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ABSTRACT

Influence maximization (IM) targets at maximizing the number of
users being aware of a product by finding a set of seed users to
expose in a social network. Previous IM models mainly focus on
optimizing the spread of product consumption, which assumes that
all users are potential customers and more exposures lead to better
profit. However, in the real-world scenario, some people may not
like the product and may express negative opinions after consum-
ing, which damage the product reputation and harm the long-term
profit. Only a portion of users in the social network, called the
target user, is the potential customer that likes the product and
will spread positive opinion. In this paper, we consider a problem
called AcTive Opinion Maximization (Atom), where the goal is
to find a set of seed users to maximize the overall opinion spread
toward a target product in a multi-round campaign. Different from
previous works, we do not assume the user opinion is known be-
fore consumption, but should be derived from user preference data.
The ATOM problem has essential applications in viral marketing,
such as reputation building and precision advertising. Given its
significance, ATOM problem is profoundly challenging due to the
hardness of estimating user opinion in a multi-round campaign.
Moreover, the process of opinion estimation and influence prop-
agation intertwine with each other, which requires the model to
consider the two components collectively. We propose an active
learning framework called Cone (aCtive OpinioN Estimator) to
address above challenges. Experimental results on two real-world
datasets demonstrate that Cone improves the total opinion spread
in a social network.
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1 INTRODUCTION

Motivated by applications such as viral marketing [4] and personal-
ized recommendations [18], the problem of influence maximization
[1, 3, 10, 13, 19, 20] has been widely studied for more than a decade.
Conventional influence maximization problem aims at selecting a
small set of seed users to maximize the awareness or consumption
of a target product over a social network. For example, a company
may select a small group of customers to distribute their trial prod-
uct, hoping that they spread praises to a larger population through
their social connections, which is known as the word-of-mouth
effect.

Influence maximization (IM) assumes implicitly that all the users
are potential customers of the product, and the more users get ex-
posed the better market share the product will have. However, in
the real-world commercial campaign, the majority of users may
not like the product and may express negative opinions on it af-
ter consumption, which may damage the product reputation and
harm its long-term profit. It is desirable to carefully select the seed
users to avoid infecting the group of users who may spread neg-
ative opinions on the product. For example, the filmmaker of a
new movie may invite a small group of audiences who are more
likely to spread positive comments than negative comments in their
social network to attend a preview to build a good public opinion.
Opinion maximization (OM) [2, 5, 23], which aims at maximizing
the total opinion generated by the activated user, is a natural varia-
tion of influence maximization. Previous studies on OM problem
either randomly generate user opinions [23] or assume the user
opinions are formed based on their neighbors’ opinions [2, 5]. We
consider to incorporate the historical opinion/rating information
into opinion maximization problem. Accordingly, we study the
opinion maximization problem under a new setting as follows.
Problem Studied: In an online social network, we want to maxi-
mize the total opinion expressed on a target product by selecting
a set of seed users to distribute trial samples. A user may be influ-
enced by his/her neighbors to consume the product, and the opinion
towards the product is expressed based on his/her preference. We
do not have any knowledge about the target product before the
multi-round campaign starts, but users’ historical ratings or opin-
ions on other products are known. At the beginning of each round
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Figure 1: Example of ATOM in a social network, given a

target product P . Different shades of grey indicate different

opinions.

of the campaign, the promoter selects a set of inactive users to dis-
tribute the trial samples, and the opinion of the activated users are
immediately observed. And the promoter proceeds another round
until the budget is used up. We call this problem as AcTive Opinion
Maximization (Atom). Fig. 1 depicts an ATOM example, where we
consider a network of 12 users. The matrix on left upper side en-
codes the opinion observed on other products, which is used to
estimate the user opinion on target product P . The promoter selects
seeds based upon the estimation and performs the infection in the
network (illustrated on the underside of Fig. 1). After the infected
users express their opinions, the matrix, observed opinion on P
and estimated opinion on P are updated accordingly. The promoter
launches another round of seeds selection based upon the updated
estimation until the budget is used up. The differences between
influence maximization, opinion maximization, and Atomare illus-
trated in Fig. 2. To the best of our knowledge, opinion maximization
has not been studied under this context so far, and it is profoundly
challenging due to the following reasons.
Negative Opinions in Majority: Conventional influence maxi-
mization methods assume implicitly that the majority of the users
are potential customers. However, in the promotion of many prod-
ucts, such as a horror movie or Google Glass, the majority of the
opinions can be detrimental due to the different preference of these
users. The spread of negative opinions harms the product reputation
and washes out the positive opinions. In this case, simply maxi-
mizing the spread over a social network can no longer achieve an
optimal outcome. We can also illustrate this intuition of Atom from
the perspective of market segmentation [17], which is an important
research topic in business. For most of the products, it can be very
well-received by one group of customers, while being disliked by
another group of customers. The goal of market segmentation is

to divide the customers in the market into several portions, and a
specific marketing strategy should be investigated and designed
carefully for each portion of users to maximize the profit.
UnknownOpinions: Conventional opinionmaximization approaches
usually assume that the opinions of the users are either known or
can be generated based upon their neighbor’s opinions [2, 5, 23].
However, in many real-world cases, the opinions of different users
are not known for the new product being promoted. The users’
opinions could either be estimated through a large amount of data
on users’ purchase history or their opinions can be observed once a
user is exposed to the product during the influence propagation pro-
cess. Because the opinion of users on the target product is unknown,
conventional OM frameworks can no longer work.
Collective Opinion Estimation and Information Diffusion:

Conventional approaches on OM problem are seen as orthogonal
to opinion estimation and active learning problem. However, in
Atom problem, the active selection of seed nodes in information
diffusion is inter-related with the estimation of user opinions. Once
a seed user is selected, many other users will be exposed to the
product through the social connections. The actual ratings of these
users will also be expressed and observed, which affect the opinion
estimation on the remaining users. Thus, the opinion estimation
and seeds selection are highly related and should be considered
collectively. In this paper, we link the two procedures into themulti-

round active seed selection setting. Under this setting, the promoter
can keep selecting seeds to activate more users in multiple rounds,
until using up all the seed budgets. In most of the existing works in
seed user selection, only single-round propagation is considered.
However, how to utilize the observed opinions to develop the opti-
mal strategy for seeds selection under multi-round setting is still
an open problem.
Hardness: The proposed Atom problem is NP-hard. With the neg-
ative user opinions, the problem is no longer sub-modular, which
is different from existing IM problems [10].

To address the above challenges, we propose a novel method
called aCtive OpinioN Estimator (Cone). Cone leverages the con-
cept of active learning to select the seeds with the most opinion
gain based on the estimated opinion, as illustrated in Figure 1. The
contributions of this paper are summarized as follows.

• We first defined the Atom problem and proposed the first
solution for it. The proposed Cone framework exploits the
historical rating data to facilitate the opinion estimation on
the target product. To the best of our knowledge, this work
is the first effort to utilize the real-world historical ratings
to improve the performance of opinion maximization.
• We filled the gap between opinion maximization and item
recommendation (i.e., rating prediction) by leveraging the
concept of active learning.
• We conducted extensive experiments on two real-world so-
cial networks associated with historical rating data. The
experimental results show that our method can largely im-
prove the total opinion spread in the network.
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Figure 2: Comparison of Influence Maximization (IM), Opinion Maximization (OM) and Active Opinion Maximization (Atom).

Different shades of grey indicate different opinions. IM does not distinguish opinions and aims at maximizing the spread

of product consumption; OM assumes that the opinion on target product is known or can be inferred before the campaign;

Atomutilizes the observed opinion data and actively estimate user opinion towards target product in a multi-round campaign.

2 PROBLEM FORMULATION

2.1 Notations

We use lower case letters (e.g., x ) to denote scalars, lower case bold
letters (e.g.,x ) to denote column vectors, bold-face upper case letters
(e.g., X) to denote matrices, upper case letters (e.g., X) to denote
elements of matrices and upper case calligraphic letters (e.g., X) to
denote sets. We use X(i, :) (and X(:, j )) to denote the i-th row (and
the j-th column) of X. The projection of a matrix X onto domain S
is denoted by PS (X).

2.2 Concepts Definition

Definition 2.1 (Social Network): An online social network can
be represented as a directed graph G = (V, E,W ), where V =
{u1, . . . ,um } is the set of users (nodes), E = {ei j |i = 1, . . . ,m; j =
1, . . . ,m} ⊆ V ×V is the set of social links (edges) among users
in V , W = {wi j |i = 1, . . . ,m; j = 1, . . . ,m} is the set of link
weights and wi j denotes the weight of link ei j . The set of items
(products) associated with G is denoted as P = {p1, . . . ,pn }. Let
R = {ri j ∈ R|i = 1, . . . ,m; j = 1, . . . ,n} be the set of observed
ratings, where ri j denotes the rating on product pj assign by user
ui . Let Ω = {(i, j ) |ri j ∈ R} be the set of observed rating indices.
Higher rating value indicates better opinion.

Definition 2.2 (Rating Matrix): The set of observed ratings R
can be cast into a sparse rating matrix R ∈ R(m×n) where Ri j = ri j
for all (i, j ) ∈ Ω and Ri j = 0 for all (i, j ) < Ω. In other words,
Ri j = 0 indicates that the rating on product pj assign by user ui is
unobserved.

Definition 2.3 (Opinion): oi j = ri j − rneutral ∈ R is the opinion
given by userui on the product pj , where rneutral is the rating value
corresponds to the neutral opinion.

Definition 2.4 (User Profile): User profile forui is aκ-dimensional
vector ui ∈ Rκ which indicates the characters of ui .

Definition 2.5 (Item Profile): Item profile forpj is aκ-dimensional
vectorvj ∈ R

κ which indicates the characters of pj .

Definition 2.6 (Multi-round Linear Threshold): Multi-round
Linear Threshold (Mlt) is a multi-round diffusion model. Similar to
the conventional LTmodel [10], in which each userui in a weighted
social network G is associated with a threshold θi ∈ [0, 1]. Before
the first round of Mlt, all users are inactive towards the target
product. At round t of the Mlt, an inactive user ui becomes active
when

∑
uj ∈C (t−1) w ji > θi , where C (t−1) is the set of active users

before round t starts. At each round, the influence only propagates
ℓ layers of neighbors before the next round starts, where ℓ ≥ 1 is a
model parameter. All active users will stay active and cannot back
to inactive status.

Definition 2.7 (Marketing Strategy): In this paper, we aremainly
concerned about the seed user selection problem. For simplicity,
we refer to the marketing strategy of the target product pt as the
vector of seed users sets S = (S (1) , . . . ,S (T ) ), where S (q ) is the set
of seed users been selected for round q, and T the terminal round
number.



2.3 Problem Definition

Definition 2.8 (Active Opinion Maximization): Given a social
networkG , an item set P, a rating matrix R, a target productpt < P,
the terminal round numberT and the Mlt diffusion model, the goal
of Atom is to select k (q ) seeds fromV to activate at the beginning
of round q to maximize the total opinion given by active users in
G towards pt at the end of round T . Accordingly, the proposed
problem can be formulated as

maximize
S (1), ...,S (T )

Iℓ (S
(0) , . . . ,S (T ) )

s.t. |S (q ) | = k (q ) ,S (q ) ⊆ V \ C (q−1)
(1)

where Iℓ : S → R is the influence function that maps the sequence
of seed user sets to the total opinion of the final active users. Since
the opinion given by the active users is unknown before the propa-
gation starts, the mapping function Iℓ cannot be explicitly defined.
Note that once ui is activated, his/her opinion oi ∈ R on pt is
observed, and oi cannot change once been expressed. After the
propagation finishes, the final set of active users can be denoted as
C (T ) . Then the total opinion can be computed as

∑
ui ∈C (T ) oi .

In this paper, we do not assume any prior knowledge about the
target product pt is given before the propagation starts, which
simulates the most general case of viral marketing where a brand-
new product is being promoted in a social network.

Given the conventional influence maximization on LT model is
NP-hard [10], the proposed multi-round opinion maximization is
also NP-hard. Kempe et al. proved that with LT model, although IM
problem is NP-hard, it is monotone and submodular, so the greedy
algorithm proposed in [10] can achieve (1 − 1

e )-approximation of
the optimal seeds selection. However, in our proposed problem, the
negative opinion generated by the activated users can cancel out
the positive opinion and harm the final outcome. So the proposed
problem is no longer submodular or monotone, and the conven-
tional greedy algorithm cannot guarantee any lower bound on the
approximation even if all the opinions of users are given before the
propagation. Furthermore, the opinion of users on target product is
unknown in Atom, which makes it even more challenging to solve.

3 METHODOLOGY

In this section, we introduce the proposed method Cone in details.
We first briefly review the low-rank matrix factorization method.
Then we propose an approach to estimate the profile vector for the
target item. Based on the estimated ratings, we present a greedy
algorithm for maximizing the total opinion under Mlt diffusion
model. Finally, we put everything together to propose the Cone
algorithm.

3.1 Low-Rank Matrix Factorization

We first review the matrix factorization method for collaborative fil-
tering [12]. The goal of collaborative filtering is to predict unknown
ratings based on observed ratings in R. Specifically, we associate
a κ-dimensional vector ui ∈ Rκ for each user ui and vj ∈ R

κ for
each item pj . The vector ui and vj are usually called user profile

and item profile since they capture the characteristics of users and
items, as defined in Sec. 2.2. The rating Ri j of user ui towards item
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pj can be approximated by the inner product of ui andvj , which is
u⊤i vj .

Given the set of observed ratings Ω, the user profiles and item
profiles can be learned through fitting the observed ratings by
solving the following optimization problem:

minimize
U,V

| |PΩ (R − U⊤V) | |2F + λ( | |U| |
2
F + | |V| |

2
F ), (2)

where U = (u1, . . . ,um ) ∈ R(κ×m) , V = (v1, . . . ,vn ) ∈ R(κ×n) ,
and the projection PΩ (X) is the matrix with only the indices in Ω
of X preserved. Besides, | | · | |2F denotes the Frobenius 2-norm and
λ ≥ 0 is the regularization parameter for avoiding over-fitting. The
problem can be solved by exiting numerical optimization methods
such as alternating minimization or stochastic gradient descent.
Alternating minimization method performs the following steps to
obtain the final estimation of U and V.
Step 1: Randomly initialize U ∈ R(κ×m) and V ∈ R(κ×n) .
Step 2: For j = 1, . . . ,n, minimizing with respect tovj with U fixed:

minimize
vj

| |R(Ωj , :) − U(:,Ωj )⊤vj | |
2
F + λ | |vj | |2 (3)

where Ωj = {i |(i, j ) ∈ Ω}. Eq. 3 is essentially a ridge regression
problem, which has a closed form solution as follows:

v̂j =
(
U(:,Ωj )U(:,Ωj )⊤ + λI

)−1
U(:,Ωj )R(Ωj , :) (4)

By solving n separate regression problems for eachvj , we can
obtain an estimation of V.
Step 3: Symmetrically, with V fixed we can find U by solvingm
separate ridge regression problems:

minimize
ui

| |R(:,Ωi ) −u
⊤
i V(:,Ωi ) | |

2
F + λ | |ui | |2 (5)

where Ωi = {j |(i, j ) ∈ Ω}. The closed form solution for ui is given
by:

ûi =
(
V(:,Ωi )V(:,Ωi )

⊤ + λI
)−1

V(:,Ωi )R(:,Ωi ) (6)
Step 4: Perform step (2) and step (3) alternatively until the estima-
tion of U and V converges.
Output: Finally, the estimated rating matrix R̂ = U⊤V, where the
missing ratings in R are filled. The estimated U and V are called
user profile matrix and item profile matrix respectively.



3.2 Learning Profile of Target Item

Since higher rating indicates a better opinion, we can extract in-
formation about user opinion based on the historical ratings. In
multi-round opinion maximization problem, we aim at finding the
best seed users at the beginning of each round to maximize the
total opinion on the target item. It is usually the case that the target
item is new to the market and nobody has reviewed or rated it yet.
Thus, it is challenging to estimate the user opinion on the target
item. Given a newly emerging target item (product) pt in a social
network G, a simple approach to build the profile for it is to first
randomly generate a κ-dimensional vectorv (0)

t ∈ Rκ . At the end
of round q of the proposed problem, a set of new ratings can be
observed on pt , and the item profile can be updated accordingly to
obtainv (q )

t .
Suppose that r (q ) ∈ Rm denotes the observed rating vector for

pt before round q starts, where r (q )i refers to the observed rating
given by ui on pt . Note that r

(q )
i = 0 indicates that the rating of pt

given by ui is not yet observed.
At round q, we can attach the observed rating vector r (q ) to

the historical rating matrix R to construct a new matrix R(q ) =

(R,r (q ) ) ∈ R(m×(n+1)) . The updated user profiles and item profiles
can be derived by solving the following optimization:

minimize
U(q ),V(q )

| |PΩ (R(q ) − (U(q ) )⊤V(q ) ) | |2F +λ( | |U
(q ) | |2F + | |V

(q ) | |2F ) (7)

Thus, U(q ) ∈ R(m×κ ) is the updated user profile matrix and
V(q ) ∈ R(κ×(n+1)) is the the updated item profile matrix at the end
of round q. The last row of V(q ) is the updated profile vector for the
target item pt , that is v

(q )
t = V(q ) (:,n + 1). Now we can use U(q )

and v (q )
t to refine the predictions on users’ opinion of pt , which

can be done by simply computing the following inner product:

r̂ (q ) = (U(q−1) )⊤v
(q−1)
t , (8)

where r̂ (q ) ∈ Rm denotes the prediction of user opinion on pt at
the end of round q. Obviously, as we observe more ratings given
by the activated users in the network, the approximation of U(q )

andv (q )
t will be more accurate, which leads to a better prediction

towards r̂ (q ) .
The item profile learning approach is also illustrated in Figure 3.

In the rating matrix R on the left side in Figure 3, each column
refers to the ratings of a product. We use the rightmost column of
R to denote the ratings of the target item pt . Note that R is partially
observed and usually very sparse. In iteration q of the algorithm,
we first factorize the rating matrix R(q ) to get two profile matrices
U(q ) and V(q ) (illustrated as the two matrices on the right side
in Figure 3), where U(q ) stores the current profile for users and
V(q ) stores the current profile of items. And it is easy to see the last
column of V(q ) is the profile vector of pt in iteration q, which is also
denoted as v (q )

t . Using U(q ) and v (q )
t , we can estimate the user’s

opinions towards pt using Eq. 8. With the estimation of opinions,
our algorithm can greedily select the best k (q ) inactive users to
activate, and the detailed selection strategy will be discussed in
Sec. 3.3. As the influence of the newly activated users propagates,

more users will be activated and express their opinions towards pt .
And these newly observed opinions are added to the last column
of R(q ) to get the rating matrix R(q+1) for next iteration. Then we
perform the same steps as above to obtain U(q+1) and V(q+1) . As
we observe more opinions generated by users, our algorithm can
gradually approach more and more accurate estimations of the user
profile and item profile.

3.3 Greedy Algorithm on Opinion

Maximization

We have proposed an active approach to estimate the opinion of
users in the network while the influence is propagated, the remain-
ing question is how to select the best set of seed users based on
the opinion estimation at each round of Mlt. Although the orig-
inal problem aims at selecting seed users for the round 1, . . . ,T
of the Mlt diffusion model, it is obvious that the seed selection
of the round q is depended on the final propagation results of the
round q − 1. Thus, the proposed Atom problem can be broken
down into T separate sub-problem of opinion maximization where
each sub-problem is depended on the output of previous one. In-
spired by [10], we propose an analogous greedy algorithm to solve
each sub-problem. The pseudo-code of the algorithm is available in
Alg. 1.

Suppose we are at the round q of the Atom problem. Before cur-
rent round starts, we have obtained the activated users set C (q−1)

as well as their ratings on the target items, which can be denoted
by r (q−1) . The problem of opinion maximization in the round q can
be formulated as:

maximize
S (q )

Īℓ (S
(q ) ∪ C (q−1) )

s.t. |S (q ) | = k (q ) ,S (q ) ⊆ V \ C (q−1)
(9)

where Īℓ : S → R is the opinion function that maps a set of
seed users to the total opinion achieved at the end of the current
round. The predicted ratings r̂ (q ) can be inferred using the approach
proposed in Sec. 3.2. Given the seed budget k (q ) , we can greedily
select k (q ) users who can maximize the total opinions of the final
activated users. To do so, we scan all the inactive users in the
network k (q ) times. In every scan, we add each inactive user to
the temporary seed set S and propagate the influence to obtain
the final activated users. Then we can compute the estimated total
opinion of these activated users using the mapping function Īℓ and
r̂ (q ) . Among all u in the scan, the one with the largest estimated
opinion is added to S. We repeat the scan until run out of budget
or there are no more inactive users in the network.

3.4 The CONE Method

Nowwe can put everything together to present the Cone algorithm.
The pseudo-code of Cone algorithm is summarized in Alg. 2. The
Cone algorithm includes the following steps:
(1) Initialization: Given the partially observed rating matrix R,
we firstly estimated the user profile matrix U(0) by solving the Eq. 7
with q = 0, where the parameter λ and κ can be selected via cross-
validation to minimize the prediction error. Although we can obtain
V(0) by solving Eq. 7, it does not contain profile for the target item



Algorithm 1 Greedy Algorithm for Opinion Maximization

Require: social networkG = (V, E), target product pt , estimated
ratings vector r̂ (q ) , seed user size for current round k (q ) , the
set of active users C (q−1) .

1: initialize S (q ) ← ∅

2: whileV \ (C (q−1) ∪ S (q ) ) , ∅ ∧ |S (q ) | , k (q ) do

3: Omax ← −∞
4: for each u in V \ (C (q−1) ∪ S (q ) ) do
5: S ← C (q−1) ∪ S (q ) ∪ {u}
6: propagate influence up to ℓ-layer with seedsS to obtain

the set of activated users C
7: O ←

∑
ui ∈C (r̂

(q )
i − rneutral)

8: if O > Omax then
9: Omax ← O , ubest ← u, Cbest ← C
10: end if

11: end for

12: S (q ) ← S (q ) ∪ {ubest} , C (q ) ← Cbest
13: end while

14: Return S (q )

pt since R does not have ratings of pt . Then we randomly initialize
the profile vector of target productv (0)

t .
(2) Rating Estimation:At the beginning of roundq, we first update
the estimated ratings r̂ (q ) for pt using Eq. 8.
(3) Seeds Selection: Then we use r̂ (q ) and C (q−1) as the input for
Algorithm 1 to select k (q ) best users to maximize the estimated
total opinions at the end of round q. The set of seed users selected
in this round is S (q ) .
(4) Profile Update: As S (q ) are activated, the real influence is
propagated and the newly activated users express their opinions on
the target product. Let C (q ) be the updated set of activated users.
We user the opinions of C (q ) to update the observed rating vector
r (q ) . Let R(q ) = (R,r (q ) ) be the new extended rating matrix, which
is used as the rating matrix to infer the user profile matrix U(q )

and item profile matrix V(q ) for next round by solving Eq. 7. As we
showed in Sec. 3.2, the last column of updated profile matrix V(q)

is the item profile of pt , which is denoted asv (q )
t .

(5) Repeat: Cone repeats step (2)-(4) until it reaches the terminal
round numberT or there are no more inactive users in the network.
(6) Output: The output of the Cone is the vector of seed users
selected for each round, i.e., (S (1) , . . . ,S (T ) ).

3.5 Complexity Analysis

The time complexity of each iteration of Cone is about O (m2+ (m+
n)κ3), the first term and the second term is the cost of line 8 and line
11 of Algorithm 2 respectively, and they dominate other operations.
In the factorization model, the number of factors κ is usually much
smaller than the number of usersm and the number of items n (i.e.,
κ ≪ min(m,n)), and the best choice of κ does not change too much
whilem or n increases. And the number of rounds/iterations (T )
of Cone is also relatively small. For all the datasets we tested in
the experiments, the network can be fully activated within 10 to 50
iterations. Hence, the time complexity is majorly dominated by the
greedy search operation, which can be simply denoted as O (m2).

Algorithm 2 Cone

Require: input social network G = (V, E), target product pt , rat-
ing matrix R, seed user size for each round: k (1) ,k (2) , . . . ,k (T ) ,
matrix factorization parameter λ,κ, terminal round number T .

1: Estimate the user profile matrixU(0) by solving Eq. 7 withq = 0
2: Randomly initialize the target item profilev (0)

t
3: Initialize the observed target item rating vector as r (0)t
4: Initialize the activated users set C (0) = ∅
5: for q in 1, . . . ,T do

6: update the estimated rating vector r̂ (q ) = U(q−1)v
(q−1)
t

7: initialize S (q ) ← ∅

8: using Algorithm 1 to select k (q ) users that maximize the
total estimated opinion based on r̂ (q )

9: add new observed ratings to r (q−1) to obtain r (q )

10: build the extended rating matrix R(q ) ← (R,r (q ) )
11: estimate the user profile matrix U(q ) and the item profile

matrix V(q ) by solving Eq. 7
12: v

(q )
t ← V(q ) (n + 1, :)

13: end for

14: Return (S (1) , . . . ,S (T ) )

For the space complexity, Cone needs to store two profile matri-
ces with complexities ofO (mκ) andO (nκ), a preferencematrix with
complexity of O (mn) and the social network with complexity of
O (m2). Hence, the total space complexity isO

(
m2 +mn + (m + n)κ

)
,

which is approximately O (m2+mn). Considering that the adjacency
matrix of the network and the preference matrix are usually very
sparse, the actual space complexity is much lower than it.

4 EXPERIMENTS

To test the effectiveness of the proposed model, we have conducted
extensive experiments on real-world networks. In this section, we
will first introduce the datasets and the detailed experiment settings.
After that, we will show the experimental results together with the
analysis and discussion.

4.1 Datasets

To evaluate the performance of the proposed approach for opinion
maximization, we tested our method on two real-world datasets
with networks and historical ratings.

1) Flixster [9]: Flixster 1 is one of the main players in the mobile
and social movie rating business. This dataset was crawled by the
authors of [9], which contains 137,925 nodes and 1,269,373 edges.
A collection of historical ratings are associated with the network,
which contains the ratings of 48,794 items given by the users in the
network. Since it is difficult to handle the original size of the dataset,
we sample a smaller network for our experiments. We follow [6]
to use Graclus2 to obtain a subgraph by means of graph clustering.
We filter out items with less than five ratings from all the users in
the sampled subgraph.

1http://www.flixster.com
2http://www.cs.utexas.edu/users/dml/Software/graclus.html

http://www.flixster.com
http://www.cs.utexas.edu/users/dml/Software/graclus.html


Table 1: Statistics of Datasets.

# Nodes # Edges # Items # Ratings Linkage
Flixster 5,372 58k 3,470 110k undirected
CiaoDVD 4,658 40k 16k 72.6k directed

2) CiaoDVD [7]: CiaoDVD is a dataset crawled from the entire
category of DVDs from the price comparison and product review
website Ciao! 3. Trust links exist in CiaoDVD dataset reflects the
trust relationship between users. We view such links as the (di-
rected) edges of the network. As we described above, we removed
items with less than five ratings. The statistics of datasets used in
our experiments are also summarized in Table 1.

4.2 Compared Methods

The detailed information about the comparison methods are listed
as follows:
• Cone: Cone is the proposed method based on the Mlt diffu-
sion model.
• Cone w/o net: Cone w/o net (or Cone-) is a degenerated
version of Cone, which selects the users with highest pre-
dicted opinion on the target items as the seeds at each round.
Cone- does not consider the propagation model and works
like a recommendation model that tries to activate the users
with the highest expected opinion.
• LTrandom [10]: Method LTrandom is a baseline method
which randomly selects inactive nodes as the seeds.
• LTdegree [21]:Method LTdegree is another baselinemethod
which selects the nodes with highest degree at the beginning
of each round in Mlt. The degree heuristics are commonly
used in the sociology literature as the estimates of a node’s
influence [21].
• LTgreedy [10]: Method LTgreedy is an influence maximiza-
tion method for linear threshold model proposed in [10]. We
adapt the original algorithm to fit the multi-round setting.

4.3 Experiment Setup

The social links among users in Flixster dataset are undirected, but
in CiaoDVD they are directed. To unify different kinds of networks
in our model, we replace undirected links, e.g., ui − uj , with two
directed links ui → uj and ui ← uj . In Mlt diffusion model, a user
ui can influence his neighbors with specific influence weights and
has a threshold θi , which denotes the minimal required influence
to be activated by the neighbors. The weights of the directed social
links ei j quantify the influence propagates from ui to uj . Following
[19, 24], we quantify the weight of ei j using Jaccard Coefficient:
wi j =

|Γin (ui )∩Γout (uj ) |
|Γin (ui )∪Γout (uj ) |

, where Γin (ui ) is the set of users who follow
ui (e.g., u → ui ) and Γout (ui ) is the set of users who are followed by
ui (e.g., ui → u). Following [23, 24], we randomly generate the set
of threshold of users {θ1, . . . ,θm } from uniform distribution within
range [0, 1]. Due to the rating matrix is incomplete in all datasets,
we first use low-rank matrix factorization described in Sec. 3 to
fill the missing values in R. To get the best approximation of the
ground truth, the values of κ and α used in the final factorization
3http://ciao.co.uk

Table 2: # pos. opinion v.s. # neg. opinion (avg. # (rank)), ↑ in-

dicates higher is better, ↓ indicates lower is better.

Methods # pos. (↑) # neg. (↓) # pos. - # neg. (↑) rank
Flixster

LTrandom 1278.00 (4) 1146.92 (4) 170.67(4) 4.00
LTdegree 1274.00 (5) 1109.00 (3) 165.00(5) 4.33
LTgreedy 1363.08 (1) 1277.30 (5) 216.15(2) 2.67
Cone- 1283.16 (3) 1082.50 (1) 200.63(3) 2.33
Cone 1328.00 (2) 1098.88 (2) 229.13(1) 1.67

CiaoDVD
LTrandom 648.09 (5) 451.40 (2) 196.61 (5) 4.00
LTdegree 749.66 (2) 544.46 (4) 205.22 (3) 3.00
LTgreedy 788.85 (1) 588.27 (5) 200.65 (4) 3.33
Cone- 658.44 (4) 430.84 (1) 227.61 (2) 2.33

Cone 743.01 (3) 490.61 (3) 252.47 (1) 2.33

are selected via 5-fold cross-validation. We denote the filled rating
matrix as R̄. Thus, R̄i j denotes the ground truth rating on item pj
given by ui . To distinguish positive/negative opinions, we convert
the ratings in R̄ to opinion as:

oi j =



rh − ravg, if R̄i j > rh
rl − ravg, if R̄i j < rl
R̄i j − ravg, otherwise

(10)

where rh and rl are the highest rating and lowest rating allowed
in the corresponding dataset respectively, and ravg is the average
value of all ratings in R̄. In other words, we consider r = ravg as
the neutral opinion, r > ravg as positive opinion and r < ravg as
negative opinion.

For each experiment, we randomly select an item from P as the
target item and remove the corresponding column in R to obtain
R̃ ∈ R(m×(n−1)) . Our model uses R̃ as the observed historical rating
matrix to infer the preference of users on the target item during the
diffusion. We follow [13] to set ℓ = 1 for all the experiments. And
the total budget of seed users are all set as 50, we let k (1) = k (2) =
· · · = k (q ) = k where k is the diffusion model parameter denotes
the number of seeds to be selected in each round. We vary k to
get different diffusion results. We obtain the total opinion of the
final set of activated users using R̄ and Eq. 10. We repeat the target
product selection 50 times and report the average total opinion.
The parameter λ and κ used in Cone and Cone− are tuned using
10-fold cross validation.

4.4 Performance on Opinion Maximization

The results of compared methods in terms of total opinion achieved
are summarized in Figure 4. In Figures 4(a)-(c) we demonstrate the
total opinion achieved by all compared methods on Flixster dataset
with k = 1, 2, 4 respectively. And Figures 4(d)-(e) demonstrate the
results on CiaoDVD dataset. We plot the total opinion achieved by
each compared method with a step size of 1. For the best visualiza-
tion of the results, we start the plot from the different number of the
round for different choice of k . We can observe that the proposed
Cone outperforms all compared methods in almost every round of
Mlt on both datasets. Even the degenerated version of our method
Cone- can outperform the other three LT methods, which supports

http://ciao.co.uk
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(a) Flixster (k = 1)
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(b) Flixster (k = 2)
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(c) Flixster (k = 4)
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(d) CiaoDVD (k = 1)
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(e) CiaoDVD (k = 2)
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(f) CiaoDVD (k = 4)

Figure 4: Comparison of all methods in terms of total opinion.

the intuition that maximizing the number of influenced users may
not achieve good total opinion. We further observe that Cone con-
sistently outperforms Cone- in two datasets. These results suggest
that considering opinion estimation and seeds selection collectively
can improve the performance of opinion maximization. Interest-
ingly, from Fig. 4(f) we can observe that the total opinion achieved
by the compared methods are dramatically different even in the
early stage of promotion. This is because the network of CiaoDVD
is more densely connected than Flixster. And when we select a rel-
atively large number of seeds for each round (k = 4), the influence
propagates much faster.

In Table 2, we also present the results of the number of positive
opinions versus the number of negative opinions achieved in the
end of round T for all compared methods All results in Table 2 is
obtained with k = 1, results with other settings of k are similar
and are omitted due to the page limitation. From Table 2 we can
observe that although Cone cannot achieve the largest number of
positive opinions, it can always achieve a lower spread of negative
opinion than LTgreedy and LTdegree. As we argued in Section 1,
negative opinions hurt the reputation of the product and can make
potential customers turn to the competitors and never come back.
Thus, Cone is a better diffusion method for the company who want
to optimize the profit by preventing negative opinions spread in
the network. Furthermore, the column of # pos. - # neg. indicates
the difference between the number of positive opinions and the
number of negative achieved by each method. We can observe that
Cone always outperform other methods on this metric, indicat-
ing Cone can better balance the positive opinions and negative
opinions achieved in the network than other methods including
Cone-, which again proves the advantage of considering opinion
estimation and seeds selection collectively.
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Figure 5: Comparison of spread

4.5 Comparison of Influence Spread

We also present the comparison of influence spread for the com-
pared methods in Fig. 5. In both datasets, Cone outperforms LTran-
dom and Cone- in terms of total spread, and achieves comparable
or larger amount of spread to LTdegree with much better total
opinion (as shown in Fig. 4). We further observe that Cone achieves
a slightly slower spread of activated nodes than LTgreedy. How-
ever, Cone can eventually reach the same level of total spread as
LTgreedy in the later stage of propagation. Larger spread indicates
more adoption of the target product, which brings more profits to
the company. Thus, we can conclude that Cone can achieve better
total opinion with little compromise on the adoption.

Table 3: Comparison of Related Works.

data-driven item-aware multi-round opinion
[6] ✓

[2, 5, 23] ✓
[13] ✓ ✓
[1] ✓ ✓

this paper ✓ ✓ ✓ ✓



(a) Popular item (ravg = 2.91) (b) Unpopular item (ravg = 2.18) (c) Popular item (ravg = 2.91) (d) Unpopular item (ravg = 2.18)

Figure 6: Case study on Cone.

4.6 Case Study

We select two items with different average ratings in Flixster dataset
to present their spread and opinion achieved by using Conemethod.
Figure 6(a) shows the spread curve achieved by Cone on a popular
item (average rating = 2.91) and the corresponding total opinion
curve in shown in Figure 6(c). In contrast, Figure 6(b) shows the
spread curve of Cone on an unpopular item (average rating = 2.18)
and and the corresponding total opinion curve in shown in Fig-
ure 6(d). We can observe that Cone is much more conservative
when promoting an unpopular item than the case of promoting a
popular item. The results indicate that Cone can adjust the promo-
tion strategies according to the opinions observed in the network
to optimize the selection of seed users.

5 RELATEDWORK

Our work is related to influence maximization (viral marketing),
opinion maxization and collaborative filtering, we briefly discuss
them respectively in this section.

5.1 Influence Maximization

Influence maximization (i.e., viral marketing) was first studied by
Domingos et al. [4]. Kempe et al. later studied this problem through
social network[10], two propagation models, i.e., LT (Linear Thresh-
old) model, and IC (Independent Cascade) model, are proposed
to simulate the real-world scenario of influence diffusion. Later,
Chen et al. proposed a scalable algorithm for IC model which can
be easily applied on networks with millions of nodes [3]. Goyal
et al. proposed a data-based approach [6] to model the influence
maximization problem, instead of randomly generating the model
parameters, their model learns influence-ability of users from the
historical traces of action propagations. Barbieri et al. [1] studied
the problem of topic-aware influence maximization based on the
IC model, which distinguishes the ability of influence of users on
different topics. Lin et al. considered the problem with multi-round
and multi-party setting, in which two competitive players select
their seeds to activate in turn to maximize their own outcomes [13].
Hung et al. proposed to study the problem of influence maximiza-
tion with item inference, where they considered the association
rule in influence propagation [8].

5.2 Opinion Maximization

Chen et al. [2] first proposed to incorporate opinion into influence
maximization problem based on the IC model, and their objective

is to maximize the total number of activated users with positive
opinions. Zhang et al. [23] later proposed another adapted IC model
to consider negative or neutral opinions. However, their model uses
randomly generated opinions over the network and assumes the
opinions are already known before the propagation starts. Gionis et
al. [5] model the opinion maximization problem as a game between
users in the social network, where each user holds a subjective
opinion about a target product or idea, but the expressed opinions
of each user is a trade-off between their own internal opinions and
their neighbors’ expressed opinions. All these works are neither
data-driven nor item-aware, overlooking the abundant historical
rating data.

5.3 Collaborative Filtering

The goal of collaborative filtering (CF) [11, 12, 14–16, 22, 25] is
to make accurate recommendations to users based on their past
reviews and feedback on existing products. Sarwar et al. proposed
an item-based approach for CF problem, in which they utilize the
similarity among items to make recommendation [16]. Koren et al.

proposed to use low-rank matrix factorization method to solve the
problem [12]. Yang et al. studied the CF problem with social links
and trust [22]. The major difference between CF problem and the
proposed Atom problem is that CF assumes all users are isolated
and no influence is propagated from users to users.

6 CONCLUSION

We studied the Atom problem and proposed a novel method Cone
to solve it. Cone is based on the Mlt diffusion model, where new
seed users are activated at the beginning of each round. Cone
estimates the user opinion towards the target product and opti-
mizes the seeds selection collectively at each round of Mlt. The
experimental results show that Cone improves the overall opinion
spread in the network. An interesting future work for this topic is
to study the Atom problem under the multi-party (or competitive)
settings, in which multiple promoters are practicing the promotion
simultaneously.
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