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ABSTRACT
Early multi-label classification of time series, the assignment of a
label set to a time series before the series is entirely observed, is
critical for time-sensitive domains such as healthcare. In such cases,
waiting too long to classify can render predictions useless, regard-
less of their accuracy, while predicting prematurely can result in po-
tentially costly erroneous results. When predicting multiple labels
(for example, types of infections), dependencies between labels can
be learned and leveraged to improve overall accuracy. Together, reli-
ably predicting the correct label set of a time series while observing
as few timesteps as possible is challenging because these goals are
contradictory in that fewer timesteps often means worse accuracy
To achieve early yet sufficiently accurate predictions, correlations
between labels must be accounted for since direct evidence of some
labels may only appear late in the series. We design an effective
solution to this open problem, the Recurrent Halting Chain (RHC),
that for the first time integrates key innovations in both Early and
Multi-label Classification into one multi-objective model. RHC uses
a recurrent neural network to jointly model raw time series as
well as correlations between labels, resulting in a novel order-free
classifier chain that tackles this time-sensitive multi-label learning
task. Further, RHC employs a reinforcement learning-based halting
network to decide at each timestep which, if any, classes should
be predicted, learning to build the label set over time. Using two
real-world time-sensitive datasets and popular multi-label metrics,
we show that RHC outperforms recent alternatives by predicting
more-accurate label sets earlier.
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Figure 1: Early Multi-label Classification Problem. Multiple
labels can be assigned to each instance of time series data.
The correct labels must be predicted as early as possible. In
this example, the bottom right box is ideal: The correct label
set is predicted after observing very few timesteps.
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1 INTRODUCTION
Background. Early Classification is the crucial task of predicting
class labels of time series as early as possible for time-sensitive ap-
plications such as healthcare [10] and transportation [9]. In many
cases, predictions made late are simply useless, regardless of their
accuracy. Meanwhile, many time-sensitive tasks can be best mod-
eled as multi-label classification, given that multiple classes (e.g.,
diseases) may be assigned to one instance (e.g., patient). However,
standard multi-label classification methods rely on observing an
entire time series prior to its classification [30]. We refer to the
intersection of time-sensitive and multi-label learning as the Early
Multi-label Classification (EMC) problem, where a successful model
must accurately predict the correct set of labels for a time series
while observing as few of its values over time as possible.

An important example of the EMC problem is diagnosing a
patient’s infections since the very sick often acquire multiple in-
fections concurrently. Evidence of said infections may appear at
different times throughout a patient’s stay in an intensive care unit,
and the likelihood of developing one infection often depends on
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which infections a patient has already acquired. A successful diagno-
sis model should thus capture the dependencies between observed
infectionswhile predicting each infection as soon as enough evidence
has been observed. The earlier a correct diagnosis is predicted, the
more time clinicians have to react and intervene, thus improving
patient outcomes. A concrete example of this setting is depicted in
Figure 1 where the optimal outcome is achieved through the early
and accurate prediction of both Diabetes and Heart Disease.

State-of-the-Art. Recently, major progress has been made in
tackling the Early and Multi-label problems independently.

Early Classification has gained significant attention, particularly
for applications using time series data [6, 11, 12, 16, 20, 33, 34],
though initial work has also been done on text [14] and video
[17]. Most recently, tunable Early Classification [11, 18, 20] has
garnered much interest since the balance between earliness and
accuracy tends to be task-dependent. For this reason, works have
moved recently towards the use of neural networks for classification
[4, 11, 14, 17, 18], seamlessly modeling high-dimensional inputs
through recent advances in representation learning. However, these
proposed methods have only studied multi-class classification (one
label per instance), ignoring the crucial relationships between the
labels that are inherent to such multi-label classification settings.

Multi-label Classification has also recently seen a surge of interest,
in particular the study of Classifier Chains [3, 22, 23, 27, 30, 35, 36].
This approach aims to directly model the conditional probability
between predicted labels, often using Recurrent Neural Networks
(RNN). A key limitation of these works is that they predict label
sets only after observing the entire instance, directly contradicting
the requirements of Early Classification. Another restriction of
popular approaches [23, 30, 35] is that they require that a pre-
defined label order be provided a-priori to enable optimization
[3, 22, 27]. While this simplifies the problem, it unfortunately limits
application to domains with easily-defined label orderings, such as
speaker diarization [5]. In the context of most time series datasets,
it is rarely known precisely at which timestep the evidence of a
label arises. Finally, the integration of earliness into the complex
multi-label context remains unexplored.

Problem Definition. In this work, we are the first to address
the open Early Multi-label Classification (EMC) problem, which
is to predict the correct label set of a time series instance while
observing as few timesteps per class as possible. This results in
one early timestep per class, at which point its prediction is made.
While the evidence for a time series’ class labels may appear at
any time step, the ‘true’ timestep of each class label is entirely
unsupervised – the only supervision comes from one label set for
the entire time series. The halting timesteps should be dynamic,
varying depending on the time series. The crux of the problem is
that making predictions early is essential for each class, but there
may not be enough early evidence to warrant a high-confidence
prediction, thus defining a multi-objective optimization problem.
An effective solution must leverage relationships between labels to
predict accurate label sets, even in the absence of clear class signals.

Challenges. Despite the importance and potential impact of
Early Multi-label Classificaiton, open challenges remain:

• Unknown label timing: For multi-label classification, a label
set is available for each time series indicating its associated
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(c) Early Multi-label Classification (this paper)

Figure 2: Comparing the different solutions to the early
multi-label classification problem.

classes (e.g., recording which infections a patient acquired).
However, rarely are the steps at which class labels appear
recorded in conjunction with a time series. Thus, we may
have no a-priori knowledge of when a class should be de-
tected. Learningwhen to predict each class is an unsupervised
sub-problem within an otherwise-supervised learning task.

• Conflicting objectives: Early classifications are typically made
at the expense of prediction accuracy. Maximally-early clas-
sifications are often based on partial information, which may
not be sufficient for accurate prediction. A late classification
will be better-informed and thus more accurate. However,
late predictions cause critical delays and thus miss precious
opportunities to react rapidly. The optimal trade-off in this
multi-objective problem is domain and task-driven driven.

• Multi-label learning: Learning the relationships between la-
bels themselves is a challenging problem. Multi-label learn-
ing on time series while they are observed remains largely
unexplored, particularly in the context of early classification
where accurate label set assignment is not the only objective.

Proposed Method. We propose a solution to the new EMC
problem, which we refer to as the Recurrent Halting Chain, or
RHC. RHC is the composition of three novel neural networks, each
solving one piece of the EMC problem. First, a recurrent neural
network (RNN)-based Transition Model learns to jointly represent
multivariate time series data and the conditional dependencies
between the labels. This encodes multi-label learning into the clas-
sification task, acting as a classifier chain. Second, a Disciminator
network uses the hidden state of the Transition Model to predict
soft class probabilities at every timestep. Third and finally, a Halting
Policy Network uses the soft class probabilities and the hidden state
of the Transition Model to predict at each step which, if any, classes
to add to the predicted label set. Once the Halting Policy Network
has decided to halt all classes, no further timesteps are observed.
Importantly, as soon as a prediction is made in the time series, it is
returned as an early prediction.



Since the true label locations are unknown, reinforcement learn-
ing allows for dynamic label predictions, strictly conditioned on the
input data. RHC is optimized for both conflicting objectives con-
currently; along the way we introduce one simple hyperparameter
that trades off the emphasis in each goal. Figure 2 illustrates the key
difference between our proposed solution and the state-of-the-art
approaches to both Early and Multi-label Classification in isolation.

Contributions. Our main contributions are summarized below:

• We define the new open problem of Early Multi-label Clas-
sification (EMC) with its roots in both Early Classification
and Multi-label Classification.

• We design the first solution to EMC, which advances beyond
both recent deep reinforcement learning approaches to early
classification and classifier chains for multi-label learning,
resulting in a unified approach to this complex problem.

• Our model is evaluated on real-world time-sensitive multi-
label classification tasks using several publicly-available
datasets. Results show that RHC consistently beats alternate
solutions in both accuracy and earliness of label prediction
on a variety of settings and metrics.

2 RELATEDWORK
As best we can tell, ours is the first work to study the problem of
Early Multi-label Classification. This direction is related to both
Early Classification and Multi-label Classification.

Early Classification. The goal of Early Classification is to cor-
rectly predict the label of a time series before it is fully observed, se-
lecting one timestep per time series at which the whole series is clas-
sified. This task is often targeted at time series data [6–8, 12, 20, 32–
34], however the most recent approaches [4, 11, 18] propose a
general formulation of this problem through the use of neural
networks. By using neural networks, these approaches naturally
model multivariate inputs [11, 18] in contrast to previous works
which solely study univariate inputs [6, 21, 32–34]. The univariate
approaches typically involve exhaustive search for discriminative
subsequences, which scales poorly into the multivariate setting [12].
Additionally, many recent works also take a prefix-based approach
to early classification[11, 20, 21], learning at which timestep enough
information has been observed to warrant classification. This is in
contrast to shapelets [32], which typically require exhaustive search.
The prefix-based solution of “picking a halting point” can naturally
be framed as a Markov Decision Process: at each timestep, decide
whether or not to stop and predict the label of a time series. This
observation has allowed for intuitive balancing between earliness
and accuracy through reinforcement learning [11, 18]. [11] uses an
RNN to model the transition dynamics of time series in conjunction
with a policy network that decides at each timestep whether or not
to halt the RNN and generate a prediction. [18] proposes a Deep Q
Network [19] that, given a time series prefix, samples which class
to predict or to simply wait for more observations. This integrates
the halting and classification but does not scale as the number of
classes increases since large action spaces often require too vast a
number of samples [25].

A major limitation of all current Early Classification methods
is that they are restricted to the multi-class setting – predicting

Table 1: Basic Notation

Notation Description

N Number of time series in dataset.
M Variables per time series.
L Number of possible classes.
T Number of steps per time series.
xt Values recorded at step t .
Y True label set for one time series (e.g., {1, 1, 0}).
ȳt Indicator of which classes have been predicted

prior to step t .
ŷt Soft confidence predictions at step t .
plt Halting probability at step t for class l .
alt Halting action vector at step t for class l .
Ht Vector representation for X (i)

0, · · · ,t from the RNN.
π (·) Policy – maps hidden states to actions.
τ l Predicted halting-step for class l .

where i = [1, . . . ,N ], t = [1, . . . ,T ], and l =
[1, . . . , L].

exactly one label per time series. As shown by the wealth of multi-
label learning literature, dependencies between labels in multi-label
tasks can provide crucial information for solving many problems.

Multi-label Classification. Multi-label classification methods
predict the labels of time series where multiple labels are possi-
ble per series. Typically, the key challenge and opportunity is in
relating the labels to each other in the feature space of a learned
model, a feature missed by standard multi-class algorithms. One
basic approach to achieving multi-label learning is through decom-
position of the multi-label problem into a set of binary classification
tasks, referred to as Binary Decomposition [2]. This outputs label
sets but ignores the correlation between labels and the likelihoods
of different label combinations. In contrast, Classifier Chains have
recently become a popular and intuitive approach to multi-label
learning since they naturally model conditional dependency be-
tween class predictions [3, 22, 23, 27, 30, 35, 36]. This is typically
achieved using an RNN that outputs labels one step at a time with
its own already-predicted labels being fed back into the model at
each step. A key challenge of RNN-based classifier chains is the
natural requirement of a label-order with which to train the model
[3, 27]. Meanwhile, the chosen label order dramatically impacts the
performance of the classifier chain [23, 29]. Recent works have just
begun to remove this assumption, proposing classifier chains based
on confidence-ranked labeling [3] and multi-task learning [27].

The key drawback of these algorithms in time-sensitive applica-
tions is that all classes are predicted only after an entire sequence is
observed. To achieve actionable decision making in time sensitive
domains, predictions must instead be made at early timesteps, as
observed by the Early Classification problem.

3 METHODOLOGY
3.1 Problem Definition
Given a set of labeled time series containing N length-T time series,
consider the instance X = [x1, x2, . . . , xT ] where xt ∈ RM is theM
variables recorded at step t . LetY = [y1,y2, . . . ,yL] denote the label
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Figure 3: Overview of RHC. At each timestep t , the Transition Model R computes Ht = R(Ht−1, xt , ȳt−1), the new hidden state
for timestep t . Using Ht , the Discriminator D computes soft class probabilities for every class: ŷt = D(Ht ). Then, the Halting
Policy Network P selects whether or not to “lock in” the predictions of each class in ŷt independently in the form of one
sampled action vector: at = P(Ht , ŷt ). Once a class has been halted, its prediction is returned as an early classification.

set such that Y ∈ {0, 1}L is the set of L possible labels where yl = 1
indicates assignment to class l . For ease-of-reading, we describe
our method in terms of one time series. The learning objective is a
function fθ (·) whose parameters θ accurately map fθ (X ) → Y for
series not observed during training.

As an example of this setup, consider a patient’s health records
collected throughout her stay at a hospital (e.g., heart rate, blood
pressure). While in the hospital, she is diagnosed with diabetes
and heart disease but not runner’s knee. This label set would be
represented as, y = [1, 1, 0], respectively, indicating the first two
possible diagnoses were observed while the third was not. The key
multi-label component is in the relationship between the labels:
diabetes and heart disease often occur concurrently while runner’s
knee is independent of the other two.

The final component is in contrast to the standard multi-label
classification problem: for each time series we seek one halting step
τ ≤ T per class L at which each class’s prediction should be made.
τ l , the halting step for class l , must be small enough to achieve
early prediction yet large enough to assign the correct label set
to the time series. This requirement defines our multi-objective
optimization problem since earlier predictions (τ ≪ T ) often come
at the expense of predicting correct label sets.

3.2 Proposed Method: RHC
We propose a Recurrent Neural Network (RNN)-based Early Multi-
label Classification model. Our method, the Recurrent Halting
Chain (RHC), has two concurrent goals: First, to model complex
time series data for multi-label classification, thereby modeling con-
ditional dependence between labels. Second, to select one halting
timestep τ per class at which point the model predicts the label

of that class. RHC is a neural network comprised of several core
components: (1) a Transition Model that learns to jointly represent
the map of X → Y and the conditional relationship between labels
while the labels are being predicted in time, acting as a classifier
chain, (2) a Discriminator that predict soft confidence values ŷ at
each timestep t , and (3) a Halting Policy Network that decides at
each step whether or not to halt each class using a joint-learned
representation to model which classes can be predicted concurrently.
Once the Halting Policy Network decides to halt a class, the Dis-
criminator’s prediction of that class is returned from the model and
subsequently remains fixed for all time steps up until the Halting
Policy Network has halted all classes.

The TransitionModel andDiscriminator are trained together as an
order-free Classifier Chain [3, 27] since there are no labels indicating
at which timesteps a class label should be predicted. The Halting
Policy Network makes discrete decisions at each timestep (whether
or not to halt and predict a class), which is non-differentiable and
is trained using Reinforcement Learning, being rewarded based on
how accurately the Discriminator predicts each class and punished
according to how many steps it takes to make accurate predictions.

3.2.1 Transition Model. The core of RHC is a Transition Model R(·),
which learns joint vector representations for the time series dy-
namics and the conditional dependence between labels. We follow
the state-of-the-art in a wide variety of sequence modeling prob-
lems and implement this component as Recurrent Neural Network
(RNN) R(·), processing input sequences one step at a time. To avoid
the vanishing gradient problem pervasive in RNNs, we use Long
Short-Term Memory (LSTM) [13] cells as our transition function,



mapping inputs xt to a representation Ht as follows:

ft = σ (Wf · [Ht−1,Xt ] + bf ) (1)
it = σ (Wi · [Ht−1,Xt ] + bi ) (2)
Ct = ft ⊙ Ct−1 + it ⊙ ϕ(Wc · [Ht−1,Xt ] + bc ) (3)
ot = σ (Wo · [Ht−1,Xt ] + bo ) (4)
Ht = ot ⊙ ϕ(Ct ) (5)

where [ ] indicates concatenation, σ indicates the sigmoid function,
· is matrix multiplication, and ϕ indicates the hyperbolic tangent
function.Wf ,Wi ,Wc , andWo represent the matrices of trainable
weights for the forget, input, memory cell, and output gates, re-
spectively. Due to the concatenation of Ht−1 and Xt , each of these
weight matrices is of shapev × (v +M) wherev is the dimension of
the hidden state of the RNN. Each gate is simply an affine transfor-
mation of the combination of newly-observed information Xt and
previous state Ht−1 followed by a non-linearity and so the transition
function is a learned dynamical system modeling the transition of
hidden state vector H .

In order to encode multi-label learning into this transition func-
tion, we use an auxiliary indicator vector ȳt ∈ {0, 1}L which records
at timestep t which classes have already been predicted, similar to [3].
Thus, ȳlt = 1 indicates that class l has already been predicted and
ȳ0 is initialized as 0s prior to observing any timesteps, indicating
no classes have been predicted. The transition model is thus an
augmentation of the standard LSTM update equations as follows,
conditioning the hidden states on ȳt :

ft = σ (Wf · [Ht−1,Xt , ȳt−1] + bf ) (6)
it = σ (Wi · [Ht−1,Xt , ȳt−1] + bi ) (7)
Ct = ft ⊙ Ct−1 + it ⊙ ϕ(Wc · [Ht−1,Xt , ȳt−1] + bc ) (8)
ot = σ (Wo · [Ht−1,Xt , ȳt−1] + bo ) (9)
Ht = ot ⊙ ϕ(Ct ) (10)

This increases the size of the weight matricesW according to the
number of classes. Thus, the Transition Model effectively captures
the dynamics of the time series while it is observed while modeling
the conditional dependence between labelswith respect to each other,
as is the core idea of classifier chains. Our approach thus improves
upon other classifier chains in this setting bymerging the time series
dynamicswith label correlations in the latent space of the Transition
Model, effectively conditioning the model’s representation on both
input time series and the history of predicted labels.

3.2.2 Discriminator Network. The computed hidden representa-
tion Ht is subsequently projected into a probabilistic classification
space through a Discriminator neural network Dθ (·), as shown
in Equation 11 whereWho ∈ RL×V , predicting one probability for
each of the possible L classes using the sigmoid function. Thus
P(Y |Ht ) ∈ [0, 1]L . Importantly, Ht has been computed with respect
to ȳt−1, capturing label dependence during classification.

ŷt = P(Y | Ht ) = Dθ (Ht )

=
1

1 + eWhoHt+bho

(11)

In principle, the Discriminator Dθ (·) can be as simple or as compli-
cated as desired according to the complexity of the task.

Subsequently, the soft class probabilities ŷt andHt itself are sent
to the Halting Policy Network, which predicts which of the predicted
class probabilities should be halted at timestep t .

3.2.3 Halting Policy Network. At each step, the Halting Policy Net-
work P(·) interprets the hidden state Ht = R(Xt ,Ht−1, ȳt−1) and
discretely selects which classes should be predicted at timestep t .
Because there are no ground-truth halting locations, we frame this
task as a partially-observable Markov Decision Process (POMDP),
similar to [11, 18], which is typically solved using Reinforcement
Learning. In this setup, at each step t the state consists of the Hid-
den State from the Transition Model (which represents our data
and labels predicted up until step t , the possible actions areWait or
Halt with one action per class, and we define the rewards to be the
success of classification for each class.

The first step of the Halting Policy Network at step t is to project
the hidden representation Ht into a probabilistic space through a
neural network, as shown in Equation 12 where σ () is the sigmoid
function andWhp is of shape L × (v + M), mapping the (v + M)-
dimensional concatenation of the hidden state and the predicted
class confidences to one halting-probability pt per class label.

pt = σ (Whp [Ht , ŷt ] + bhp ) (12)

Importantly, this network models the joint probability of halting
the prediction for each class, allowing for specific combinations of
classes to be halted together, thus modeling multi-label learning in
the halting component of RHC.

The predicted vectorpt ∈ [0, 1]L parameterizes L bernoulli distri-
butions, one per class, from which halting decisions at are sampled.
Finally, at ∈ 0, 1L where at = 1 indicates Halt and at = 0 indicates
Wait, determines which classes to halt at step t . Importantly, at
does not indicate whether or not to predict a class positively. In-
stead, ŷt determines the class prediction at timestep t , which may
be positive or negative. For example, if alt = 1, indicating halt Class
l at timestep t , the resulting prediction for the class l for time series
X is ŷlt , regardless of future outputs ŷ

l
t ′ where t < t ′ ≤ T .

Once at has been computed, ȳt , the vector indicating which
classes have been predicted, can be updated:

ȳt = ȳt−1 + at ⊙ (1 − ȳt−1) (13)

where ⊙ indicates the hadamard product, adding to the set of
already-predicted classes maintained by vector ȳ. Thus once all
classes are halted, we are left with one vector ŷ containing the soft
probabilities collected at each halting point τ l .

The final component of the POMDP is the reward, which is used
during training and must be designed to encourage the learned
policy to achieve the desired goal. In our case, we seek a policy
that leads to both accurate and early label assignments. Thus, we
define the reward function as follows: for each class l , when the
classification is correct, we set reward r lt = 1, and when it is in-
correct, r lt = −1. As described in Section 3.2.4, this encourages the
Halting Policy Network to halt when the predictions will be correct
and discourages halting otherwise.

A key ingredient in Reinforcement Learning is a careful balance
between exploration and exploitation. To avoid policies which sim-
ply exploit actions that lead to positive rewards early on in training,



we use an ϵ-greedy approach to choose between the predicted halt-
ing decision and a randomly-selected action, as shown in Equation
14 where ϵ is 1 at the beginning of training and decreases to 0 ex-
ponentially throughout training. Thus, at the beginning of training,
actions are mostly random and as training proceeds, the reins are
progressively handed off to the learned policy.

at =

{
at , with probability 1 − ϵ

random action, with probability ϵ
(14)

3.2.4 Optimizing the Recurrent Halting Chain. Our combination
of supervised learning for multi-label classification with reinforce-
ment learning for early halting requires a multi-component loss
function.

The Transition Model R(·) and the Discriminator D(·) are jointly
optimized to output class predictions ŷ as close to y as possible
by minimizing cross entropy (Equation 15), using standard back-
propagation since all operations are differentiable, similar to [3].
To achieve this, ŷl is simply the Discriminator’s prediction of class
l from the timestep at which it was predicted.

Lsl(θ ) =
L∑
l=1

−(yl log(ŷl ) + (1 − yl ) log(1 − ŷl )) (15)

This way, correct label-sets are preferred to incorrect as ŷ is modeled
as the conditional probability between predicted labels.

Optimizing the Halting Policy Network is more intensive due to
sampling during action-selection, though we follow the standard
optimization setup for reinforcement learning agents using policy
gradients. The sampling of actions in the POMDP solved by the
Halting Policy Network is inherently non-differentiable, and so we
use the standard REINFORCE algorithm [31] as a gradient estimator
to train the network. The learning objective of the halting policy
network is the maximization of the expected return R =

∑τ
t=0 rt :

θ∗hp = arg max
θhp

E[R] (16)

where θ∗hp is the optimal parameters for the Halting Policy Network.
The Halting Policy Network samples its actions so errors cannot

be propagated directly. Instead, most recent policy gradientmethods
transform from this raw form to a surrogate loss function [26]. The
new objective can be optimized using gradient descent by taking
steps in the direction of E[∇ logπ (H0, · · · ,τ ,a0, ...,τ , r0, · · · ,τ )R] [24].
The gradient can then be approximated for the halting decisions
for each class as shown in Equation 17. This allows for training via
back-propagation but can also induce variance in the policy updates
since this is not the true gradient of the desired objective function.
To reduce said variation, we employ the standard practice of adding
a baseline that approximates the expected reward to adjust the raw
reward values. This way, the weights are updated with respect to
how much better than average the outcomes are for each episode.

Ll
rl(θ ) = −E

[ τ l∑
t=0

logπ (alt |Ht )

[ τ l∑
t ′=t

(
Rl − blt ′)

) ] ]
(17)

where blt is predicted at each timestep as the output of a lightweight
neural network and is forced to approximate the mean Rl via the
reduction of their mean squared error.

Finally, we average the loss function in Equation 17 across all l
classes, resulting in one final differentiable function summarizing
the success of the halting policy network:

Lrl(θ ) =
1
L

L∑
l=0

Ll
rl(θ ) (18)

3.2.5 Encouraging early predictions. Finally, we enforce early pre-
dictions byminimizing the log halting probabilities according to one
hyperparameter, λ, resulting in our final objective function, shown
in Equation 19, which can be optimized using stochastic gradient
descent. This extra loss term, weighted by λ, directly maximizes
of the probability of halting and so as λ increases, the likelihood
of halting early increases, making predictions earlier. In practice,
λ = 0 is a feasible option, implying halt only when it helps prediction,
tending towards later halting points.

L(θ ) = Lsl + Lrl + λ
L∑
l=0

τ l∑
i=0

logπ (alt = 1|Ht ) (19)

4 EXPERIMENTS
4.1 Datasets
We evaluate our method on the following time-sensitive datasets.

HAR [1]: Human Activity Recognition (HAR) from smart phone
data. These data consist of readings from a variety of sensors in a
smartphone while 30 participants perform a set of six activities such
as walking and standing. Our task is to predictwhich of the activities
were performed within a time window of sensor data. Clearly, there
may be multiple activities performed within one window. These
data are naturally recorded with one label per timestep, so we split
the data into 15-step time series instances and record which activi-
ties were performed within those steps. These associated activities
are the instance’s label set. On average each instance ends up with
25% of the possible labels. We use the Triaxial Acceleration and
Triaxial Velocity from the Gyroscope in the smart phone, resulting
in 490 15-step time series with 77 variables each along with 490 up-
to-size-6 label sets (N = 490,T = 15,M = 77, L = 6). We setT = 15
to balance the number of labels per time series while maintaining
a large-enough N . This does not change the distribution of labels
or the locations of the signals.

ExtraSensory [28]: Similar to HAR, these data consist of smart-
phone sensor data recorded while 60 participants performed a va-
riety of activities. However, since these data were collected un-
scripted, the label set size is much larger. Post-hoc, the labels were
reduced to 52 options and each participant may have engaged in
any number of these activities while carrying their smartphone.
To convert these data to a multi-label time series classification
task, we summarize the fine-grained sensor data by averaging the
readings every ten steps and maintaining which labels occurred
within those steps. This is because activities do not change much
timestep-to-timestep. Then, similar to HAR, we chunk these data
into ten-step sequences and record activities performed within that
window using the 40 Acceleration variables. Due to label sparsity,
we down-sample the 11 labels that appear in at least 1000 time series
and randomly select a final set of 1000 40-dimensional time series,
averaging 36% of the 11 labels per instance (N = 1000, T = 10,
M = 40, L = 11). Again, T = 10 ensures a large enough dataset size.



Table 2: Performance (mean (std)) of early multi-label classification on the Human Activity Recognition (HAR) dataset. “↓”
indicates “the smaller the better” and “↑” indicates “the larger the better”.

Time-Steps
Observed

Evaluation
Metrics

Methods

LSTM-BD [17] E-LSTM [4] LSTM-CC [30] EARLIEST [11] RHC (ours)

20%

Instance-AUC↑ 0.88 (0.00) 0.85 (0.00) 0.90 (0.02) 0.92 (0.00) 0.92 (0.01)
Micro-AUC↑ 0.86 (0.00) 0.85 (0.00) 0.88 (0.01) 0.91 (0.00) 0.91 (0.00)
Macro-AUC↑ 0.86 (0.00) 0.84 (0.00) 0.88 (0.02) 0.91 (0.00) 0.91 (0.00)

Hamming Loss↓ 0.18 (0.00) 0.21 (0.00) 0.17 (0.01) 0.13 (0.00) 0.13 (0.01)
Micro-F1↑ 0.62 (0.00) 0.57 (0.00) 0.66 (0.03) 0.74 (0.00) 0.72 (0.02)
Macro-F1↑ 0.62 (0.00) 0.57 (0.00) 0.65 (0.03) 0.74 (0.00) 0.71 (0.02)

40%

Instance-AUC↑ 0.91 (0.00) 0.89 (0.00) 0.92 (0.02) 0.94 (0.00) 0.94 (0.00)
Micro-AUC↑ 0.90 (0.00) 0.90 (0.00) 0.92 (0.02) 0.92 (0.00) 0.93 (0.00)
Macro-AUC↑ 0.91 (0.00) 0.89 (0.00) 0.92 (0.02) 0.93 (0.00) 0.94 (0.00)

Hamming Loss↓ 0.17 (0.00) 0.17 (0.01) 0.15 (0.01) 0.10 (0.00) 0.10 (0.00)
Micro-F1↑ 0.65 (0.00) 0.67 (0.02) 0.72 (0.02) 0.79 (0.00) 0.81 (0.00)
Macro-F1↑ 0.63 (0.00) 0.68 (0.02) 0.72 (0.02) 0.79 (0.00) 0.81 (0.00)

60%

Instance-AUC↑ 0.92 (0.00) 0.93 (0.01) 0.93 (0.01) 0.94 (0.00) 0.95 (0.00)
Micro-AUC↑ 0.92 (0.00) 0.94 (0.01) 0.93 (0.01) 0.93 (0.00) 0.95 (0.00)
Macro-AUC↑ 0.90 (0.00) 0.94 (0.01) 0.93 (0.01) 0.94 (0.00) 0.95 (0.00)

Hamming Loss↓ 0.13 (0.00) 0.13 (0.02) 0.13 (0.01) 0.10 (0.00) 0.08 (0.00)
Micro-F1↑ 0.74 (0.00) 0.77 (0.03) 0.75 (0.02) 0.80 (0.01) 0.83 (0.00)
Macro-F1↑ 0.74 (0.00) 0.78 (0.03) 0.74 (0.02) 0.80 (0.01) 0.83 (0.01)

4.2 Compared Methods
We compare RHC to the following algorithms, two of which are
early classifiers adapted for multi-label learning, and two of which
are multi-label learners adapted to early classification:

• LSTM-BD [13]. This method breaks themulti-label task into L
binary classification tasks via Binary Decomposition [2] and
achieves early classification via fixed halting-point selection
[17]. Thus, LSTM-BD neither models label relationships nor
achieves adaptive early classification.

• E-LSTM [4]. We augment this Early Classification method
to solve the EMC problem via binary decomposition. First, a
threshold α ∈ [0, 1] is hand-picked prior to learning. Then,
an LSTM generates a class probability ŷ at each timestep.
Once ŷ > α , the classifier halts and its prediction is returned.
This captures data-driven early classification (the time at
which ŷ > α can vary) but this approach does not model
relationships between labels.

• EARLIEST [11]. Our final binary decomposition baseline,
EARLIEST uses reinforcement learning to predict a halting
point at which a label prediction is made. However, this ap-
plies directly to only the multi-class setting. Through binary
decomposition, this method outputs early label predictions
but does not encode relationships between labels. Their op-
timization also does not capture multiple sources of reward.

• LSTM-CC [30]. Order-Free Classifier Chains are a recent and
powerful approach to multi-label learning when true label
orders are unknown (such as the EMC problem). We adapt

the core idea of this approach, originally designed for im-
ages, to time series. This methods first embeds a time series
using an LSTM encoder. Then, an LSTM decoder predicts
the labels one at a time in sequence. This method is trained
to be order-free as in [3]. This approach captures the rela-
tionships between labels but requires all timesteps. To make
classifications early, we use fixed halting points [17], forcing
the model’s predictions at preset timesteps.

4.3 Implementation Details
For all datasets, we use an 80% training, 10% validation, and 10%
testing split. We use the training set to learn model parameters
and the validation set to evaluate the performance of a particu-
lar hyperparameter setting (e.g., nodes-per-layer or learning rate).
The testing set is used once to report the final evaluation met-
rics for each model. For all methods, we use an RNN with the
LSTM transition function, learning a 20-dimensional vector rep-
resentation for each time step of each multivariate time series
instance. We repeat this setup five times and compute averages
over these five settings to compute final results. The model is
optimized using Adam [15] with a learning rate of 1e−2 and all
methods are run until their loss converges, taking 200 epochs. All
models are implemented using PyTorch with the code available at
https://github.com/thartvigsen/RecurrentHaltingChain.

4.4 Experimental Results
We evaluate RHC using the HAR and ExtraSensory datasets de-
scribed in Section 4.1. We use two groups of metrics: Instance-AUC,



Table 3: Performance (mean (std)) of early multi-label classification on the ExtraSensory dataset. “↓” indicates “the smaller the
better” and “↑” indicates “the larger the better”.

Time-Steps
Observed

Evaluation
Metrics

Methods

LSTM-BD [17] E-LSTM [4] LSTM-CC [30] EARLIEST [11] RHC (ours)

20%

Instance-AUC↑ 0.71 (0.00) 0.71 (0.00) 0.74 (0.02) 0.71 (0.00) 0.78 (0.00)
Micro-AUC↑ 0.70 (0.00) 0.69 (0.00) 0.72 (0.02) 0.71 (0.00) 0.68 (0.00)
Macro-AUC↑ 0.60 (0.00) 0.62 (0.00) 0.63 (0.01) 0.63 (0.01) 0.68 (0.00)

Hamming Loss↓ 0.31 (0.00) 0.32 (0.00) 0.31 (0.01) 0.31 (0.00) 0.27 (0.00)
Micro-F1↑ 0.58 (0.00) 0.55 (0.00) 0.58 (0.02) 0.58 (0.00) 0.61 (0.00)
Macro-F1↑ 0.48 (0.00) 0.47 (0.00) 0.46 (0.01) 0.47 (0.01) 0.46 (0.00)

40%

Instance-AUC↑ 0.74 (0.00) 0.73 (0.00) 0.77 (0.01) 0.74 (0.00) 0.79 (0.00)
Micro-AUC↑ 0.73 (0.00) 0.71 (0.00) 0.75 (0.01) 0.74 (0.00) 0.78 (0.00)
Macro-AUC↑ 0.66 (0.00) 0.64 (0.00) 0.68 (0.01) 0.67 (0.00) 0.70 (0.00)

Hamming Loss↓ 0.32 (0.00) 0.32 (0.00) 0.29 (0.01) 0.27 (0.00) 0.26 (0.00)
Micro-F1↑ 0.56 (0.00) 0.59 (0.00) 0.60 (0.00) 0.60 (0.00) 0.62 (0.00)
Macro-F1↑ 0.47 (0.00) 0.52 (0.00) 0.48 (0.02) 0.53 (0.01) 0.48 (0.00)

60%

Instance-AUC↑ 0.76 (0.00) 0.75 (0.01) 0.78 (0.01) 0.77 (0.01) 0.79 (0.00)
Micro-AUC↑ 0.76 (0.00) 0.73 (0.01) 0.77 (0.01) 0.76 (0.01) 0.78 (0.00)
Macro-AUC↑ 0.71 (0.00) 0.67 (0.01) 0.70 (0.01) 0.69 (0.01) 0.70 (0.00)

Hamming Loss↓ 0.28 (0.00) 0.32 (0.01) 0.28 (0.01) 0.28 (0.00) 0.26 (0.00)
Micro-F1↑ 0.61 (0.00) 0.63 (0.01) 0.62 (0.01) 0.62 (0.01) 0.62 (0.00)
Macro-F1↑ 0.53 (0.00) 0.56 (0.01) 0.53 (0.01) 0.55 (0.00) 0.47 (0.00)
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(c) Micro-F1 on ExtraSensory
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Figure 4: Observing the effect of λ on Micro-F1 and Instance-AUC.

Micro-AUC, and Macro-AUC to assess the ranking performance
of the soft probabilistic predictions; Hamming Loss, Micro-F1, and
Macro-F1 to evaluate the hard predictions after standard rounding.
Across all of these metrics, we show that RHC consistently achieves
far stronger performance using fewer timesteps than the state-of-
the-art alternatives described in Section 4.2. For both datasets, we
investigate the predictions made by each method on three distinct
early proportions of the time series corresponding to 20%, 40%, and
60% of the steps. In three experiments, we tune RHC and all baseline
methods such that their average halting timesteps correspond to
20%, 40%, and 60% of possible timesteps.

For the HAR dataset, as shown in Table 2, RHC consistently
achieves the same or better performance on all metrics at each
of the three halting points. Most notably, when observing more
steps (40% and 60%) RHC clearly outperforms all other approaches.
This indicates that our approach effectivelymodels the relationships
between labels themselves (RHC > {EARLIEST, E-LSTM, RNN-BD})
while achieving high performance with few observed timesteps
(RHC > LSTM-CC). In these settings, RHC achieves an average
of 7.77% and 4.80% improvement, respectively, over the compared

methods across all metrics. In the 20% setting, the other adaptive
early halting method, EARLIEST, is quite competitive, as some met-
rics overlap between RHC and EARLIEST. This may suggest that at
this level of partial-observability of the time series, there may not
be enough evidence to relate labels to one another on these data.
However, the strongHamming Loss performance confirms that RHC
remains superior, even when treating each task separately. Addi-
tionally, RHC’s strong performance on the ranking tasks compared
to the other methods indicates RHC’s effectiveness in leveraging
the multi-label relationships present in this dataset. Finally, we also
note that LSTM-CC consistently outperforms LSTM-BD across all
settings and metrics. This indicates the value of multi-label learning,
even in the context of pre-selected halting timesteps.

We observe similar trends on the ExtraSensory dataset, as
shown in Table 3. Once again, across all three early proportions of
the time series, RHC consistently outperforms all other methods.
In the 20% setting, RHC achieves on average 3.89% improvement
over the other methods (3.32% over EARLIEST), while for 40% the
improvement is 4.04%. This superiority implies that the relation-
ships between classes themselves can be useful in achieving early



classifications, shedding light on the effective pairing of the early
classification and multi-label classification objectives. In the 60%
setting, EARLIEST is once again competitive, resulting in a 1.1%
advantage, though RHC is the best method in 4 of the 6 metrics.
As demonstrated by the performance on the AUC-based ranking
metrics, RHC consistently captures the multi-label relationships,
appropriately ranking positive classes higher than negative classes.

4.4.1 Parameter Study. RHC has one hyperparameter λ that con-
trols its emphasis on how early predictions should be made. We
investigate its effect in Figure 4, demonstrating that, as expected,
as λ increases, predictions are made earlier and thus the Micro-F1
and Instance-AUC decrease. Importantly, λ has roughly the same
effect on Micro-F1 and Instance-AUC. This can been seen in Figures
4a and 4b where the trends for the HAR task are fairly similar to one
another. The trends in Figures 4c and 4d also match each other to a
significant degree. Overall, however, λ affects datasets differently,
demonstrating the need for such hyperparameters.

5 CONCLUSION
In this work, we identify the new Early Multi-label Classification
problem. We then design the Recurrent Halting Chain (RHC) as
a solution to this problem. RHC learns to predict the label set of
multivariate time series while making early classifications for each
class, driven by reinforcement learning. RHC directly models the
objectives of early and accurate label assignment jointly, achieving
one integrated solution that effectively trades-off between these
goals. At each timestep, RHC uses a Transition Model to repre-
sent both complex temporal dynamics in the input time series and
conditional dependencies between labels as they are progressively
predicted. The Halting Policy Network reads the hidden state at
each timestep and decides whether or not each class prediction
should be returned as a final classification. Across our experiments
recording six metrics for three settings on two real datasets, RHC
consistently outputs early and accurate multi-label classifications.
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APPENDIX
In this appendix we discuss further details to aid in reproducibility
of our method and experiments. All code, data, pre-processing, and
working experiments are publicly available1.

6.1 Expanded dataset descriptions
6.1.1 Human Activity Recognition. For the Human Activity Recog-
nition task [1], the six actions performed by participants were
Walking, Walking Up Stairs, Walking Down Stairs, Sitting, Standing,
and Laying. The distributions (Shown in Figure 5) are relatively
balanced across all classes since this is a scripted dataset: during
collection, each participant performed each action in sequence.
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Figure 5: Class label balance in HAR.

6.1.2 ExtraSensory. The ExtraSensory dataset [28] was collected
“in the wild”, where participants were asked to annotate their own
actions over a period of time. The researchers running the data
collection then collect the annotations into 52 classes. Since some
classes are extremely rare (for example “At the bar”), we down-
sample the classes that appear in at least 1000 time series, resulting
in 11 final classes: Lying Down, Sitting,Walking, Running, Bicycling,
Sleeping, Lab Work, In Class, In a Meeting, At Main Workplace, In-
doors. The frequency of these classes is shown in Figure 6. These
frequencies are recorded from our final sample of 1000 time series.
Importantly, these labels can overlap one another in interesting
ways. For example, a participant could have been Sitting while they
are In Class, but cannot be Lying Down while Bicycling. However,
since we chunk the time series into windows, it is possible that one
time series is associated with both Bicycling and Lab Work if the
participant rode her bike to the lab. This creates an ideal testbed for
EMC since some activities may be linked through concurrence (e.g.,
Sitting and In Class) while others may be linked causally (e.g., Lying
Down before Sleeping). In the future, the use of all 52 original activ-
ities may be used to study different but related problem settings,
particularly in the case of rare and highly-correlated classes.
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Figure 6: Class label balance in ExtraSensory.
1https://github.com/thartvigsen/RecurrentHaltingChain

6.2 Implementing the Recurrent Halting Chain
Our models are implemented in PyTorch 1.2 so we present “code” in
Figure 7 that roughly emulates PyTorch code. Here we assume
that TransitionModel, Disciminator, HaltingPolicyNetwork
are pre-defined according to the architectures described in Sec-
tion 3. In practice during inference, as soon as a class is predicted,
it can be returned immediately. As written, this code simply loops
until all classes have been halted.



def RHC(time_series):
state = init_zero_vector(V) # V-dimensional state
y_bar = init_zero_vector(L) # L classes
final_predictions = init_zero_vector(L)
for t in range(T): # max of T timesteps

x = time_series[t] # extract timestep t
state = TransitionModel(x, state, y_bar)
y_hat = Discriminator(state)
halt_probs = HaltingPolicyNetwork(state, y_hat)
actions = Bernoulli.sample(halt_probs)
y_bar[(actions == 1) && (y_bar == 0)] = 1
final_predictions[(actions == 1) && (final_predictions == 0)] = y_hat
if sum(y_bar) == L: # If all classes are halted, stop reading the time series

break
# If a class was never halted, return the final y_hat
final_predictions[(final_predictions == 0)] = y_hat
return final_predictions

Figure 7: Implementing the Recurrent Halting Chain.
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