is often easier than the classifica-
tion. Note our key insights are similar to prior work in
dynamic capacity networks [1]. We make the following
main contributions.

• We identify the need and the key principles to re-
design deep neural networks for achieving efficient in-
ference under the collaborative inference paradigm.
For example, the performance of existing collabo-
rative inference approaches are constrained by the
deep learning models and often can not simultane-
ously achieve equally important performance goals
such as low on-device computation, low mobile data
transmission, and high inference accuracy.

• We describe the design of a collaboration-aware model
for image classification called CiNet that works
within the limitations of mobile devices and achieves
comparable inference accuracy to complex cloud-
based models. On the mobile side, CiNet consists
of an extractor submodel that generates a predefined
data grid from the content-locations of original image.
The values on the grid are resampled at the corre-
sponding locations on the original image and are used
as the input to the cloud-based classifier. In short, Ci-
Net efficiently splits computation across mobile de-
vices and cloud servers with low transmission cost,
and can be trained in an end-to-end fashion using the
standard backpropagation with only the image labels.

• We evaluated CiNet on three datasets and compared
against four inference mechanisms including cloud-
based, mobile-based, and existing collaborative infer-
ence. Our results show that CiNet reduced mobile
computational cost by up to three orders of magni-
tude, lowered mobile data transmission by 99%, and
achieved similar inference accuracy with 0.34%-2.46%
differences.

Although we only focus on the images having only
one ROI in this paper, the experiment shows the ROI
can be detected with low computational cost compared
with classification itself. It implies the idea proposed

in this paper can be extended to more complex images
having multiple ROIs.

2 Problem Formulation

In this section, we first define the problem of mobile-
cloud collaborative inference and outline key research
challenges followed by our design principles.

Mobile-cloud Collaborative Inference. In this pa-
per, we study the problem of improving the perfor-
mance, including mobile computational need, mobile
data transmission, and inference accuracy, of an emerg-
ing paradigm called mobile-cloud collaborative infer-
ence. At a high level, collaborative inference allows one
to split the model computation across mobile devices
and cloud servers. We approach the problem of effi-
cient collaborative inference by redesigning deep neural
networks that are collaboration-aware, unlike existing
works in collaborative inference [11, 13, 14, 21]. We
focus on the problem of image classification and pro-
pose a new neural network design in this work. To
use our proposed collaborative inference solution, mo-
bile applications use an on-device sub-model that out-
puts a smaller-size representation P of the original im-
age I. Afterwards, mobile applications send P to the
cloud model server which generates and sends back the
predicted label for I.

Key Challenges. One of the key challenges in de-
signing collaborative inference is to achieve low mo-
bile computational and transmission cost simultane-
ously without impacting classification accuracy. Par-
titioning existing successful deep neural networks, e.g.,
AlexNet [12], can satisfy accuracy goal but often violate
either computational or transmission goals. For exam-
ple, the first two convolutional layers of AlexNet takes
up a large portion of inference computation, making it
less ideal to run on mobile devices. Further, the out-
put feature maps of early layers are usually quite large
which undermines the mobile-cloud transmission cost.

Design Principles. In designing deep neural networks
that are suitable for collaborative inference, we follow
the key design principles below: (i) Reducing mobile
computational cost. The required on-device computa-
tion directly impacts the mobile energy consumption,
as well as the inference response time. Lower compu-
tational cost saves mobile battery life and helps with
mobile user experiences. (ii) Reducing mobile transmis-
sion cost. Similar to computational cost, the required
transmitted data also affects mobile energy consump-
tion. Further, it is beneficial to send less data as ways
to preserve mobile data plan. (iii) Achieving compa-
rable classification accuracy. Last but not the least,
we should achieve the computational and transmission

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

100 × 100 × 3

2
co

nv

m
ax

 p
oo

l

4
co

nv

m
ax

 p
oo

l

10
0

FC

50
 F

C

12
8

co
nv

m
ax

 p
oo

l

25
6

co
nv

m
ax

 p
oo

l

10
0

FC

50
 F

C

Cropping operation

tx

ty

sx

sy

“C
at

”

10 × 10 × 3

On device In cloud

Figure 2: An example of CiNet structure for mobile-
cloud collaborative inference.

goals without sacrificing accuracy as it is important to
application utility.

3 CiNet: A Collaboration-aware Deep Neural
Network

3.1 Overall Structure We propose CiNet, an
extractor-classifier model that enables efficient mobile-
cloud collaborative inference. With low on-device com-
putational complexity and low mobile network data con-
sumption, CiNet can be trained in an end-to-end man-
ner with existing image classification dataset, without
additional annotations. As shown in Figure 2, the ex-
tractor submodel runs on the mobile device and is re-
sponsible to extract a smaller-size representation P of
the original image I. The size of P is predefined dur-
ing training time, and determines the mobile transmis-
sion savings. The classifier submodel runs on the cloud
server and is designed to be as complex as needed for
the specific classification task to generate labels based
on P . In other words, we assume the use of powerful
cloud servers that can execute inference requests with-
out imposing latency bottlenecks.

Key Insights. The design of CiNet centers two key
insights. First, for a specific image classification task,
the image usually contains a lot of contents that are
irrelevant to its label. In other words, the label-related
object may only occupy a small region of the image
[2, 15]. For example, to determine whether the image
contains a cat or a dog, we often do not have to look
at the entire image. Instead, we can only focus on a
smaller image region, e.g., faces or eyes. Second, the
computational cost to identify the region of important
objects can be significantly lower than classification [1].
For example, locating a face in the image often requires
fewer filters in the convolutional layers than classifying
one. This is because the former only needs to recognize
a rough outline whereas the latter requires considering
a lot of more details.

3.2 On-device Extractor Submodel The extrac-
tor is a convolutional neural network that runs on mo-
bile devices. It consists of several convolutional layers
followed by max pooling, hidden fully-connected layers
and a final regression layer outputting the transforma-

tion parameters θ = (tx, ty, sx, sy). Here tx and ty de-
note a 2D translation, while sx and xy denote a 2D
scaling. The mapping from the coordinate (xP , yP) of
the cropped image P to the coordinate (xI , yI) of the
original image I is parameterized by θ:

(3.1)

[
xI
yI

]
=

[
sx, 0, tx
0, sy, ty

]xPyP
1

 .
Based on the above coordinate transformation, Ci-

Net performs an image cropping operation on I to ob-
tain the patch P . Then the cloud-based classifier takes
P as input and predicts the label of I. Here we focus
on describing the extractor network as it directly im-
pacts the mobile computational and transmission cost.
To lower the computational cost, we use as few filters
as possible in convolutional layers. In our experiments,
the extractor network has only two convolutional lay-
ers. The first convolutional layer has two filters and
the second one has four filters. As demonstrated later
in Section 4, CiNet achieves good classification accu-
racy even with limited number of convolutional layers.
The reason we did not use fully connection layers even
though they are often more computational efficient is
due to limited mobile memory—fully connected layers
have a large number of parameters.

3.3 Image Cropping Operations The On-device
extractor yields the transformation parameters θ, indi-
cating which part of the image should be cropped and
sent to the cloud-based classifier. The design of the
extraction can be viewed as an instance of hard atten-
tion mechanism. There are multiple ways to implement
hard attention on visual tasks. Here we discuss two ap-
proaches to crop the image given θ.

Direct cropping: The transformation parameters
θ defines a rectangle region on the original image. The
simplest idea is to directly crop this region and then
reshape it to our predefined crop shape.

Bilinear sampling function: Given the trans-
formation parameters θ, we can concatenate a spatial
transformer layer with bilinear sampling kernel [10] at
the end of our extractor submodel. We can then cal-
culate the pixel value P (xP , yP) of the cropped patch
P with the bilinear mapping from pixel values I(i, j) of
original image I:

P (xP , yP) =

W∑
j=1

H∑
i=1

I(i, j)F (xI , i)F (yI , j),(3.2)

F (a, b) = max(0, 1− |a− b|).(3.3)

Here W and H are the width and height of the
I, and (xI yI) is the coordinate on I as defined in

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Equation (3.1). The cropped image P is then sent to
the classifier in the cloud. In our current design of Ci-
Net, we adopt this method instead of direct cropping
as explained further below in section 3.5.

3.4 In-cloud Classifier Submodel The in-cloud
classifier takes the cropped image from the mobile
device as input and returns the final class of the original
image. When designing the in-cloud submodel, we
focus on achieving the goal of inference accuracy as it
is often safe to assume that cloud servers have ample
computational and memory resources. Therefore, one
can use existing successful deep neural networks such as
AlexNet [12], GoogleNet [18] or ResNet [7] for the in-
cloud classifier. When leveraging these existing models,
one might need to use an additional image cropping
operation, such as the those discussed in Section 3.3,
to rescale the cropped image to match the predefined
input layer size. For simplicity, we designed a new
CNN from scratch as shown in Figure 2 in CiNet. The
input layer of our in-cloud classifier is the same size as
the cropped image and therefore only requires a simple
identical mapping.

3.5 Training Considerations CiNet consists of
the on-device extractor and the in-cloud classifier, form-
ing an end-to-end collaborative neural network. As
these two submodels are connected by the image crop-
ping operation, the training algorithm is determined by
the chosen cropping operation.

Justifications of Our Image Cropping Choice. Al-
though cropping images with the bilinear sampling func-
tion is more complicated than direct cropping, training
with it is much easier. This is because the operation is
differentiable. In this case, we can train CiNet using
the standard back-propagation algorithm under the su-
pervision of image labels [10]. Instead, if choosing to use
the direct cropping, one needs to consider and address
the problem of propagating the gradient of classification
loss from the classifier submodel to the extractor sub-
model. One possible way is to use the policy gradient
method in the form of REINFORCE algorithm [20] to
train the extractor, similar to what was proposed by
Mnih et al. [15]. However, training with the policy gra-
dient methods can take a long time to converge. As
such, we chose to use the bilinear sampling function as
the cropping operation when designing CiNet.

Hyperparameters Considerations. In addition to
the choice of cropping operations, parameters such
as the size of P and specificity of datasets can also
complicate the training process. For example, ideally
we want to set the size of P as small as possible to
reduce the required transmitted data to the cloud. In

Table 1: Architecture of CNNs on transformed digit
MNIST dataset(left) and Fashion MNIST(right). All
CNNs have two fully connected layers with 100 and 50
neurons respectively, before the output layer.

Method Filters in each Number of
conv layer conv layers

CNN1 (128, 256, 256) 3
CNN2 (64, 128, 256) 3
CNN3 (32, 64, 128) 3
CNN4 (8, 64, 128) 3
CNN5 (8, 16, 64) 3
CNN6 (4, 8, 32) 3
CNN7 (4, 8, 16) 3

Method Filters in each Number of
conv layer conv layers

CNN1 (64, 128, 128, 256, 256) 5
CNN2 (32, 64, 128, 256, 256) 5
CNN3 (16, 32, 64, 28, 128) 5
CNN4 (4, 16, 32, 64) 4
CNN5 (2, 8, 8, 128) 4

- - -
- - -

our current design, we set the size to be 10×10, which
is only 1% of the original image size. However, the
small extract size means at the early stage of training,
P often does not contain meaningful objects. Even
worse, for datasets with large black background, e.g.,
MNIST dataset, it often means sending tensors of zeros
to the classifier which further leads to back-propagate
gradients of zeros to the extractor. We use two hyper-
parameter techniques to mitigate such problems.

• Weight Initialization. We initialize all weights in the
framework by Gaussian distribution with mean=0
and standard deviation=0.02. However if we use
small standard deviation for the final regression layer
of the extractor network, the transformation param-
eters θ of different samples can be very close to each
other. Given that we prefer small cropped size, having
a larger initial variance of θ could increase the chance
to extract the object. As such, it can be helpful to
boost the early-stage training. In our experiments,
we used 0.2 for standard deviation to initialize the
final regression layer of the extractor network.

• Penalty on Scaling Transformation. When training
CiNet, we want to avoid the on-device extractor
to learn an easy way instead of the correct way to
extract the objects. In the easy way, the extractor
submodel can simply output a large enough scaling
transformation that covers the entire original image
I. In essence, the cropped image P is merely a
downsampled version of I. Such strategies may overfit
the training data because important content can be
lost in the process of downsampling. In addition,
since we chose to design the extractor submodel
using very few filters (with the goal to reduce the
on-device computational cost), it is therefore more
likely for the extractor to learn the easy way. To
counter this problem, we add the penalty on scaling
transformation into the loss function.

4 Experimental Evaluations

We evaluate the effectiveness of CiNet using three key
performance metrics, i.e., classification accuracy, on-
device computational cost, and mobile data transmis-
sion cost. We compare the performance of CiNet to

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Table 2: Architecture of ResNets on CelebA dataset.
The ResNets use 1 convolutional layer at beginning, i.e.
conv 1, followed by 4 stacks of residual blocks, i.e. conv 2x,
..., conv 5x. The number of filters is doubled at each stack.

Method Number of Filters in conv 1
residual blocks and conv 2x

ResNet1 (3, 4, 6, 3) 32
ResNet2 (2, 2, 2, 2) 2
ResNet3 (2, 2, 0, 0) 2

four inference baselines using two transformed MNIST
datasets and CelebA dataset (all with JPEG variants).
We summarize and highlight our key results below.

• Accuracy vs. On-device Computational Cost. Com-
paring to on-device inference, CiNet achieved com-
parable inference accuracy to the second best CNN
while only used 20% computational cost of the fastest
CNN. We discuss more details in Section 4.2.

• Accuracy vs. Mobile-Cloud Data Transmission Cost.
CiNet significantly reduced the mobile data trans-
mission, incurring only 1% of the cloud-based in-
ference that sent original image data to the cloud
server. When comparing to image compression based
techniques including traditional JPEG and DeepN-
JPEG [14], CiNet achieved up to 50% higher in-
ference accuracy with similar data transmission cost.
More details can be found in Section 4.3.

• On-device Computational Cost vs. Mobile-Cloud
Data Transmission Cost. Comparing to the collab-
orative inference with model partitions, CiNet in-
curred lower on-device computation and mobile-cloud
data transmission costs for both datasets. We discuss
more details in Section 4.4.

4.1 Experiment Setup We describe the perfor-
mance metrics, datasets, models and their hyperparam-
eters, as well as inference baselines we compare to.

Performance Metrics. The computational cost is
measured by the number of floating-point multiplica-
tion. The data transmission cost is measured by the
number of non-zero values sent from the mobile device
to the server. We should notice that the three metrics
can’t be apply for all baselines. For example, on-device
inference doesn’t send data to sever, so it has no data
transmission cost. And in-cloud inference and collabo-
rative inference based on image compression has no or
negligible computational cost on device.

Transformed Digit and Fashion MNIST
Datasets. We constructed two new datasets from the
original digit and fashion MNIST datasets, obtained
through TensorFlow and Keras API respectively.
Both original MNIST datasets constain 60k images in
the training set and 10k in the test data. For each
digit/fashion image, we embedded it into the black
background of size 100× 100 pixels and then performed

random scaling and translation of the embedded image.
For transformed digit images, we further injected noise
that consists of ten 2D sine waves with different phases
and frequencies chosen from a Uniform distribution (0,
2π) and a Gaussian distribution (µ = 5, δ = 5).

CelebA Dataset. We performed experiments on the
real-world dataset CelebA. CelebA has 162770 training
samples and 19962 test samples. The original CelebA
has 40 different labels. In this paper, we only use the
“Smiling” label to evaluate our CiNet and baselines.

Inference Baselines. We use four different inference
approaches, with accompanying convoltuional models
summarized in Table 1, including two traditional and
two collaborative inference mechanisms.

• On-device inference. For each transformed MNIST
dataset, we trained a series of CNN models with
decreasing number of filters, as shown in Table 1. We
describe common hyperparameter settings below. For
CelebA dataset, we compared with three ResNets of
different architecture settings, as listed in the Table 2,
and a simplified MobileNet V2, with one MobileNet
blocks per bottleNeck and expanding rate of 1. These
CNN models are assumed to run on mobile devices
and are used as baselines for understanding the
computational cost and inference accuracy trade-offs.

• In-cloud inference. Further, from Table 1 we selected
the most accurate CNN model, i.e., CNN1, for each
transformed MNIST dataset, and assume these CNNs
to be hosted on the cloud servers. We trained the
CNNs on original datasets as well as on the JPEG-
decompressed counterparts of original datasets, with
both high and low JPEG quality.

• Collaborative Inference with DeepN-JPEG [14].
DeepN-JPEG is a neural network-based image com-
pression technique that aims to reduce data trans-
mission while minimizing the impact on accuracy by
preserving useful information to classification tasks.
To implement DeepN-JPEG, we generated the quan-
tization table used for image compression based on
the statistical information of the datasets [14].

• Collaborative Inference with Model Partitions. Prior
work on model partition techniques focused on identi-
fying the best layer-wise partition point to split the in-
ference computation across mobile devices and cloud
servers [11, 13]. In our evaluations, we tested all pos-
sible partition points, i.e., layers, for the most accu-
rate CNNs from Table 1. Each partition scheme is
labeled as cut- followed by the layer name such as
cut-conv3. A partition scheme defines where the lay-
ers are executed. For example, with cut-conv3 all
layers before the third conv layer will be executed on
the mobile device and the rest on the cloud server. By

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Table 3: Results on transformed MNIST dataset.
For in-cloud deployment, the model used is the CNN1 in
Table 1(left). We use JPEG(H) and JPEG(L) to denote the
high quality and low quality used to compressed the images,
respectively.

Deployment Method Test Computational Transmission
Accuracy cost on device cost

(%) (MFLOPS) (# non-zero integer)
Higher better Lower better Lower better

On-device

CNN1 96.20 3060 -
CNN2 93.98 1040 -
CNN3 93.52 264 -
CNN4 92.22 162 -
CNN5 91.73 26 -
CNN6 86.39 7 -
CNN7 83.52 5 -

In-cloud

Original 96.20 - 10000
JPEG(H) 95.79 - 1343
JPEG(L) 40.15 - 116
DeepN-JPEG(H) 96.07 - 1298
DeepN-JPEG(L) 42.20 - 119

Collaborative CiNet 93.74 1 100

evaluating all possible partitions, we can establish the
performance of the optimal model partition policy, to
which we will compare CiNet to.

Hyperparameter Settings. Here we introduce the
hyperparameters used in our evaluations. (i) Common
settings for CiNet and baselines: For experiments on
both Transformed Digit and MNIST Datasets, we set
the number of epoch = 12, batch size = 64, decay rate
of leaning rate is 0.1. We adopt the dropout for all
models. For both CiNet and CNNs, the size of filter
window for convolution is 5 × 5 and 2 × 2 for pooling.
(ii) CiNet setting : The initial leaning rate = 0.01. On
the MNIST and fashion MNIST, The extractor has two
convolutional layers, each followed by a max-pooling
layer. The convolutional layers have very few filters,
which are 2 in the first layer and 4 in the second. There
is a fully connected hidden layer consists of 50 neurons
before final regression layer. The size of cropped image
sent to classifier in the cloud is 10×10. On the CelebA,
the extractor is same with the MobileNet baseline. We
use bilinear sampling to crop image. The weight of
penalty on scaling transformation is 0.1. The classifier
of the CiNet also has two convolutional layers, of which
the number of filters are 128 and 256. The convolutional
layers are followed by two fully connected layers, of
which the number of neurons are 100 and 50. All
the weights in both the extractor and the classifier
are initialized from the Gaussian distribution of which
the mean is zero and the standard deviation is 0.02,
The final regression layer of extractor uses the standard
deviation of 0.2. (iii) Baseline setting : We set the initial
learning to 0.1 for all CNNs listed in Table 1 except
CNN4 and CNN5 on the right tablular; these two CNNs
used an initial learning rate is 0.01.

Table 4: Results on transformed fashion MNIST
dataset. For in-cloud deployment, the model used is the
CNN1 in Table 1 (right).

Deployment Method Test Computational transmission
Accuracy cost on device cost

(%) (MFLOPS) (# non-zero integer)
Higher better Lower better Lower better

On-device

CNN1 82.54 3060. -
CNN2 82.38 1000 -
CNN3 80.65 122 -
CNN4 78.63 21 -
CNN5 66.47 6 -

In-cloud

Original 82.54 - 10000
JPEG(H) 82.13 - 547
JPEG(L) 78.58 - 131
DeepN-JPEG(H) 79.97 - 509
DeepN-JPEG(L) 77.75 - 152

Collaborative CiNet 82.29 1 100

Table 5: Results on CelebA dataset. For in-cloud
deployment, the model used is the ResNet1 in Table 2.

Deployment Method Test Computational Transmission
Accuracy cost on device cost

(%) (MFLOPS) (# non-zero integer)
Higher better Lower better Lower better

On-device

ResNet1 92.04 21.32 -
ResNet2 91.25 5.58 -
ResNet3 87.18 3.14 -
MobileNet V2 86.97 0.9 -

In-cloud

Original 92.04 - 38804
JPEG(H) 91.15 - 3136
JPEG(L) 87.62 - 1295
DeepN-JPEG(H) 91.07 - 2980
DeepN-JPEG(L) 88.44 - 1163

Collaborative CiNet 91.03 0.9 256

4.2 CiNet vs. On-Device Inference We study
the computation and accuracy trade-offs on all three
datasets by comparing CiNet to different deep learning
models (see Table 1 and Table 2). To evaluate their
computational costs, we assume all CNNs will run on
mobile devices, i.e., executing these models will not
incur any mobile-cloud data transmission cost.

Table 3 compares both on-device computational
cost and average inference accuracy between all base-
line CNNs and CiNet on transformed MNIST dataset.
As expected, the achieved inference accuracy decreases
with the computational cost for the baseline CNNs.
However, CiNet struck the balance between the on-
device computational cost and inference accuracy with
the help of the in-cloud classifier submodel. For ex-
ample, CiNet incurred the lowest computational cost
at about 20% compared to the fastest CNN7 and at
merely 0.5% compared to CNN3 whose accuracy was
0.22% lower.

We also observed similar trends when evaluating
on the transformed fashion MNIST dataset. Table 4
shows that the computational cost of CiNet was only
0.001% and 0.002% of that of CNNs (i.e., CNN1 and
CNN2) with comparable inference accuracy, by 0.34%
and 0.18%, respectively. Further, CiNet only incurred
about 14.7% computational cost compared to the fastest
CNN5 but achieved 16% better accuracy.

Lastly, we compared CiNet to ResNet and Mo-

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

bileNet V2 on the CelebA dataset, containing more
complicated images of human faces. Table 5 shows that
the computational cost of CiNet was only 0.04% and
0.16% of that of ResNets (i.e., ResNet1 and ResNet2)
with comparable inference accuracy, by 1.01% and
0.22%, respectively. Further, CiNet has similar com-
putational cost compared to the fastest on-device model
MobileNet V2 but achieved 4.06% better accuracy.

In summary, these results support our hypothesis
that finding the essential content for classification can
be much more computational efficient than directly
classifying the entire image. Deploying the extractor
submodel instead of a complete CNN model on-device
can reduce the computational complexity by two to
three orders of magnitude, with negligible accuracy loss.

4.3 CiNet vs. Image Compression Based Infer-
ences We focus on evaluating the trade-offs between
inference accuracy and mobile-cloud data transmission.
The the baseline CNNs run in the cloud server and
therefore do not incur on-device computational cost.

Table 3 compares the performance of CNN1 from
Table 1 and CiNet on the transformed digit MNIST
dataset. CiNet, with a crop size of 10 × 10, only
incurred 1% of data transmission cost but at the cost
of 2.46% lower accuracy when comparing to sending
original images to CNN1. Further, we compare CiNet
with two image compression techniques, i.e., traditional
JPEG algorithm and a deep learning based compression
called DeepN-JPEG [14]. For JPEG, we chose two
quality levels of 50 and 0.5 as the former is a common
configuration and the latter achieves the same data
transmission cost as CiNet. We then trained the in-
cloud CNN1 with the images that were first compressed
with the corresponding JPEG configuration and then
decompressed. We followed the same strategy described
above to choose two quality levels 50 and 0.15 for
DeepN-JPEG and then trained with CNN1 again.

Table 3 shows that using the CNN1 trained with
higher JPEG quality only incurred 10% data transmis-
sion cost with 0.41% lower inference accuracy, when
compared to sending the original images. This result
supports the common sense that JPEG can preserve
the essential information with about 10% compression
rate. However, for CNN1 trained with images of lower
JPEG quality, its accuracy was 50% lower than that
of CiNet. Such accuracy loss can be attributed to the
background 2D sine noises. We can further observe that
DeepN-JPEG achieved 2.2% better accuracy with simi-
lar data transmission cost when comparing to JPEG of
similar configurations. Similarly, the accuracy of CNN1
trained with DeepN-JPEG(L) was again 50% lower than
CiNet while incurring the same data transmission cost.

We also observed similar results on the transformed

fashion MNIST dataset. For example, Table 4 shows
that the accuracy of CiNet was 0.34% lower than
the CNN1 trained on original image, but with only
0.01% of the data transmission cost. When trained
with images compressed and decompressed with higher
JPEG quality, the accuracy of CNN1 was 0.27% lower
than that of CNN1 trained on original images. For
CNN1 trained with lower JPEG quality, it incurred the
same data transmission cost but 3.63% lower accuracy
than CiNet. Interesting, classification-aware DeepN-
JPEG had slightly lower accuracy than JPEG for this
dataset. As one of the key differences between these
two datasets is the existence of low-frequency noise,
such accuracy discrepancy might be caused by DeepN-
JPEG’s ability to remove such noise.

Lastly, we compared the CiNet to the baselines
on the CelebA dataset. Table 5 shows that the data
transmission cost of CiNet was only 0.006%, 0.081%
and 0.085% of that of ResNets trained on original im-
ages, and images transmitted by high-quality JPEG
and DeepN-JPEG, with neglectable loss of accuracy, by
1.01%, 0.12% and 0.04%, respectively. Using JPEG(L)
and DeepN-JPEG(L), the accuracy are 3.41% and
2.59% lower than CiNet, and still have about 5X data
transmission costs.

In summary, these results suggest that lower com-
pression quality can lead to the loss of important con-
tent for classification. Further, the performance differ-
ences can also be attributed to the design goals of JPEG
and CiNet. JPEG aims at recovering the whole image
whereas CiNet aims at finding the important content
for classification. As such when there are a lot of label-
irrelevant contents, JPEG still has to try to recover
them whereas CiNet can simply avoid them. CiNet
demonstrated its ability to achieve lower data transmis-
sion cost and higher inference accuracy, when compared
to image compression based techniques.

4.4 CiNet vs. Collaborative Inference with
Model Partition We focus on comparing the on-
device computation and the data transmission cost
between CiNet and the optimal model partition.

Table 6 shows the performance of CNN1 from Ta-
ble 1 and CiNet on the transformed digit MNIST
dataset. As this CNN1 consists of three convolutional
(conv) layers, two fully-connected (fc) hidden layers,
and a final classifier layer, we evaluated the performance
under all five layer-wise partition schemes. As we can
see, the on-device computational cost increased as the
partition point moves toward the output layer, with a
significant jump from the first partition scheme, i.e.,
cut-conv1, to the next, i.e., cut-conv2. The latter in
the CNN the partition point is, the more computation

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

it incurs. This is expected as more model layers need
to be executed on the mobile device. However, we ob-
serve a different trend with the data transmission cost.
Specifically, the mobile data transmission cost lowered
as the partition point moves toward the output layer.
Again, this is expected as feature maps of later conv
layers have lower dimension and the last fully connected
layer only generates data as little as what are needed
for classification labels. In short, the optimal partition
point for achieving the lowest computational cost, i.e.,
cut-conv1, and for the lowest data transmission cost,
i.e., cut-fc2, can not be achieved at the same time un-
der the model partition approach. In constrast, CiNet
was able to balance these two design goals, achieving
low data transmission cost (as low as cut-fc1) and an
order of magnitude lower computational cost than cut-
conv1. We observe similar benefits of CiNet on the
Transformed fashion MNIST dataset.

In summary, CiNet demonstrated its ability to bal-
ance on-device computation and mobile data transmis-
sion cost, when compared to model partition techniques.

4.5 Impact of Hyperparameters Lastly, we eval-
uate the impact of two important hyperparameters on
CiNet’s inference accuracy.

• Extraction Size specifies the size of the on-device
extractor submodel’s output and directly impact the
required data to send to the cloud. Figure 3(a) shows
that both the training and the test accuracy increase
with the extraction size. This demonstrates the im-
portance of setting sufficiently large extraction size
as we observed underfitting with smaller extraction
size. However, naively increasing extraction size is
not ideal as larger extraction size leads to higher data
transmission cost. We also observed that both accura-
cies plateaued at extraction size of 10×10, which can
save up to 16X data transmission cost compared to
larger extraction sizes. Our results suggest the need
to carefully tune the extraction size to trade-off be-
tween data transmission cost and inference accuracy
under different application scenarios.

• L2 Penalty Weight controls how aggressive the
on-device extractor submodel scales up the mapped
region in the original image. Figure 3(b) shows that
models can overfit, indicated by the large gap between
training and test accuracy, without using L2 penalty.
This is because the on-device submodel is more likely
to output a low-resolution version of the original
image by scaling transformation to cover the whole
image. We observe that with the weight of penalty
of 0.1, both the training and test accuracy were at
their respective high. This is because larger penalty
forces the extractor submodel to focus on cropping
small region. However, if the penalty is too large,

Table 6: Comparisons with model partitions on the
transformed digit MNIST dataset(left) and fashion
MNIST(right). We partitioned the CNN, with the struc-
ture of each of the CNN1 in the left and right of Table 1, at
all possible layer-wise partition points. The computational
(Comp) and data transmission (trans) cost are shown.

Partition Point Comp Trans
Cost Cost

conv1 32 320000
conv2 2040 160000
conv3 3060 43200

fc1 3060 100
fc2 3060 50
- - -
- - -

CiNet 1 100

Partition Point Comp Trans
Cost Cost

conv1 16 160000
conv2 528 80000
conv3 784 20000
conv4 922 12500
conv5 1000 4096

fc1 1000 100
fc2 1000 50

CiNet 1 100

5*5 10*10 28*28 40*40
Extract size

80

85

90

95

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

Training
Test

(a) Extraction size

0 0.01 0.1 1 5 10
L2 penalty weight

30

40

50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

Training
Test

(b) L2 penalty weight.

Figure 3: Impact of HyperParameters.

the extractor might have troubles with larger region
of interests. In summary, our results suggest the
importance of choosing reasonable penalty to help
the extractor submodel to crop the important label-
related image content.

5 Related Work

Collaborative Inference with Model Partition.
Han et al. [6] proposed to generate a resource-efficient
variant for a given network, then provide a run-time sys-
tem called MCDNN which split the generated network
into two fragments and execute them each on mobile de-
vice and cloud server. Kang et al. [11] developed Neuro-
surgeon, an automatic model partition scheme that can
adapt to different hardware environments and model
structures. Li et al. [13] proposed to quantize the on-
device model partition to further reduce the computa-
tional and memory requirement on the mobile device.
Our design of the collaboration-aware models can be
regarded as a way to partition a new model optimally.

Image Compression. JPEG, as one of the widely used
image compression algorithm, allows adjusting quality
of compression to trade-off between image size and qual-
ity. It typically achieves 10:1 compression with lit-
tle perceptible loss in image quality. A number of re-
cent works explored the use of convolutional neural net-
work [3] or autoencoder [19] as an alternative to com-
press image data. However, these works often only
care about recovering the original image content with-
out concerning the impact on the classification. Re-
cently, Xie et al. proposed to rework traditional image
compression algorithm JPEG through modifying quan-

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

tization table based on the gradients of neural network-
based image classifier [21]. Similarly, Liu et al. proposed
a dataset aware compression algorithm that adjusts the
quantization table with the statistical information of
training dataset [14]. Our work shares similar design
goal with the recent classification-aware compression al-
gorithm for reducing network data transmission without
impacting classification accuracy.

Hard Attention Mechanism. The hard attention
mechanism that aims at reducing the computational
and memory cost shares similar goals with our work.
Minh et al. proposed a recurrent attention model [15]
on visual learning tasks that leverages REINFORCE al-
gorithm for training. Similarly, CiNet also uses RE-
INFORCE algorithm if the direct cropping operation is
used. Jaderberg et al. proposed spatial transformer net-
work (STN) that performs spatial transformation at any
feature map [10]. CiNet follows similar design when
using bilinear image sampling to crop image. However,
CiNet differs from STN in that STN was designed to
learn invariance to transformation while CiNet focuses
on reducing computational and transmission cost for
collaborative inference.

6 Conclusion

In this work, we identified the need to design
collaboration-aware deep neural networks for efficient
mobile inference. We proposed CiNet, deep neural
networks for image classification, that leverages key in-
sights of avoiding sending non-essential data to cloud
servers to simultaneously reduce on-device computa-
tional cost, lower mobile network data transmission
cost, and maintain high inference accuracy. Our eval-
uations of CiNet on three datasets demonstrated that
CiNet reduced mobile computation by up to three or-
ders of magnitude, lowered mobile data transmission
by 99%, and had small inference accuracy differences
of 0.34%-2.46%, compared to four inference approaches
including two collaborative inference approaches.

7 Acknowledgement

This work was supported in part by NSF Grant CNS-
1815619.

References

[1] A. Almahairi, N. Ballas, T. Cooijmans, Y. Zheng,
H. Larochelle, and A. Courville. Dynamic capacity networks.
In ICML, 2016.

[2] J. Ba, V. Mnih, and K. Kavukcuoglu. Multiple object
recognition with visual attention. In ICLR, 2016.

[3] J. Ballé, V. Laparra, and E. P. Simoncelli. End-to-end
optimized image compression. In ICLR, 2017.

[4] R. Girshick. Fast R-CNN. In ICCV, 2015.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014.

[6] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and

A. Krishnamurthy. Mcdnn: An execution framework for deep

neural networks on resource-constrained devices. In MobiSys,
2016.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[8] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. MobileNets:

Efficient convolutional neural networks for mobile vision
applications. arXiv:1704.04861, 2017.

[9] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. SqueezeNet: AlexNet-level accuracy
with 50x fewer parameters and < 0.5 MB model size.

arXiv:1602.07360, 2016.

[10] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial
transformer networks. In NeurIPS, 2015.

[11] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge,

J. Mars, and L. Tang. Neurosurgeon: Collaborative intel-
ligence between the cloud and mobile edge. In ASPLOS,

2017.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In

NeurIPS, 2012.

[13] G. Li, L. Liu, X. Wang, X. Dong, P. Zhao, and X. Feng.
Auto-tuning neural network quantization framework for col-

laborative inference between the cloud and edge. In ICANN,

2018.

[14] Z. Liu, T. Liu, W. Wen, L. Jiang, J. Xu, Y. Wang, and

G. Quan. Deepn-jpeg: a deep neural network favorable jpeg-

based image compression framework. In DAC, 2018.

[15] V. Mnih, N. Heess, A. Graves, et al. Recurrent models of

visual attention. In NeurIPS, 2014.

[16] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN:

Towards real-time object detection with region proposal
networks. In NeurIPS, 2015.

[17] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015.

[19] L. Theis, W. Shi, A. Cunningham, and F. Huszár. Lossy

image compression with compressive autoencoders. In ICLR,
2017.

[20] R. J. Williams. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. Machine

Learning, 1992.

[21] X. Xie and K.-H. Kim. Source compression with bounded

dnn perception loss for iot edge computer vision. In Mobi-
Com, 2019.

[22] X. Zhang, X. Zhou, M. Lin, and J. Sun. ShuffleNet: An

extremely efficient convolutional neural network for mobile

devices. In CVPR, 2018.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

