
Kernelized Matrix Factorization for Collaborative Filtering

Xinyue Liu∗ Charu Aggarwal † Yu-Feng Li ‡ Xiangnan Kong∗ Xinyuan Sun∗

Saket Sathe §

Abstract

Matrix factorization (MF) methods have shown great
promise in collaborative filtering (CF). Conventional
MF methods usually assume that the correlated data is
distributed on a linear hyperplane, which is not always
the case. Kernel methods are used widely in SVMs to
classify linearly non-separable data, as well as in PCA
to discover the non-linear embeddings of data. In this
paper, we present a novel method to kernelize matrix
factorization for collaborative filtering, which is equiva-
lent to performing the low-rank matrix factorization in
a possibly much higher dimensional space that is im-
plicitly defined by the kernel function. Inspired by the
success of multiple kernel learning (MKL) methods, we
also explore the approach of learning multiple kernels
from the rating matrix to further improve the accuracy
of prediction. Since the right choice of kernel is usually
unknown, our proposed multiple kernel matrix factor-
ization method helps to select effective kernel functions
from the candidates. Through extensive experiments on
real-world datasets, we show that our proposed method
captures the nonlinear correlations among data, which
results in improved prediction accuracy compared to the
state-of-art CF models.

1 Introduction

With the sheer growth of accessible online data, it be-
comes challenging as well as indispensable to develop
technologies that helping people efficiently sift through
the huge amount of information. Collaborative filter-
ing is one of these technologies which has drawn much
attention in recent years. It mainly serves as a recom-
mender system to automatically generate item recom-
mendations based on past user-item feedbacks. Com-
pared to other technologies in recommender systems,
collaborative filtering does not need any content infor-
mation about the items or users, it works by purely

∗Department of Computer Science, Worcester Polytechnic
Institute
†IBM T. J. Watson Research Center
‡Nanjing University
§IBM Research Australia

5 3 ? ?
? 4 2 4
3 5 ? 2
? ? ? 5
? 1 ? ?

U

V

=

Figure 1: An illustration of using matrix factorization
to predict the unobserved ratings. The rating matrix is
factorized as the products of the two low-rank matrices
of latent factors, denotes as U and V.

analyzing the preference patterns of users through the
observed ratings. Besides, it also does not require any
domain knowledge, which makes it easy to be applied on
different datasets and systems. Recent advances in col-
laborative filtering have been paralleled by the success
of matrix factorization technologies. The main idea of
matrix factorization method is as follows. Suppose we
are given a partially filled rating matrix, where each row
stands for a user in the recommender system, and each
column denotes an item in the system. The goal is to
predict any missing entry (i, j) with the inner product
of latent feature vectors for row (user) i and column
(item) j as shown in Figure 1.

Matrix factorization methods have been extensively
studied for collaborative filtering, and existing works
[4,6,15] mainly focus on utilizing singular value decom-
position (SVD) to derive the low-rank latent feature ma-
trices. SVD is based on the assumption that the ratings
are distributed on a linear hyperplane, thus they can
be represented by the inner products of two low-rank
structures. However, in many real-world collaborative
filtering datasets, it is very hard or impossible to recover
the full matrix well by solving low-rank factorizations
linearly. In such cases, kernel methods can be help-
ful. Kernel methods work by embedding the data into a
possibly higher dimensional feature space, in which the
embeddings can be distributed on a linear hyperplane,
thus it can be factorized into two feature matrices in
that space. Although the embedding is implicitly de-

5 3 ? ?
? 4 2 4
3 5 ? 2
? ? ? 5
? 1 ? ?

U= Hilbert Feature
Space

V

Kernel 1 Kernel 2 Kernel 3

Original Space

+ +

Figure 2: An illustration of kernelized low-rank matrix
factorization for predicting the unobserved ratings. The
two latent factor matrices U and V are embedded into
a high-dimensional Hilbert feature space by a linear
combination of kernel functions. The products of the
two latent factor matrices reconstruct the rating matrix
in original space nonlinearly.

fined, the inner products of the embeddings can be in-
ferred by the kernel function, which is also called the
kernel trick.

Despite its value and significance, few effort has
been made on incorporating kernel methods into matrix
factorization for collaborative filtering. And it is a much
more challenging task due to the following reasons:

Lacking Side Information: Existing kernelized
matrix factorization approaches [12, 26] usually require
side information such as metadata, social graphs, text
reviews etc. However, in the context of real-world
recommender systems, such information is not always
available, which limits the applicability of these ap-
proaches. Thus, without the help from side information
of the users or items, applying kernel methods on pure
matrix factorization is a more challenging task.

Latent Factors in Hilbert Feature Space: In
conventional matrix factorization, the latent factors of
users and items can be explicitly defined as two low-
rank matrices. However, as to the kernelized matrix
factorization problems, the matrices of latent factors
exist in a Hilbert feature space, which is implicitly
defined. To this end, applying alternative least square
(ALS) or gradient descent approaches is hampered
by the implication of the latent factors. Thus, it is
challenging to devise effective kernel methods for the
purpose of matrix completion.

Combining Multiple Kernels: A kernel function
can capture a certain notion of similarity and efficiently
embed data into a much higher dimensional space,
but using only one single kernel function may lead to
suboptimal performances. To address this problem,
many methods have been proposed in the literature

to learn linear combinations of multiple kernels, which
are also an appealing strategy for improving kernelized
matrix factorization. However, existing multiple kernel
learning strategies are designed for classification models
and regression models, such as SVM, ridge regression,
etc. It is challenging to combine multiple kernel learning
and matrix factorization, especially when considering
the large scale of collaborative filtering tasks compared
to conventional classification or regression problems.

In order to solve the above issues, we propose a
novel solution called Mkmf, combining matrix factor-
ization with kernel methods and multiple kernel learn-
ing. Different from previous work, the proposed Mkmf
can capture the non-linear relationships in the rating
data, without requiring any side information. Empirical
studies on real-world datasets show that the proposed
Mkmf can improve the accuracy of prediction for col-
laborative filtering.

The rest of the paper is organized as follows. We
start by introducing the preliminary concepts and giving
the problem formulation in Section 2. Then we present
our proposed Mkmf approach in section 3. Section 4
reports the experiment results. We also briefly review
on related works of collaborative filtering in Section 5.
In section 6, we conclude the paper.

2 Problem Formulation

2.1 Notations In this section, we briefly describe the
general problem setting of collaborative filtering with
some preliminaries of our proposed method.

Suppose a set of m users and a set of n items are
given, each observed rating is a tuple (u, i, rui) denoting
the rating assigned to item i by user u, where the user
index u ∈ {1, . . . ,m}, the item index i ∈ {1, . . . , n},
and the rating values rui ∈ R. We also assume that
each user can only rate an item once, so all such ratings
can be arranged into an m × n matrix R whose ui-
th entry equals rui. If user p has not rated item q,
then the corresponding entry rpq in R is unknown or
unobserved. We define the observed entries indexed
by the set Ω = {(u, i) : rui is observed}, and |Ω| the
number of observed ratings. Due to the well-known
sparsity problem, typically |Ω| is much smaller than
m× n.

We use Ωu to denote the indices of observed ratings
of the u-th row ru, and Ωi the indices of observed ratings
of the i-th column r:,i. For examples, if ru’s ratings are
all unobserved except the 1st and the 3rd values, then:

• Ωu = (1, 3)> and rΩu
= (ru1, ru3)>.

• Given a matrix A, A:,Ωu
denotes a sub matrix

formed by the 1st column and 3rd column of A.

Similarly, if ru’s ratings are all unobserved except

Table 1: Important Notations.

Symbol Definition

R and R̂ The partially observed rating matrix and the inferred dense rating matrix
U and V The user latent factors matrix and the item latent factors matrix

Ω = {(u, i)} the index set of observed ratings, for (u, i) ∈ Ω, the rui is observed in R
Ωu indices of observed ratings of the u-th row of R
Ωi indices of observed ratings of the u-th column of R

A:,Ωu or A:,Ωi Sub matrix of A formed by the columns indexed by Ωu or Ωi

{d1, . . . ,dk} the set of dictionary vectors
φ(·) the implicit mapping function of some kernel

Φ = (φ(d1), . . . , φ(dk)) the matrix of embedded dictionary in Hilbert feature space
au and bi the dictionary weight vector for user u and the dictionary weight vector for item i
A and B the dictionary weight matrix of users and the dictionary weight matrix of items.

{κ1, . . . , κp} the set of base kernel functions
{K1, . . . ,Kp} the set of base kernel matrices

the 2nd and the 4th values, then:

• Ωi = (2, 4)> and r:,Ωi = (r2i, r4i)
>.

• Given a matrix A, A:,Ωi denotes a sub matrix
formed by the 2nd column and 4th column of A.

The goal of collaborative filtering is to estimate
the unobserved ratings {rui |(u, i) /∈ Ω} based on the
observed ratings.

2.2 Matrix Factorization Matrix factorization is
widely used to solve matrix completion problem like
collaborative filtering as we defined above. The idea
of matrix factorization is to approximate the observed
matrix R as the product of two low-rank matrices:

R ≈ U>V,

where U is a k × m matrix and V is a k × n matrix.
The parameter k controls the rank of the factorization,
which also denotes the number of latent features for
each user and item. Note that in most cases, we have
k � min (m,n).

Once we obtain the low-rank decomposition matri-
ces U and V, each prediction for rating assigned to item
i by user u can be made by:

(2.1) r̂ui =

k∑
j=1

ujuvji = u>u vi,

where uju denotes the element in j-th row and u-th
column of matrix U, vji denotes the element in j-th
row and i-th column of matrix V, uu denotes the u-th
column of U, and vi denotes the i-th column of V.

The low-rank parameter matrices U and V can be
found by solving the following problem:

(2.2) minimize
U,V

||PΩ(R−U>V)||2F +λ(||U||2F +||V||2F)

where the projection PΩ(X) is the matrix with observed
elements of X preserved, and the unobserved entries
replaced with 0, || · ||2F denotes the Frobenius 2-norm
and λ is the regularization term for avoiding over-fitting.
This problem is not convex in terms of U and V, but it
is bi-convex. Thus, alternating minimization algorithms
such as ALS [7, 9] can be used to solve equation (2.2).
Suppose U is fixed, and we target to solve (2.2) for V.
Then we can decompose the problem into n separate
ridge regression problems, for the j-th column of V, the
ridge regression can be formalized as:

(2.3) minimize
vj

||r:,Ωj −U>:,Ωjvj ||2F + λ||vj ||2

where r:,Ωj denotes the j-th column of R with unob-
served element removed, the corresponding columns of
U are also removed to derive U:,Ωj , as we defined in
Section 2.1. The closed form solution for above ridge
regression is given by:

(2.4) v̂j = (U:,ΩjU>:,Ωj + λI)−1U:,Ωjr:,Ωj .

Since each of the n separate ridge regression problems
leads to a solution of v̂ ∈ Rk, stacking these n separate
v̂’s together gives a k × n matrix V̂. Symmetrically,
with V fixed, we can find a solution of Û by solving
m separate ridge regression problems. Repeat this
procedure until convergence eventually leads to the
solution of Û and V̂.

3 Multiple Kernel Collaborative Filtering

The matrix factorization method assumes the data of
matrix R is distributed on a linear hyperplane, which
is not always the case. Kernel methods [10, 20] can
be helpful when data of matrix R is distributed on a
nonlinear hyperplane.

3.1 Kernels Kernel methods work by embedding
the data into a high-dimensional (possibly infinite-
dimensional) feature space H, where the embedding is
implicitly specified by a kernel. Suppose we have a
kernel whose corresponding feature space mapping is
defined as φ : X → H, where X is the original space
and H is the Hilbert feature space. Given a data vector
x ∈ X , then the embedding of x in H can be denoted as
φ(x). Although φ(x) is implicit here, the inner product
of data point in the feature space is explicit and can be
derived as φ(x)>φ(x′) = κ(x, x′) ∈ R, where κ is the
so-called kernel function of the corresponding kernel. A
popular kernel function that has been widely used is the
Gaussian kernel (or RBF kernel):

(3.5) κ(x,x′) = exp

(
−||x− x′||2

2σ2

)
,

where σ2 is known as the bandwidth parameter. Dif-
ferent kernel functions specify different embeddings of
the data and thus can be viewed as capturing different
notions of correlations.

3.2 Dictionary-based Single Kernel Matrix
Factorization Suppose we have k dictionary vectors
{d1, . . . ,dk}, where d ∈ Rd. Then we assume that the
feature vector φ(uu) associated to uu can be represented
as a linear combination of the dictionary vectors in ker-
nel space as follows:

(3.6) φ(uu) =

k∑
j=1

aujφ(dj) = Φau,

where auj ∈ R denotes the weights of each dictio-
nary vector, φ(di) denotes the feature vector of di in
Hilbert feature space, au = (au1, . . . , auk)> and Φ =
(φ(d1), . . . , φ(dk)). Similarly we also assume that the
feature vector φ(vi) associated to vi can be represented
as:

(3.7) φ(vi) =

k∑
j=1

bijφ(dj) = Φbi,

where bij is the weight for each dictionary vector and
bi = (bi1, . . . , bik)>. Thus for each user u ∈ {1, . . . ,m}
we have a weight vector au, for each item i ∈ {1, . . . , n},
we have a weight vector bi.

Consider the analog of (2.3), when all φ(uu) are
fixed, i.e. the weight matrix A = (a1, . . . ,am) is fixed,
and we wish to solve for all φ(vi), i.e. to solve for the
weight matrix B = (b1, . . . ,bn)
(3.8)

minimize
φ(vi)∈H

∑
u

(rui − φ(uu)>φ(vi))
2 + λφ(vi)

>φ(vi)

It is easy to see

φ(uu)>φ(vi) = a>uΦ>Φbi = a>uKbi,(3.9)

φ(vi)
>φ(vi) = b>i Φ>Φbi = b>i Kbi,(3.10)

where K = Φ>Φ is the Gram matrix (or kernel matrix)
of the set of dictionary vectors {d1, . . . ,dk}. So we can
rewrite (3.8) as

(3.11) minimize
bi∈Rk

∑
u

(rui − a>uKbi)
2 + λb>i Kbi

which is equivalent to

(3.12) minimize
bi∈Rk

||r:,Ωi −A>:,ΩiKbi||2F + λb>i Kbi,

(3.12) is similar to kernel ridge regression, the closed
form solution is given by

(3.13) b̂i = (K>A:,ΩiA>:,ΩiK + λK)†K>A:,Ωir:,Ωi

Stacking n separate b̂ together, we get the estimated
B̂ = (b̂1, . . . , b̂n), which is a k × n matrix. Symmet-
rically, with B fixed, we can find a solution of Â by
solving m separate optimization problem like (3.12). In
this case, the closed form solution for each âu is given
by:

(3.14) âu = (K>B:,Ωu
B>:,Ωu

K + λK)†K>B:,Ωu
rΩu

Algorithm 1 Multiple Kernel Matrix Factorization

Require: k, d, {κ1, . . . , κp},R,Ω, λ, itermax
1: allocate A ∈ Rk×m,B ∈ Rk×n,µ ∈ Rp,D = {di ∈

Rd : 1 ≤ i ≤ k},{Ki ∈ Rk×k : 1 ≤ i ≤ p},K ∈ Rk×k
2: initialize µ = (1

p , . . . ,
1
p)>,A, B, D

3: for i← 1, p do
4: Ki ← (κi(dh,dj))1≤h,j≤k
5: end for
6: iter ← 0
7: repeat
8: K←

∑p
i=1 µiKi

9: Update B as shown in (3.13)
10: Update A as shown in (3.14)
11: Update µ by solving (3.16)
12: until iter = itermax or convergence
13: Return A,B,µ,K

3.3 Multiple Kernel Matrix Factorization Mul-
tiple kernel learning(MKL) [1, 5, 11] has been widely
used on improving the performance of classification and
regression tasks, the basic idea of MKL is combine mul-
tiple kernels instead of using a single one.

Formally, suppose we have a set of p positive defined
base kernels {K1, . . . ,Kp}, then we aim to learn a
kernel based prediction model by identifying the best
linear combination of the p kernels, that is, a weighted
combinations µ = (µ1, . . . , µp)

>. The learning task can
be cast into following optimization:

(3.15)

minimize
au,bi∈Rk

∑
(u,i)∈Ω

(rui −
p∑
j=1

µja
>
uKjbi︸ ︷︷ ︸

υ>
uiµ

)2+

λ(b>i

p∑
j=1

µjKjbi + a>u

p∑
j=1

µjKjau︸ ︷︷ ︸
γ>
uiµ

)

where µ ∈ Rp+ and µ>1p = 1. It is convenient to
introduce the vectors υui = (a>uK1bi, . . . ,a

>
uKpbi)

>,
γui = (a>uK1au + b>i K1bi, . . . ,a

>
uKpau + b>i Kpbi)

>.
Rearrange optimization (3.15),

(3.16)

minimize µ>Yµ + Zµ

subject to µ � 0

1>p µ = 1

where Y =
∑

(u,i)∈Ω υuiυ
>
ui and Z =

∑
(u,i)∈Ω(λ −

2rui)γui. When all υui and γui are fixed, i.e. A and B
are fixed, the optimization problem (3.16) is known as a
quadratic programming, which can be solved efficiently
by software package like Cvxopt1 or Cvx2.

Now we can put all optimization problems together
to build up our multiple kernel matrix factorization al-
gorithm, which is summarized in algorithm 1. Initially,
given rank value k, the dictionary dimension d and p
base kernel functions {κ1, . . . , κp}, the algorithm ran-
domly initializes k dictionary vectors D = (d1, . . . ,dk),
then computes the p base kernel matrices as Ki =
(κi(dh,dj))1≤h,j≤k. The algorithm also initializes the
kernel weight vector as µ0 = (1

p , . . . ,
1
p)>, and gener-

ates low-rank matrix A0 and B0 randomly. So initially,
the compound kernel matrix K0 =

∑
1≤i≤p µ

0
iKi. After

obtaining all above instantiations, we first let A0 and
µ0 fixed, find B1 by solving m separate optimization
problems like (3.12), each solution can be obtained di-
rectly by computing the closed form expression shown
in 3.13. Similarly, we then let B1 and µ0 fixed, fol-
lowing the same approach to get A1. At last, A1 and
B1 are fixed, we can obtain µ1 by solving 3.16 using
convex optimization package mentioned before. Repeat
this ALS-like procedure until the algorithm converges or

1http://cvxopt.org
2http://cvxr.com/cvx/

reaches the predefined maximum number of iterations.
We then define optimal solutions obtained by above it-

erative procedure are
∗
A,
∗
B and

∗
µ, the corresponding

compound kernel matrix is denoted as
∗
K =

∑p
i=1

∗
µiKi.

Thus, for each test tuple (u, i, rui), the prediction made

by our algorithm is r̂ui = a>u
∗
Kbi, which also is the ele-

ment in the u-th row and i-th column of the recovered

matrix R̂ =
∗

A>
∗
K
∗
B. The rating inference is also sum-

marized in algorithm 2.

Algorithm 2 Rating Inference

Require: Ω̂,
∗
K,
∗
A,
∗
B

1: allocate P
2: for u, i ∈ Ω̂ do

3: r̂ui ←
∗
a
>
u

∗
K
∗
bi

4: add r̂ui to P
5: end for
6: Return P.

4 Experiments

To examine the performance of in addressing the collab-
orative filtering, we conducted extensive experiments on
several real-world datasets. In this section, we introduce
the datasets we used and the experiments we performed
respectively, then we present the experimental results as
well as the analysis.

4.1 Datasets We evaluated the proposed method
on 6 real world datasets of recommender system:
MovieLens, Jester, Flixster, Dating Agency, Yahoo
Music and ASSISTments. The details are summarized
in Table 2. Note that the scale of rating in each dataset
is different. For instance, the ratings in Jester dataset
are continuous values ranges from -10 to 10, while the
Yahoo Music dataset contains 100 rating classes from
1 to 100. For each dataset, we sampled a subset with
1,000 users and 1,000 items. The 1000 users are se-
lected randomly while the 1000 items selected are most
frequently rated items3.

4.2 Compared Methods In order to demonstrate
the effectiveness of our multiple kernel matrix factor-
ization method, we compared the proposed framework
with following existing baselines.

• Avg: First we implemented a naive baseline called
Avg, which predicts the unobserved rating assign
to item i by user u as r̂ui = αi + βu, where αi is

3Jester dataset only contains 100 items.

Table 2: Summary of Datasets
Dataset # of users # of items Density (%)

MovieLens 6,040 3,900 6.3
Jester 73,421 100 55.8
Flixster 147,612 48,784 0.11
Dating Agency 135,359 168,791 0.76
Yahoo Music 1,948,882 98,211 0.006
ASSISTments 46,627 179,084 0.073

Table 3: Summary of compared methods.

Method Type Kernelized Publication

Avg Memory-Based No [13]

Ivc-Cos Memory-Based No [19]

Ivc-Person Memory-Based No [19]

Svd Model-Based No [4]

Mf Model-Based No [9]

Kmf Model-Based Single Kernel This paper

Mkmf Model-Based Multiple Kernels This paper

the mean score of item i in training data, and βu
is the average bias of user u computed as

βu =

∑
(u,i)∈Ω rui − αi
||{(u, i) ∈ Ω}||

,where αi =

∑
(u,i)∈Ω rui

||{(u, i) ∈ Ω}||

• Ivs-Cos (Item-based + cosine vector similarly):
For memory based methods we implemented Ivs-
Cos. It predicts the rating assigning to item i by
user u by searching for the neighboring set of items
rated by user u using cosine vector similarity [19].

• Ivs-Pearson (Item-based + Pearson vector simi-
larly): Another memory based method we compare
with is the item based model which uses Pearson
correlation [19]. It is similar to Ivs-Cos except
using different metric of similarity.

• Svd: We also implemented a model based method
called Funk-SVD [4]. It is similar to the matrix
factorization approach we discussed in Section 2.2,
but it is implemented by using gradient descent
instead of alternative least square.

• Mf: Mf (Matrix Factorization) is a model-based
CF method that discussed in Section 2.2.

• Kmf: We also compare the proposed Mkmf with
its single-kernel version Kmf which only employs
one kernel function at a time, the details are
discussed in Section 3.2.

• Mkmf: Another proposed method for kernelized
collaborative filtering. The only difference between
Mkmf and Kmf is that Mkmf combine multiple

kernel functions while Kmf only use one kernel
function. The details of Mkmf are discussed in
Section 3.2.

For a fair comparison, the maximum number of itera-
tions in the methods Svd, Mf, Kmf and Mkmf are all
fixed as 20.

4.3 Evaluation Metric Collaborative filtering algo-
rithms are evaluated by the accuracy of their predict
ratings. One commonly used performance metric for
rating accuracy is the root mean square error (RMSE):

(4.17) RMSE =

√∑
(u,i)∈Ω (rui − r̂ui)2

|Ω|

4.4 Evaluation Protocol For each dataset, we se-
lect the 1,000 most frequently rated items and randomly
draw 1,000 users to generate a matrix with the dimen-
sion of 1000× 1000 (1000× 100 for Jester). Two exper-
imental settings are tested in this paper respectively.
In the first setting, we randomly select one rating from
each user for test and the remaining ratings for training.
The random selection is repeated 5 times independently
for each dataset. In the second setting, we randomly
select 3 ratings from each user for test and the remain-
ing ratings for training. The random selection is also
repeated 5 times independently for each dataset. We
denote the first setting as Leave 1, and the second set-
ting as Leave 3, which has sparser training matrix than
the setting of Leave 1. The average performances with
the rank of each method are reported.

4.5 Results and Discussion Following the setting
of [11], we first use a small base kernel set of three
simple kernels: a linear kernel function κ1(x,x′) =
x>x, a 2-degree polynomial kernel function κ2(x,x′) =
(1 + x>x)2, and a Gaussian kernel (rbf kernel) function
κ3(x,x′) = exp(−0.5(x − x′)>(x − x′)/σ) with σ =
0.5. We implement the proposed Mkmf method to
learn a linear combination of the three base kernels by
solving the optimization problem (3.15). The proposed
Kmf method is also tested using the three base kernels
respectively.

Empirical results on the six real-word datasets are
summarized in Table 4 and 5. Based on the results, we
have made following interesting observations:

• The proposed Mkmf method generally outper-
forms the other baselines on almost all datasets
in terms of RMSE. On the ASSISTments dataset,
Avg achieves best RMSE in two settings among
all compared methods, possibly because the ratings
are binary in ASSITments. However, our proposed

Table 4: Results (RMSE(rank)) of Leave 1 on the real-world datasets.

Dataset Ave.

Methods Flixster Yahoo Music MovieLens Jester Dating ASSISTments Rank

Mkmf 0.8270 (1) 18.3036 (1) 0.8223 (1) 4.0398 (1) 1.6697 (1) 0.7920 (2) 1.1667
Kmf (linear) 0.8290 (4) 18.3734 (3) 0.8241 (3.5) 4.0471 (2.5) 1.6804 (4) 0.7933 (4) 3.5
Kmf (poly) 0.8289 (3) 18.3766 (4) 0.8241 (3.5) 4.0472 (4) 1.6797 (3) 0.7934 (5) 3.75
Kmf (rbf) 0.8292 (5) 18.3883 (5) 0.8246 (5) 4.0471 (2.5) 1.6701 (2) 0.7927 (3) 3.75
Mf 0.8286 (2) 18.3214 (2) 0.8235 (2) 4.0549 (5) 1.6849 (5) 0.8001 (6) 3.6667
Svd 0.9441 (9) 26.2255 (9) 0.9406 (7) 4.2794 (6) 1.7920 (8) 0.8919 (9) 8
Ivc-Cos 0.9223 (7) 22.9477 (7) 1.0016 (8) 4.6137 (8) 2.7052 (7) 0.8106 (7) 7.3333
Ivc-Pearson 0.9226 (8) 22.9486 (8) 1.0020 (9) 4.6142 (9) 2.8209 (9) 0.8446 (8) 8.5
Avg 0.9006 (6) 22.4159 (6) 0.8887 (6) 4.3867 (7) 1.7349 (6) 0.7658 (1) 5.3333

Table 5: Results (RMSE (rank)) of Leave 3 on the real-word datasets.

Dataset Ave.

Methods Flixster Yahoo Music MovieLens Jester Dating ASSISTments Rank

Mkmf 0.8153 (1) 18.5034 (1) 0.8168 (1) 4.0809 (1) 1.6675 (5) 0.7917 (4.5) 2.25
Kmf (linear) 0.8163 (3.5) 18.5426 (3) 0.8178 (2.5) 4.0826 (3) 1.6561 (3) 0.7917 (3) 3
Kmf (poly) 0.8163 (3.5) 18.5500 (4) 0.8179 (4) 4.0824 (2) 1.6562 (4) 0.7919 (4.5) 3.6667
Kmf (rbf) 0.8157 (5) 18.5521 (5) 0.8186 (5) 4.0829 (4) 1.6488 (1) 0.7903 (2) 3.6667
Mf 0.8155 (2) 18.5375 (2) 0.8178 (2.5) 4.0865 (5) 1.6663 (2) 0.7955 (6) 3.25
Svd 0.9335 (9) 24.3480 (9) 0.9346 (7) 4.2601 (6) 1.8226 (7) 0.8852 (9) 7.8333
Ivc-Cos 0.9050 (7) 23.0763 (7) 1.0034 (8) 4.6282 (8) 2.6964 (8) 0.8069 (7) 7.5
Ivc-Pearson 0.9051 (8) 23.0767 (8) 1.0047 (9) 4.6284 (9) 2.8212 (9) 0.8464 (8) 8.5
Avg 0.8868 (6) 22.6101 (6) 0.8865 (6) 4.3656 (7) 1.7561 (6) 0.7632 (1) 5.3333

Mkmf still outperforms all other methods in Leave

1 and the proposed Kmf with RBF kernel outper-
forms all other methods in Leave 3. It shows incor-
porating kernels into matrix factorization helps the
model capturing the non-linear correlation among
the data, and the overall accuracy is improved.

• It is interesting to note that the linear kernel Kmf
outperforms Mf on 3 out of 6 datasets. The only
difference between linear kernel Kmf and Mf is
that linear kernel Kmf employs a set of dictionary
vectors to embed the data into a different space of
the same dimension.

• In some cases, Kmfs are outperformed by MF,
but the Mkmf that combining three kernels used
by Kmfs outperforms MF and other baselines.
It proves that by learning the weight of multiple
kernels based on the rating data, Mkmf sometimes
find better embeddings that are hard for Kmf to
find.

• The performance of Mkmf is slightly worse in
Leave 3 than in Leave 1 while Kmf keeps unaf-
fected. It indicates that the multiple kernel learn-

ing algorithm is more sensitive to the sparsity prob-
lem than solving kernel ridge regression.

4.6 Parameter Studies Figure 3(a) and Figure 3(b)
shows the kernelized methods’ sensitivity of parameter
d, which stands for the dimensions of the dictionary
vectors. Generally, according to the figures, both Kmf
and Mkmf are not very sensitive to the value of d
once we choose relatively large d. For Yahoo Music
dataset, the optimal choice of d is around 300, as to
ASSISTments, the preferred d ≈ 100. The situations
of other datasets are similar, so they are omitted here
due to the page limitation. Intuitively, the larger d we
choose, the more information can be captured by the
dictionary. However, since in both Kmf and Mkmf,
the dictionary vectors are eventually embedded into a
Hilbert feature space with much higher dimension than
d. It is reasonable to observe the insensitive pattern is
shown in Figure 3(a) and 3(b).

Besides, we also study the performances of our
proposed methods upon different values of k, which
denotes the rank of the two low-rank feature matrices.
It is well-known the parameter k should be tuned via
cross-validation or multiple rounds of training/test split

100 150 200 250 300 350 400 450 500
d

18.2

18.3

18.4

18.5

18.6
R

M
SE

KMF(rbf)
MKMF

(a) Yahoo Music Dataset

100 150 200 250 300 350 400 450 500
d

0.7930

0.7935

0.7940

0.7945

0.7950

0.7955

0.7960

R
M

SE

KMF(rbf)
MKMF

(b) ASSISTments Dataset

Figure 3: Comparison of different values of d (dimension
of dictionary vectors)

2 4 6 8 10 12 14
k

4.00

4.05

4.10

4.15

4.20

4.25

4.30

R
M

SE

KMF(rbf)
MKMF

(a) Jester Dataset

2 4 6 8 10 12 14
k

0.82

0.83

0.84

0.85

0.86

0.87

0.88

R
M

SE

KMF(rbf)
MKMF

(b) Flixster Dataset

Figure 4: Comparison of different values of k (rank of
the feature matrices)

to achieve best performance for conventional matrix
factorization [4, 15]. Figure 4(a) and 4(b) shows the
performances of Kmf using rbf kernel and Mkmf on
Jester dataset and Flixster dataset upon different values
of k. The optimal rank for Jester dataset and Flixster
dataset are both k = 9. It also shows that Kmf and
Mkmf are overfitting while k increases. Other datasets
show the similar pattern, denoting that both Kmf and
Mkmf share the same principle with non-kernelized
matrix factorization techniques on choosing parameter
k. Note that in our experiments, we found the optimal
k for ASSISTments dataset is about 120, which is
not consist with the principle of k � min(m,n).
Since matrix factorization usually finds optimal low-
rank feature matrices by choosing a relatively small
value of k, it also explains the fact that all compared
matrix factorization methods cannot outperform Avg.
The conjecture we made is that ASSISTments contains
some unique properties that hard for low-rank matrix
factorization methods to capture.

5 Related Works

Generally, collaborative filtering (CF) approaches can
be classified into two categories: memory-based ap-
proach and model-based approach. In this section, we
briefly discuss both of them.

5.1 Memory-based Approach The memory-based
CF approach is also called neighbor-based CF, in which

user-based methods and item-based methods are in-
cluded. Neighbor-based CF method estimates the un-
observed ratings of a target user or item as follows, it
first find the observed ratings assigned by a set of neigh-
boring users or the observed ratings assigned to a set of
neighboring items, then it aggregates the neighboring
ratings to derive the predicted rating of the target user
or item. In order to find the neighboring set of a target
user or item, similarity measures such as correlation-
based similarity [18], vector cosine-based similarity [2]
and conditional probability-based similarity [8] are usu-
ally used. Memory-based CF methods are usually easy
to implement, and new data can be added into the
model easily without re-training. But they are known to
suffer from the sparsity problem which makes the algo-
rithm hard to find highly similar neighboring sets. Sev-
eral relaxation approaches were proposed to address the
sparsity problem to fill in some of the unknown ratings
using different techniques [14, 24]. Neighbor-based CF
methods also have limited scalability for large datasets
since each prediction is made by searching the similar
users or items in the entire data space. When the num-
ber of users or items is large, the prediction is very ex-
pensive to obtain, which makes it difficult to scale in
the online recommender system.

5.2 Model-based Approach Model-based ap-
proach can better address the sparsity problem than
memory-based approach does, since it allows the
system to learn a compact model that recognizes
complex patterns based on the observed training
data, instead of directly searching in rating database.
Generally, classification algorithms can be employed as
CF models for the dataset with categorical ratings, and
regression models can be used if the ratings are nu-
merical. Popular models used in this category include
matrix factorization [15], probabilistic latent semantic
analysis [6], Bayesian networks [16], clustering [3] and
Markov decision process [22].

As to the matrix factorization approaches relevant
to our work, [21] generalizes probabilistic matrix factor-
ization to a parametric framework and requires the aid
of topic models. [23] introduces a nonparametric factor-
ization method under trace norm regularization. The
optimization is cast into a semidefinite programming
(SDP) problem, whose scalability is limited. A faster
approximation of [23] is proposed by [17], which, in fact
is very similar to the formulation of SVD [4]. [25] pro-
poses a fast nonparametric matrix factorization frame-
work using an EM-like algorithm that reduce the time
cost on the large-scale dataset.

In this paper, we also take the model based ap-
proach considering its effectiveness. And we require no

aid from side information to make our proposed meth-
ods more generalized. To the best of our knowledge,
this paper is the first work leverages both kernel meth-
ods and multiple kernel learning for matrix factorization
to address the CF problem.

6 Conclusion

We have presented two novel matrix completion meth-
ods named Kmf and Mkmf, which both can exploit the
underlying nonlinear correlations among rows (users)
and columns (items) of the rating matrix simultane-
ously. Kmf incorporates kernel methods for matrix fac-
torization, which embeds the low-rank feature matrices
into a much higher dimensional space, enabling the abil-
ity to learn nonlinear correlations upon the rating data
in original space. Mkmf further extends Kmf to com-
bine multiple kernels by learning the a set of weights for
each kernel functions based on the observed data in rat-
ing matrix. As demonstrated in the experiments, our
proposed methods improve the overall performance of
predicting the unobserved data in the matrix compared
to state-of-art baselines.

References

[1] F.R. Bach, G. Lanckriet, and M.I. Jordan. Multiple
kernel learning, conic duality, and the smo algorithm.
In ICML, page 6. ACM, 2004.

[2] J.S. Breese, D. Heckerman, and C. Kadie. Empiri-
cal analysis of predictive algorithms for collaborative
filtering. In Proceedings of the Fourteenth conference
on Uncertainty in artificial intelligence, pages 43–52,
1998.

[3] S. Chee, J. Han, and K. Wang. Rectree: An efficient
collaborative filtering method. In Data Warehousing
and Knowledge Discovery, pages 141–151. Springer,
2001.

[4] S. Funk. Netflix update: Try this at home, 2006.
[5] M. Gönen and E. Alpaydın. Multiple kernel learn-

ing algorithms. The Journal of Machine Learning Re-
search, 12:2211–2268, 2011.

[6] T. Hofmann. Latent semantic models for collaborative
filtering. TOIS, 22(1):89–115, 2004.

[7] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In ICDM, pages
263–272. IEEE, 2008.

[8] G. Karypis. Evaluation of item-based top-n recommen-
dation algorithms. In CIKM, pages 247–254. ACM,
2001.

[9] Y. Koren, R. Bell, and C. Volinsky. Matrix factoriza-
tion techniques for recommender systems. Computer,
(8):30–37, 2009.

[10] G. Lanckriet, T. De Bie, N. Cristianini, M.I. Jordan,
and W.S. Noble. A statistical framework for genomic
data fusion. Bioinformatics, 20(16):2626–2635, 2004.

[11] G. Lanckriet, N. Cristianini, P. Bartlett, L.E. Ghaoui,
and M.I. Jordan. Learning the kernel matrix with
semidefinite programming. The Journal of Machine
Learning Research, 5:27–72, 2004.

[12] N.D. Lawrence and R. Urtasun. Non-linear matrix
factorization with gaussian processes. In ICML, pages
601–608. ACM, 2009.

[13] C. Ma. A guide to singular value decomposition for
collaborative filtering, 2008.

[14] H. Ma, I. King, and M.R. Lyu. Effective missing data
prediction for collaborative filtering. In SIGIR, pages
39–46. ACM, 2007.

[15] A. Paterek. Improving regularized singular value de-
composition for collaborative filtering. In Proceedings
of KDD cup and workshop, pages 5–8, 2007.

[16] D.M. Pennock, E. Horvitz, S. Lawrence, and C.L.
Giles. Collaborative filtering by personality diagnosis:
A hybrid memory-and model-based approach. In
Proceedings of the Sixteenth conference on Uncertainty
in artificial intelligence, pages 473–480, 2000.

[17] J. Rennie and N. Srebro. Fast maximum margin matrix
factorization for collaborative prediction. In ICML,
pages 713–719. ACM, 2005.

[18] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: an open architecture for collabo-
rative filtering of netnews. In Proceedings of the 1994
ACM conference on Computer supported cooperative
work, pages 175–186. ACM, 1994.

[19] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation al-
gorithms. In WWW, pages 285–295. ACM, 2001.

[20] B. Schölkopf and A.J. Smola. Learning with kernels:
Support vector machines, regularization, optimization,
and beyond. MIT press, 2002.

[21] H. Shan and A. Banerjee. Generalized probabilistic
matrix factorizations for collaborative filtering. In
ICDM, pages 1025–1030. IEEE, 2010.

[22] G. Shani, R.I. Brafman, and D. Heckerman. An mdp-
based recommender system. In Proceedings of the Eigh-
teenth conference on Uncertainty in artificial intelli-
gence, pages 453–460. Morgan Kaufmann Publishers
Inc., 2002.

[23] N. Srebro, J. Rennie, and T.S. Jaakkola. Maximum-
margin matrix factorization. In Advances in neural in-
formation processing systems, pages 1329–1336, 2004.

[24] G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, and
Z. Chen. Scalable collaborative filtering using cluster-
based smoothing. In SIGIR, pages 114–121. ACM,
2005.

[25] K. Yu, S. Zhu, J. Lafferty, and Y. Gong. Fast nonpara-
metric matrix factorization for large-scale collaborative
filtering. In SIGIR, pages 211–218. ACM, 2009.

[26] T. Zhou, H. Shan, A. Banerjee, and G. Sapiro. Ker-
nelized probabilistic matrix factorization: Exploiting
graphs and side information. In SDM, volume 12,
pages 403–414. SIAM, 2012.

