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ABSTRACT
Spike train classification is an important problem in many areas
such as healthcare and mobile sensing, where each spike train is
a high-dimensional time series of binary values. Conventional re-
search on spike train classification mainly focus on developing
Spiking Neural Networks (SNNs) under resource-sufficient settings
(e.g., on GPU servers). The neurons of the SNNs are usually densely
connected in each layer. However, in many real-world applications,
we often need to deploy the SNN models on resource-constrained
platforms (e.g., mobile devices) to analyze high-dimensional spike
train data. The high resource requirement of the densely-connected
SNNs can make them hard to deploy on mobile devices. In this
paper, we study the problem of energy-efficient SNNs with sparsely-
connected neurons. We propose an SNN model with sparse spatio-
temporal coding. Our solution is based on the re-parameterization
of weights in an SNN and the application of sparsity regularization
during optimization.We compare our work with the state-of-the-art
SNNs and demonstrate that our sparse SNNs achieve significantly
better computational efficiency on both neuromorphic and standard
datasets with comparable classification accuracy. Furthermore, com-
pared with densely-connected SNNs, we show that our method has
a better capability of generalization on small-size datasets through
extensive experiments.

CCS CONCEPTS
• Information systems→ Data mining; • Computer systems
organization→ Neural networks; • Computing methodologies
→ Supervised learning.

KEYWORDS
spiking neural networks, supervised learning, spatio-temporal cod-
ing, sparsity, hard-concrete distribution
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1 INTRODUCTION
Motivation. Our brains have about a hundred billion neurons that
fire signals to communicate with each other all the time. Each
signal is electrochemical in nature and is referred to as a spike, or
an action potential. The most popular way to think of spike trains is
as a digital sequence of events: 1 for a spike, and 0 for no spike. Such
spike trains arise during physical sensory stimuli such as vision
and motion, or abstract stimuli such as memory. Recently, spike
train classification has attracted much attention in the field of data
mining [17, 20, 25, 26]. Unlike tradition classification, classifying
spike trains is a task with sequences of spikes as both inputs and
outputs. By assuming that all spikes are discrete characteristic
events, the processing of information is reduced to the timing and
counting of said spikes. Designing machine learning algorithms for
spike train classification is very important in many high-impact
fields such as sensor systems for disease diagnosis and human
activity monitoring.

Knowledge Gap. Spiking Neural Network (SNN) show great
potential for dealing with spike train classification [21–23, 25, 26].
Originally proposed to imitate biological information processing
[9], the neurons transfer information between one another via spike
trains. Unlike Recurrent Neural Networks (RNN), which use con-
tinuous value as inputs and outputs, SNNs take sparse spike trains
as inputs and outputs, building large-scale neural networks with
far less energy and memory on neuromorphic hardware systems,
which operate on principles that are fundamentally different from
standard digital computers. Thus, SNNs are clear candidates for
spike train classification.

However, opportunities are always accompanied by challenges.
Due to significant advances in miniaturization of sensor systems,
more and more smart devices such as wearable sensors and smart
phones for elderly care and aerial robots appear around us, which
can produce high-dimensional data in the form of spike trains.
These devices require high quality pattern recognition to meet
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Figure 1: An example of energy-efficient spike train classifi-
cation problem.

their design requirements. At the same time, they are often limited
by available energy and thus low computational cost is required
during inference. As illustrated in Figure 1, wearable devices in-
corporated with varieties of motion sensors are used to monitor
different physical conditions of seniors for identifying their body
conditions. They generate data that cover massive measurements,
including heart rate (HR), blood pressure (BP), and oxygen satura-
tion (SpO2), among others, and are expected to be collected by smart
devices subject to limited power.To run SNNs efficiently on such
high-dimensional data, we need to ensure both high classification
accuracy and low computational cost during inference.

Regarding computational cost, however, modern SNNs [25, 26]
perform many unnecessary computations due to their dense net-
work architectures. These unnecessary computations are caused
by weak connections between neurons. Weak connections play
a limited role in model performance during inference, as shown
in the example in Figure 1. On one hand, inferring Falling needs
activity-related signals given by a person’s intertial measurement
units (IMU), HR, and BP. On the other hand, inferring Heart Disease
doesn’t consider signals from IMUs, but needs BP, SpO2 and could
use more measurements from their photoplethysmograms. As a
result, current SNNs are still not suitable for spike train classifica-
tion, especially when the data is high dimensional and comes from
devices with limited power.

Challenges. In this paper, we propose an energy-efficientmethod
for high-dimensional spike train classification. To solve this prob-
lem, there are two main challenges:

• Sparse SNN vs Sparse RNN : Sparsification techniques have
been employed in RNNs [18] to reduce computational costs.
However, RNNs model sequences via continuous values, and
are outmatched by SNNs for spike train classification. By
sparsifying SNNs, we can avoid unnecessary computations
caused by weak connections between neurons. A sparsified
model has far fewer non-zero parameters and so performs
fewer computations during inference, making it more power
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Figure 2: Comparison of the key differences between SNNs
[21, 25], M-SNNs [5], and proposed sparse SNN.

efficient. Thus, instead of using sparse RNNs, we must find
a way to sparsify the network structure of SNNs.
• Sparsifying Inputs vs Networks: SNNs have been acceler-
ated by either sparsifying the inputs [5] or using stochastic
computing [1]. However, by only focusing on spike rate,
as opposed to spike timing, they disregard a major compo-
nent of the problem. A successful method must consider
both rate and timing together to successfully perform high-
dimensional spike train classification.

Proposed Method. Inspired by the success of Artificial Neural
Networks (ANN) with a sparse structure [7, 13], we propose an
SNN model with sparse spatio-temporal coding. We reparameterize
the connection between each neuron in an SNN by multiplying
each original weight by a binary "gate". Each gate is considered to
be a Bernoulli random variable. As a result, our proposed approach
allows each neuron in the SNN to consider the necessity of com-
ing into contact with each neuron in the next layer. Therefore, it
allows us to penalize the possibility of each gate for being different
nonzero with no further restrictions, thereby pruning weak links.
This reduces the overall computational cost and adds the benefit
of regularization, reducing overfitting. We show through empirical
evaluation on multiple real-world datasets that, compared to base-
lines, the sparse SNN we propose greatly speeds up computation
while incurring only a negligible deterioration in classification per-
formance. Meanwhile, we also show improved generalizability by
varying the size of the training set.

Contributions. Our contributions in this paper can be summa-
rized as follows:
• We define the problem of spike train classification, which is
very important for smart devices with limited energy.
• We propose a sparse SNN for high-dimensional spike train
classification to be performed on energy-limited smart de-
vices.
• We demonstrate that our model outperforms recent state-
of-the-art alternatives by achieving lower computational
cost when tested on both neuromorphic as well as standard
datasets with very negligible degradation in classification
performance.
• We also demonstrate that our method has excellent general-
ization capability on small datasets.

2 RELATEDWORK
In spike train classification, “indirect" learning methods, such as
ANN-to-SNN conversion [4, 6, 8, 15], have been proposed to high



dimensional inputs. These are indirect learning methods because
a regular non-spiking ANN (e.g., a multi-layer perceptron) is ini-
tially used during the training phase. At inference-time, the trained
model is then converted to an SNN. However, there are several dis-
advantages associated with such indirect training. First, it doesn’t
align well with how an SNN operates. In ANNs, it does not matter
if activations are negative, but firing rates in SNNs are always posi-
tive. Furthermore, many limiting constraints are typically added
while training the ANN models. These include not using bias terms,
only supporting average pooling, and only using ReLU activation
functions.

In response, methods for directly training an SNN have recently
been proposed [12, 21, 26]. These approaches are mainly based on
conventional gradient descent. Most notably, different from pre-
vious techniques based only on spatial back-propagation [10, 12],
SNNs trained directly using back-propagation in both the spatial
as well as the temporal domains [21, 26] have achieved state-of-
the-art accuracy on the MNIST and N-MNIST datasets. However,
although these methods perform better than the others described
above on many real-world datasets, from the perspective of compu-
tational efficiency, they are still far from power-efficient in solving
high-dimensional spike trains classification. Therefore there have
been some recently-proposed power-efficient SNNs [1, 5]. [5] aims
to enforce more neurons silence by making input spikes of each
neuron sparser. [1] introduces a stochastic SNN by exploiting the
benefits of stochastic computing to generate input spike trains and
reduce the connection complexity. However, both of them are only
applicable to standard datasets, but not to neuromorphic datasets

3 PRELIMINARY
To describe the SNN models with a sparse structure, we first intro-
duce the baseline framework for SNNs, as proposed by [26]. We
begin by describing the simplest possible SNN, onewhich comprises
a single neuron with one input entry. This neuron is a recurrent
unit that is affected by the current input, and the previous input
and output. For each timestep 𝑡 , it combines the current input with
the previous input and output to compute a new value. This value
can be referred to as the membrane potential in biological neural
network. If the membrane is greater than a threshold, the neuron
fires and outputs 1 to indicate a spike, otherwise, it outputs 0 to
indicate silence. Therefore, for each timestep 𝑡 , the membrane and
output are expressed as follows:

𝑢𝑡 = 𝜏𝑢𝑡−1 (1 − 𝑧𝑡−1) +𝑤𝑥𝑡 + 𝑏, (1)
𝑧𝑡 = Θ(𝑢𝑡 − 𝜗), (2)

where we write 𝑢𝑡 , 𝑥𝑡 , and 𝑧𝑡 to denote the membrane potential,
input, and output of the neuron on timestep 𝑡 , respectively. 𝜏 ∈ [0, 1]
is the time decay constant hyperparameter, and 𝑤 and 𝑏 are the
connection and bias between input and this neuron, respectively.
Θ(·) is the step function, which satisfies 𝛩 (𝑥) = 0 when 𝑥 < 0,
otherwise Θ(𝑥) = 1.

The SNN expressed in Equations 1-2 mimics natural neural net-
works more closely than a traditional ANN. In this way, we rep-
resent a neuron as the parallel combination of a "leaky" resistor
and a capacitor. The second term of the r.h.s. of Equation 1 is used
as external current input to charge up the capacitor to update the

potential 𝑢𝑡 . If the neuron emits a spike 𝑧𝑡 = 1 at timestep 𝑡 , the
capacitor discharges to a resting potential (which we fix at zero
throughout this paper) by using the first term in Equation 1.

An SNN is built by hooking together many of these simple
“neurons”, so that the output of a neuron can be the input of an-
other. We let 𝑢𝑡,𝑛

𝑖
and 𝑧𝑡,𝑛

𝑖
denote the membrane and output of

neuron 𝑖 in layer 𝑛 at timestep 𝑡 . The network has parameters
W = {W1, . . . ,W𝑁−1}, where W𝑛

𝑖 𝑗
denote the parameter associ-

ated with the connection between neuron 𝑗 in layer 𝑛, and neuron
𝑖 in layer 𝑛 + 1. We also let 𝑙 (𝑛) denote the number of neurons in
layer 𝑛 and let 𝑁 be the number of layers in our network. There-
fore, for layer 𝑛 ∈ {2, . . . , 𝑁 }, we write u𝑡,𝑛 = (𝑢𝑡,𝑛1 , . . . , 𝑢

𝑡,𝑛

𝑙 (𝑛) )
⊤

and z𝑡,𝑛 = (𝑧𝑡,𝑛1 , . . . , 𝑧
𝑡,𝑛

𝑙 (𝑛) )
⊤ to denote the membrane and output

vector of neurons in layer 𝑛 at timestep 𝑡 . For 𝑛 = 1, we will use
z𝑡,1 = x𝑡 to denote the input vector. Thus, the expression of an SNN
is given by:

u𝑡,𝑛 = 𝜏u𝑡−1,𝑛 ⊙ (1 − z𝑡−1,𝑛) +W𝑛−1z𝑡,𝑛−1, (3)

z𝑡,𝑛 = Θ(u𝑡,𝑛 −𝑉th). (4)

From Equations 3-4, the spike signals not only propagate through
the layer-by-layer spatial domain, but also affect the neuronal states
through the temporal domain. Therefore, it considers both the spa-
tial and temporal directions during the error backpropagation, i.e.,
spatio-temporal backpropagation (STBP) [25, 26], which signifi-
cantly improves the network accuracy. During backpropagation,
because the activity function Θ(·) is non-differentiable, it is com-
mon to use the rectangular function to approximate the correspond-
ing derivative.

Given the expressions above, we can easily solve a standard
SNN classification problem by training a classifier 𝑓 : R𝑃×𝑇 ↦→
{1, . . . , 𝑁 } on a given dataset {(x(1) , 𝑦 (1) ), . . . , (x(𝐾) , 𝑦 (𝐾) )} that
contains 𝐾 training samples, of which each instance x(𝑖) ∈ R𝑃×𝑇
has an observed label 𝑦 (𝑖) ∈ {1, . . . , 𝑙 (𝑁 )}. 𝑃 is the number of input
entries and𝑇 denotes the length of spike train. To train the SNN, we
define the following loss function 𝐿 for a single training example
(x, 𝑦):

𝐿 =

(
𝑦 − 1

𝑇

𝑇∑
𝑡

Mz𝑡,𝑁
)2

(5)

where z𝑡,𝑁 denotes the voting vector of the last layer 𝑁 at time step
𝑡 , M denotes a constant voting vector connecting neurons in the
output layer to a specific class. Thus, we can use STBP to propagate
the gradients 𝜕𝐿

𝜕𝑜
𝑡,𝑛+1
𝑖

from the (𝑛 + 1)-th layer and 𝜕𝐿

𝜕𝑜
𝑡+1,𝑛
𝑖

from time

step 𝑡 + 1 as follows:

𝜕𝐿

𝜕𝑜
𝑡,𝑛
𝑖

=

𝑙 (𝑛+1)∑
𝑗=1

𝜕𝐿

𝜕𝑜
𝑡,𝑛+1
𝑗

𝜕𝑜
𝑡,𝑛+1
𝑗

𝜕𝑜
𝑡,𝑛
𝑖

+ 𝜕𝐿

𝜕𝑜
𝑡+1,𝑛
𝑖

𝜕𝑜
𝑡+1,𝑛
𝑖

𝜕𝑜
𝑡,𝑛
𝑖

(6)

𝜕𝐿

𝜕𝑢
𝑡,𝑛
𝑖

=
𝜕𝐿

𝜕𝑜
𝑡,𝑛
𝑖

𝜕𝑜
𝑡,𝑛
𝑖

𝜕𝑢
𝑡,𝑛
𝑖

+ 𝜕𝐿

𝜕𝑜
𝑡+1,𝑛
𝑖

𝜕𝑜
𝑡+1,𝑛
𝑖

𝜕𝑢
𝑡,𝑛
𝑖

(7)

4 METHODOLOGY
In this work, we propose a sparsification procedure for deep SNNs
that accelerates both training and inference while improving the
their generalization capabilities through regularization.
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Figure 3: Difference between traditional and sparse SNNs.

4.1 Sparsity regularization and optimization
To build a sparse structure, we consider a re-parametrization of
W𝑛
𝑖 𝑗
, inspired by [13]:

W𝑛 = W̃𝑛 ⊙ b𝑛, b𝑛𝑖 𝑗 ∈ {0, 1}, W̃𝑛
𝑖 𝑗 ≠ 0 (8)

where the b𝑛
𝑖 𝑗
correspond to binary “gates” that denote whether the

corresponding parameter W̃𝑛
𝑖 𝑗
is utilized or not utilized. W̃𝑛 and b𝑛

is also independent of time 𝑡 . To simplify the later derivations, we
reformulate the minimization of Equation 5 as 𝐿 = 𝑓 (𝑦, x; W̃, b).

By letting 𝑝 (b𝑛
𝑖 𝑗
|Π𝑛
𝑖 𝑗
) = Bern(Π𝑛

𝑖 𝑗
) be a Bernoulli distribution

over each gate b𝑛
𝑖 𝑗
, we reconsider a sparse network structure as a

regularized minimization procedure with a regularization on the
number of parameters being used, on average, as follows:

𝐿 = 𝐿𝐸 + 𝐿𝐶 , (9)

𝐿𝐸 = E𝑝 (b |Π)
[
𝑓 (𝑦, x; W̃, b)

]
, (10)

𝐿𝐶 = 𝜆

𝑁∑
𝑛=1
∥Π𝑛 ∥1 (11)

where𝐿𝐸 denotes the expectation of losswith respect to the Bernoulli
distribution of b. Meanwhile, 𝐿𝐶 corresponds to the complexity loss
that measures the sparsity of the model. Due to the positive nature
of each Π𝑛

𝑖 𝑗
, this term also corresponds to the expectation of the

amount of gates being “on.” Based on [16], the objective described
in Equation 9 is a close surrogate to a variational bound involving a
spike and slab distribution over the parameters and a fixed coding
cost for the parameters when the gates are active. However, the first
term in Equation 9 is problematic for Π due to the discrete nature
of b, which does not allow for efficient gradient-based optimization.
The unbiased gradient estimator in [24] could be employed, how-
ever, it suffers from high variance. The straight-through estimator in
[3] can also be used in this problem, but it provides biased gradients
as it ignores the Heaviside function during gradient evaluation.

In this paper, inspired by [13], we find a simple alternative way
to smooth the objective function such that we allow for efficient
gradient-based optimization of Equation 9. Let s𝑛

𝑖 𝑗
be a continuous

random variable with a distribution 𝑞(s𝑛
𝑖 𝑗
) that has parameters Φ𝑛

𝑖 𝑗
.

We can now let each gate be given by a hard-sigmoid rectifiation

of s𝑛
𝑖 𝑗
as follows:

s𝑛𝑖 𝑗 ∼ 𝑞
(
s𝑛𝑖 𝑗 |Φ

𝑛
𝑖 𝑗

)
, b𝑛𝑖 𝑗 = min

(
1,max(0, s𝑛𝑖 𝑗 )

)
(12)

This allows b𝑛
𝑖 𝑗
to be exactly zero. Due to the i.i.d assumption of each

s𝑛
𝑖 𝑗
, we can thus smooth the binary Bernoulli gates by replacing

each b𝑛
𝑖 𝑗
appearing in the first term of Equation 9 with s𝑛

𝑖 𝑗
and the

second term with the probability of the variable s𝑛
𝑖 𝑗
being positive:

𝐿𝐸 = E𝑞 (s |Φ)
[
𝑓 (𝑦, x; W̃, s)

]
, (13)

𝐿𝐶 = 𝜆
∑
𝑖 𝑗𝑛

𝑃 (s𝑛𝑖 𝑗 > 0|Φ𝑛𝑖 𝑗 ) (14)

Here we similarly have a cost that explicitly penalizes the proba-
bility of a gate being different from zero, thus Equations 13-14 act
as a close surrogate to the original loss function in Equation 10-11.
By following the reparameterization trick [11], we can describe
the expression in Equation 13 as an expectation over a parameter-
free noise distribution 𝑝 (𝜖) and a deterministic and differentiable
transformation 𝑔(·) of the parameter Φ and 𝜖 . This allows us to
make the following Monte Carlo approximation to the intractable
expectation over the noise distribution:

𝐿𝐸 =
1
𝑀

𝑀∑
𝑚=1

[
𝑓 (𝑦, x; W̃, s(𝑚) )

]
, (15)

s(𝑚) = min
(
1,max(0, 𝑔(Φ, 𝜖 (𝑚) ))

)
, 𝜖 (𝑚) ∼ 𝑝 (𝜖) (16)

Next we provide more details about 𝑔(·) in Equations 16.

4.2 The hard concrete distribution
The framework above enables us to employ efficient stochastic
gradient-based optimization, while still allowing for exact zeros
of the parameters. For the differentiable transformation 𝑔(·), we
follow [14]: assume that we have a binary concrete random variable
𝑠 distributed in the interval (0, 1). The parameters of this distribu-
tion include log𝛼 and 𝛽 , where log𝛼 denotes the location and 𝛽 is
referred to as the temperature.

Temperature 𝛽 controls the degree of approximation. With 𝛽 =

0, we recover the original Bernoulli distribution, whereas with
0 < 𝛽 < 1 we obtain a probability density that concentrates its
mass near 0 and 1. Therefore the hard concrete distribution can
inherit statistical properties very similar to that of the Bernoulli
distribution. We then stretch 𝑠 to the interval (𝛾, 𝜍), with 𝛾 < 0
and 𝜍 > 1. Following [14], we fix 𝛾 = −0.1, 𝜍 = 1.1, and all 𝛽 = 2

3
throughout this paper. Then we sample 𝑏 based on the expressions
as follows:

𝑠 = 𝜎 ((log𝑢 − log(1 − 𝑢) + log𝛼) /𝛽) , (17)
𝑠 = 𝑠 (𝜍 − 𝛾) + 𝛾, 𝑢 ∼ 𝑈 (0, 1), (18)
𝑏 = min(1,max(0, 𝑠)) . (19)

Thus, the complexity loss 𝐿𝐶 of the objective function in Equa-
tion 14 under the hard concrete distribution can be calculated as:

𝐿𝐶 =
∑
𝑖 𝑗𝑛

𝜎

(
log𝛼𝑛𝑖 𝑗 − 𝛽 log

−𝛾
𝜍

)
. (20)



Algorithm 1 Training code for sparse SNN

Require: : i: Network inputs {𝑋 𝑡 }𝑇𝑡 ; ii: class label 𝑌 ; iii: parame-
ters and states of convolutional layers ({W𝑛, b𝑙 , u0,𝑛, o0,𝑛}𝑁1−1

𝑛=1 );
iv: full-connected layers ({W𝑛, b𝑛, u0,𝑛, o0,𝑛}𝑁2−1

𝑛=1 ); v: simulation
window T; vi: the parameters of the hard-concrete distribution
(log𝛼𝑛, 𝛽, 𝛾, 𝜍 ); vii: the parameters of iterative LIF (𝑇, 𝑘𝜏 , 𝛿,𝑉𝑡ℎ)

Ensure: : Update network parameters
Forward (inference):
1: for all 𝑡 = 1 to 𝑇 do
2: b𝑛 ← Generate(log𝛼𝑛, 𝛽, 𝛾, 𝜍) //Eq. (17)
3: o𝑡,1 ← EncodingLayer(𝑋 𝑡 )
4: for all 𝑙 = 2 to 𝑁1 − 1 do
5: (u𝑡,𝑛, o𝑡,𝑛) ← StateUpdate(W𝑛−1, b𝑏−1, u𝑡−1,𝑛, o𝑡−1,𝑛,

o𝑡,𝑛−1, x𝑡,𝑛−1)//Eq. (21,22)
6: end for
7: end for
Loss:
𝐿 ← ComputeLoss(Y, o𝑡,𝑁2 , log𝛼)//Eq. (9)

Backward:
1: Gradient Initialization: 𝜕𝐿

𝜕o𝑡+1,∗ = 0
2: for all 𝑡 = 𝑇 to 1 do
3: 𝜕𝐿

𝜕o𝑡,𝑁2 ← LossGradient(𝐿, 𝜕𝐿
𝜕o𝑡+1,𝑁2 )//Eq. (6,7,9)

4: for all 𝑙 = 𝑁2 − 1 to 1 do
5: ( 𝜕𝐿

𝜕o𝑡,𝑛 ,
𝜕𝐿
𝜕u𝑡,𝑛 ,

𝜕𝐿
𝜕W𝑛 ,

𝜕𝐿
𝜕𝛼𝑛 ) ← BackwardGradient

( 𝜕𝐿
𝜕o𝑡,𝑛+1 ,

𝜕𝐿
𝜕o𝑡+1,𝑛 ,W

𝑛, log𝛼𝑛)//Eq. (6,7,9)
6: end for
7: for all 𝑙 = 𝑁1 to 2 do
8: ( 𝜕𝐿

𝜕o𝑡,𝑛 ,
𝜕𝐿
𝜕u𝑡,𝑛 ,

𝜕𝐿
𝜕W𝑛−1 ,

𝜕𝐿
𝜕𝛼𝑛−1 ) ← BackwardGradient

( 𝜕𝐿
𝜕o𝑡,𝑛+1 ,

𝜕𝐿
𝜕o𝑡+1,𝑛 ,W

𝑛−1, log𝛼𝑛−1)//Eq. (6,7,9)
9: end for
10: end for

Given these derivations, we can easily obtain the corresponding
iterative state update equations and gradients for sparse deep SNNs.

u𝑡+1,𝑛+1
𝑖

= 𝑘𝜏u𝑡,𝑛+1
𝑖

(
1 − o𝑡,𝑛+1

𝑖

)
+
𝑙 (𝑛)∑
𝑗

W̃𝑛
𝑖 𝑗b

𝑛
𝑖 𝑗o

𝑡+1,𝑛
𝑗

(21)

o𝑡+1,𝑛+1
𝑖

= 𝛩

(
u𝑡+1,𝑛+1
𝑖

−𝑉th
)

(22)

b𝑛𝑖 𝑗 = min
(
1,max(0, s̄𝑛𝑖 𝑗 )

)
, (23)

s̄𝑛𝑖 𝑗 = s𝑛𝑖 𝑗 (𝜍 − 𝛾) + 𝛾, (24)

s𝑛𝑖 𝑗 = 𝜎
((
log𝑢 − log(1 − 𝑢) + log𝛼𝑛𝑖 𝑗

)
/𝛽

)
(25)

We also summarize the overall training process of our proposed
sparse SNNs as pseudo-code in Algorithm 1.

5 EMPIRICAL STUDY
To comprehensively validate the effectiveness of our proposed
method, we conduct experiments to answer two questions: First,
we are interested in computational improvement with very negli-
gible degradation in accuracy. Our work in this paper thus aims
to improve the state-of-the-art SNN in this regard. We choose the

Spiking CNN (SCNN) [26] as the basic model to which we apply
our proposed sparsification procedure on this model and name
it sparse SCNN. We then compare the efficiency and accuracy of
our Sparse SCNN with SCNN, M-SNN [5], and stochastic SNN [1]
on various classification tasks. To better compare our work with
them, we follow the same experimental setting as in [26], including
the same experimental datasets and the same network structure.
Second, we want to explore the generalizability of our proposed
model, especially for high dimensional data with very few training
samples. We thus test on small training subsets of MNIST and N-
MNIST. We validate our sparse deep SNN framework by using the
state-of-the-art fully connected and convolutional architectures for
deep SNNs [26] on these datasets. To combat randomness in the
experiment system, we run all experiments 10 times and report the
average results, except when otherwise stated.

5.1 Datasets
We evaluate our sparse SNN models and baselines on various
datasets. Using the same datasets as in [26], we test on both static
(non-spiking) as well as dynamic (neuromorphic) data.

5.1.1 Static Datasets. MNIST is a popular dataset comprised of
a training set with 60, 000 samples and a testing set with 10, 000
samples of hand-written digits 0 − 9. CIFAR-10 is an established
computer-vision dataset used for object recognition. It consists of
60, 000 32×32 color images containing one of 10 object classes, with
6, 000 images per class. Since our method and baselines are spike
based learning algorithm, the static images should be converted to
spike trains. To this end, we use the Bernoulli sampling conversion
from original pixel intensity to the spike trains in this paper. Each
normalized pixel is converted to a spike event “1”) or no spike
event “0”) at each time step by using an independent and identically
distributed Bernoulli sampling. The probability of generating a
spike event is proportional to the normalized value of the entry.
Thus, given a certain time window𝑇 , the spike events form a spike
train. During training, we set 𝑇 to 12 and 30ms in MNIST and
CIFAR-10, respectively.

5.1.2 Dynamic Datasets. Compared to the static datasets, dynamic
datasets contain richer temporal features and are therefore more
suitable for evaluating SNNs since SNNs can take advantage of
the added information. We use the N-MNIST1 and DVS-Gesture2
datasets to evaluate the capability of our method on dynamic
datasets. The N-MNIST dataset [19] consists of MNIST images
converted into a spiking dataset using a Dynamic Vision Sensor
(DVS) moving on a pan-tilt unit. Each dataset sample is 300ms long,
with a shape of 34× 34 pixels, containing both “on” and “off” spikes.
The dataset is split into training and test sets following the origi-
nal split in MNIST of 60, 000 training samples and 10, 000 testing
samples.

The DVS-Gesture dataset [2] contains 1, 342 instances of a set of
11 hand and arm gestures, grouped into 122 trials and collected from
29 subjects under 3 different lighting conditions. During each trial,
one subject stood against a stationary background and performed
all 11 gestures sequentially under the same lighting conditions.

1https://www.garrickorchard.com/datasets/n-mnist
2https://ibm.ent.box.com/s/3hiq58ww1pbbjrinh367ykfdf60xsfm8



Table 1: Fixed parameter values for the various experiments.

Parameter Description Chosen Value (MNIST/CIFAR10/N-
MNIST/DVS-Gesture)

𝑇 Time window 30ms,12ms,300ms,1450ms
𝑘𝜏 Decay factor 0.1ms,0.3ms,0.2ms,0.2ms
𝛿 Derivative approximation parameter 1.0,0.5,0.5,0.5
𝑉th Threshold 0.5

𝛽 Temperature of hard-concrete distribution 2/3
𝛾, 𝜍 Other parameters of hard-concrete distribution -0.1, 1.1
𝜆 The weight factor of sparse regularization 0.001

MFLOPs

Accuracy

Model SCNN Sparse SCNN (Ours) 

99.53% 99.46%

MNIST

16.26

4.68

M-SNN

99.57%

Stochastic SNN

4.658.32

98.65%

Figure 4: Comparison with SCNN[25], M-SNN[5] and stochastic SNN[1] on MNIST. We show the number of million floating
point operations (MFLOPs) after training for eachmodel. These were computed by assuming one FLOP for multiplication and
another FLOP for addition.

These gestures are recorded using a DVS128 camera, which is a
28 × 28-pixel Dynamic Vision Sensor. The problem is to identify
the correct action label associated with each action sequence video.

5.2 Network structure
Throughout this section, we use the following notations to describe
the deep SNN architecture. Layers are separated by “−” and spatial
dimensions are separated by “×”. A convolution layer is represented
by “𝐶” and a pooling layer is represented by “𝑃”. For example,
“28 × 28 − 15𝐶5 − 𝑃2 − 10” represents a 4-layer spiking CNN with
28 × 28 input, followed by 15 convolution filters that are (5 × 5),
followed by 2 × 2 pooling layer and finally a dense layer connected
to 10 output neurons. Table 2 provides the network structures for
experiments. We use the exact same network architecture for our
model and baselines for a fair comparison.

5.3 Initialization
In our proposed model, some parameters, such as the model weights
and the locations of the hard-concrete distribution, need to be
learned while others need to be fixed throughout the optimization.
We now discuss our choice for initializing these parameters, which
includes the weights, the thresholds and the decay factor for each
neuron, the weighting factor for the sparse regularization, and

Table 2: Network structures used for experiments.

Static Dataset

MNIST 28×28 − 15𝐶5 − 𝑃2 − 40𝐶5 − 𝑃2 − 300 − 10
CIFAR10 34×34 × 2 − 32𝐶3 − 𝑃2 − 64𝐶3 − 𝑃2 − 256 − 10

Dynamic Dataset

N-MNIST 34×34× 2− 16𝐶5− 𝑃2− 32𝐶3− 𝑃2− 64𝐶3− 10
DVS-Gesture 128×128×2−𝑃4−16𝐶5−𝑃2−32𝐶3−𝑃2−512−11

the parameters of the hard-concrete distribution. We divide these
parameters into two sets to consider.

First, to better mimic the neural dynamics, we need to control
the relative magnitude between the weights and thresholds to avoid
too much spiking, which reduces neuronal selectivity. In practice,
and as a simplification, we fix the threshold value as a constant for
each neuron and only adjust the weights that is responsible for con-
trolling/balancing activity. We initialize all the weight parameters
by sampling from the standard uniform distribution followed by
normalization.

Second, while sparsifying the network, we follow [14] and set𝛾 =

−0.1, 𝜍 = 1.1, 𝛽 = 2
3 for the concrete distributions. Meanwhile, we

initialize the locations log𝛼 by sampling from a normal distribution



MFLOPs

Accuracy

Model SCNN Sparse SCNN (Ours) 

89.83% 89.65%

CIFAR-10

1.95
1.03

M-SNN

87.92%

Stochastic SNN

1.181.32

80.46%

Figure 5: Comparison with SCNN[25], M-SNN[5] and stochastic SNN[1] on CIFAR-10.

MFLOPs

Accuracy

Model SCNN Sparse SCNN (Ours) 

99.44% 99.38%

N-MNIST

9.47

2.78

M-SNN

97.87%

Stochastic SNN

3.135.02

98.27%

Figure 6: Comparison with SCNN[25], M-SNN[5] and stochastic SNN[1] on N-MNIST.

with a standard deviation of 0.01 and a mean of 1. In practice, we
use a single sample of the gate 𝑧 for each mini-batch of the dataset
during the training, even though this can lead to larger variance in
the gradients. This way, we show that we can obtain the speedups
in optimization with a practical implementation without incurring
a significant loss in classification accuracy. A summary of the values
of the fixed parameters used is shown in Table 1.

5.4 Evaluation metrics
To evaluate classification performance, we use the standard Accu-
racy metric. To evaluate the computational efficiency, we count the
floating point operations (FLOPs) to measure the potential speedup.
FLOPs are computed by assuming one flop for multiplication and
one flop for addition.

5.5 Experiment results
In this section, we discuss the experimental results pertaining to
each of the two previously-raised research questions separately.

5.5.1 Potential speedup. The tables shown in Figures 4 and 5 com-
pare our proposed sparse deep SNNswith a traditional SNN,M-SNN,

Table 3: Comparison on small datasets. Best accuracy high-
lighted.

Dataset Method Accuracy

MNIST SCNN 69%
Sparse SCNN (Ours) 92%

N-MNIST SCNN 95%
Sparse SCNN (Ours) 97%

and stochastic SNN on the static MNIST and CIFAR-10 datasets, re-
spectively. Even without a complex architecture, the proposed deep
SNNs and their competitors still perform well on these datasets.
We find that there is only a slight difference in accuracy between
our sparse deep SNNs and their competitors (i.e., only between
0.05% and 0.1%). This is a negligible difference. However, as we
can observe, there is a significant improvement in the FLOP count
between our sparse deep SNNs and the competitors. On CIFAR-10,
our sparse network and M-SNN incurs only half the computational
cost compared to traditional SNN. On MNIST, this ratio is further
reduced to less than 25%, which allows for a potentially significant
speedup in inference phase.



MFLOPs

Accuracy

Model SCNN Sparse SCNN (Ours) 

90.53% 90.15%

DVS-Gesture

5.18

1.28

(128x128x2-P4-16C5-P2-32C3-P2-512-11)

M-SNN

60.18%

Stochastic SNN

1.32
2.61

77.82%

Figure 7: Comparison with SCNN[25], M-SNN[5] and stochastic SNN[1] on DVS-Gesture.

The results for the neuromorphic datasets are shown in Figures 6
and 7. We find that both M-SNN and stochastic SNN, which perform
well on static datasets, have a significant degradation in accuracy.
This demonstrates that the works proposed in [1, 5] are not as
suitable for neuromorphic datasets. Meanwhile, by using a sparse
network structure, our proposed model incur a slight degradation
in accuracy (i.e., decrease between 0.05% and 0.4%) but sparsity can
provide a significant speedup – nearly 5𝑥 times. Our experimental
results show that sparsifying deep SNNs using our proposed frame-
work can greatly speed up training and inference while only in-
curring a minimal and negligible loss in classification performance.
In summary, our proposed model achieves better computational
efficiency than previous works when tested on both neuromorphic
as well as static datasets and achieves very negligible degradation
in accuracy.

5.5.2 Better generalization. To evaluate the ability of the model
to generalize, we first compare the performance of our proposed
method to SCNN on MNIST as the size of the training set is varied
We continuously reduce the training set of MNIST and test on a
test set of the same size.

As shown in Figure 8, although both methods achieve very com-
petitive accuracy when the whole training set is used, our sparse
deep SNN demonstrates much higher robustness when training set
size is decreased. In particular, we observe that the performance of
the non-sparse model drops sharply when the training set size is
reduced to below 3, 000 while the sparse deep SNN’s performance
remains fairly steady. We conclude that when there are not enough
training samples, deep SNNs will easily overfit and even memorize
random patterns in the training set. This overfitting can lead to poor
generalization. In contrast, by using sparse architecture in deep
SNNs, the model shows better generalization even when training
samples are limited.

We summarize the results of these experiments, run on MNIST
and N-MNIST, in Table 3. During training, we limit the percentage
of available training samples to only 1.67% (i.e., only 1, 000 samples).
As can be observed from the results, all the sparse deep SNNs
demonstrate higher accuracy than that of their competitors. This
demonstrates that by inducing model sparsity in the architecture,
deep SNNs can achieve better generalization in practice.

60000

SCNN
Sparse SCNN (Ours)

Figure 8: Generalization test on MNIST dataset. The Y-axis
denotes the accuracy of each model on the test set (10, 000
samples). The X-axis denotes the size of the training set.

5.6 Impact of the weight factor of sparse
regularization

In this paper, we achieve sparsity in the network structure of deep
SNNs via sparsity regularization, which balances the accuracy with
the percent of non-zero weights. Now we quantitatively analyze
the impact of this sparsity regularization. We implement a sparse
spiking CNN onMNIST, keeping the model configurations the same
as our previous experiment on MNIST (28×28-15C5-P2-40C5-P2-
300-10).

In Figure 9, the left side shows the level of sparsity at each layer
when 𝜆 = 0.001. We use subgraphs of different widths to correspond
to the number of weights of each layer in the network, while using
the height of blue shaded area to correspond to the sparsity of
each layer. The right side shows the overall level of sparsity under
different values of 𝜆. The X-axis denotes the value of the sparsity
regularization termwhile the Y-axis denotes the percent of non-zero
weights.

The results in Figure 9 show that sparse regularization has a
different influence on convolutional layers and fully connected
layers. One reason why the the fully connected layers are sparser
than the convolutional layers may be due to the difference in nature
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Figure 9: (Left) Level of sparsity with fixed 𝜆=0.001; (Right)
Overall sparsity when 𝜆 is varied.

of the two types of layers. Convolutional layers apply the same
set of weights repeatedly at different positions of the input. On
the other hand, each weight in a fully connected layer will only
be used once. The parameters in convolutional layers therefore
learn general features at possibly multiple locations while each
parameter in fully connected layers computes a single feature. As a
result, the effect of sparse regularization is more significant in fully
connected layers than in convolutional layers.

6 CONCLUSION
In this paper, we aim to design a novel algorithm for high-dimensional
spike train classification to be performed on energy-limited smart
devices. To this end, we propose a novel sparse architecture for
deep SNNs. Our sparsification is achieved by reparametrizing orig-
inal weights among neurons in the network and then employing
a sparsity regularization during optimization. In addition, we also
propose an algorithm that can directly train sparse deep SNNs via
back-propagation. In empirical study, we choose SCNN as the basic
model and apply our proposed sparsification procedure on it. To
validate the effectiveness of our proposed method, we compare our
model with SCNN, M-SNN and stochastic SNN. Our experimental
results on both non-spiking (MNIST and CIFAR-10) and neuro-
morphic datasets (N-MNIST and DVS-Gesture) show that we can
achieve significant speedup with little or no loss in classification
accuracy. Furthermore, compared with densely-connected SNNs,
we also show through extensive experiments that sparsification can
result in better generalizability of the trained model on small-size
datasets.
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