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ABSTRACT
Multi-label classification is prevalent in many real-world ap-
plications, where each example can be associated with a
set of multiple labels simultaneously. The key challenge of
multi-label classification comes from the large space of all
possible label sets, which is exponential to the number of
candidate labels. Most previous work focuses on exploiting
correlations among different labels to facilitate the learning
process. It is usually assumed that the label correlations
are given beforehand or can be derived directly from data
samples by counting their label co-occurrences. However,
in many real-world multi-label classification tasks, the la-
bel correlations are not given and can be hard to learn di-
rectly from data samples within a moderate-sized training
set. Heterogeneous information networks can provide abun-
dant knowledge about relationships among different types of
entities including data samples and class labels. In this pa-
per, we propose to use heterogeneous information networks
to facilitate the multi-label classification process. By mining
the linkage structure of heterogeneous information networks,
multiple types of relationships among different class labels
and data samples can be extracted. Then we can use these
relationships to effectively infer the correlations among dif-
ferent class labels in general, as well as the dependencies
among the label sets of data examples inter-connected in
the network. Empirical studies on real-world tasks demon-
strate that the performance of multi-label classification can
be effectively boosted using heterogeneous information net-
works.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
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1. INTRODUCTION
Multi-label classification has become increasingly impor-

tant in recent years, where each example can be associated
with multiple labels simultaneously. It has a wide range
of real-world applications. For example, in drug discovery,
one molecular drug can bind with multiple protein targets,
and researchers would like to predict which protein targets
that one chemical compound can bind with in order to dis-
cover new drugs for a certain disease; in gene-disease associ-
ation prediction, one gene sequence can involve in multiple
diseases, and researchers are interested in predicting which
diseases that each gene is related to.

The key challenge of multi-label classification comes from
the large space of all possible label sets, which is exponential
to the number of candidate labels. To tackle this problem,
conventional multi-label classification approaches [33, 11, 15]
focus on exploiting the correlations among different class
labels to facilitate the learning process. It is usually assumed
that the label correlations are given beforehand or can be
derived directly from data samples by counting their label
co-occurrences.

However, in many real-world multi-label classification tasks,
the label correlations are not given and can be hard to learn
directly from data samples within a moderate-sized training
set. Heterogeneous information networks [31] can usually
provide abundant knowledge about the relationships among
different types of entities including data samples and class
labels. In this paper, we propose to use heterogeneous in-
formation networks to facilitate the multi-label classification
process. We first introduce an example of real-world multi-
label classification task and show how a heterogeneous infor-
mation network can facilitate the learning process of multi-
label classification.

Example (Drug-Target Binding Prediction): In drug dis-
covery, one molecular drug can bind with a set of gene
targets. The multi-label classification task here is to pre-
dict which set of gene targets that one chemical compound
can bind with in order to discover new drugs for a certain
disease. The number of candidate labels are usually very
large, involving hundreds or thousands of gene targets. The
correlations among these gene targets are hard to learn di-
rectly from data samples within a moderate-sized training
set. However, if we already have a heterogeneous informa-
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Figure 1: An example of heterogeneous information
network (the data schema of SLAP network). Each
box represents one type of nodes in the network,
and each dashed line represents one type of links.
Each number under the node/link represents the to-
tal number of nodes/links of the same type.

tion network 1 as Figure 1 that contains abundant knowledge
about the relationships among different types of entities in-
cluding chemical compounds and gene targets, we can make
use of the domain knowledge within this network to facilitate
multi-label classification.

First, the heterogeneous information network can provide
abundant knowledge about the relationships among differ-
ent gene targets. In the network, gene targets are inter-
connected with many other types of nodes, such as diseases
and pathways. The gene targets, that are linked with similar
diseases or pathways, are more likely to appear together in
the same label set than those without such connections. Sec-
ond, the heterogeneous information network can also provide
abundant knowledge about the relationships among differ-
ent chemical compounds. In the network, chemical com-
pounds are also connected with other types of objects, such
as side effects and chemical ontologies. The chemical com-
pounds, that are linked with similar side effects or chemical
ontologies, are more likely to have similar label sets than the
chemicals without such connections.

By mining the linkage structure of heterogeneous informa-
tion networks, multiple types of relationships among differ-
ent class labels and data samples can be extracted. Such re-
lationships can then be used to infer the correlations among
different class labels in general, and the dependencies among
the label sets of different data samples. In this paper, we fo-
cus on studying the problem of multi-label classification by
mining label and instance correlations from heterogeneous
information networks. The major research challenges are as
follows:

Mining heterogeneous label correlations: In multi-label
classification, the multiple label concepts can be correlated
with each other through multiple types of relationships. For
example, different gene targets can be correlated for various

1SLAP dataset [4]: this dataset is an information network
that integrates many datasets into a single framework using
Semantic Web technologies for drug discovery. It includes
public datasets related to systems chemical biology: such as
PubChem, DrugBank, PPI, SIDER, CTD diseases, KEGG
Pathways, etc.

Figure 2: Multi-label classification by mining het-
erogeneous information networks.

reasons: 1) they belong to the same gene family; 2) they
share similar pathways; 3) they are inter-connected through
PPI links, etc. Heterogeneous information networks can
provide complex relationships among the label concepts, in-
volving multiple types of label correlations [28]. How to
exploit the linkage semantics is a very challenging problem
[28], which has not yet been explored in this context.

Mining heterogeneous instance correlations: In multi-label
classification, the label sets of different instances can also be
correlated with each other through multiple types of rela-
tionships. For example, different chemical compounds can
be correlated for various reasons: 1) they have similar side
effects; 2) they have similar chemical ontologies; 3) they
have similar substructures, etc. Heterogeneous information
networks can provide complex relationships among different
instances, involving multiple types of correlations.

In this paper, we study how we can facilitate the multi-
label classification process by mining the correlations among
instances and labels from heterogeneous information net-
works. We propose a novel solution, called PIPL, to assign
a set of candidate labels to a group of related instances in
heterogeneous information networks. Different from previ-
ous work, the proposed PIPL, as shown in Figure 2, can ex-
ploit various types of dependencies among both of instances
and labels based upon different meta-paths in heterogeneous
information networks. By explicitly exploiting these meta-
path based dependencies, our PIPL method can effectively
capture the diverse and complex relationships among in-
stances and labels. Empirical studies on real-world tasks
show that the proposed method can significantly boost the
performance of multi-label classification by incorporating in-
formation from heterogeneous information networks.

2. PROBLEM DEFINITION
In this section, we first introduce some related concepts

and notations, then define the problem.



2.1 Multi-label Classification
Suppose we have a multi-label classification task with n

instances and q labels. The set of all instances is denoted
as VI = {I1, · · · , In}, where each instance Ii has a feature
vector xi in the input space. The set of all candidate labels
is denoted as V` = {`1, · · · , `q}. Without loss of generality,
we assume the first n` instances in VI , denoted as V`

I =
{I1, · · · , In`} ⊂ VI , are labeled, where each instance Ii is

associated with a label set, denoted as Yi =
(
Y 1
i , · · · , Y q

i

)>
∈ {0, 1}q. If instance Ii has the j-th label `j in its label set,
Y j
i = 1 , otherwise Y j

i = 0. The remaining instances in VI
are unlabeled, i.e., Vu

I = VI − V`
I . The task of multi-label

classification is to predict the label sets for all the unlabeled
instances in Vu

I . In other words, for any possible label set
Y ∈ {0, 1}q and any instance Ii, we need to build a model
to estimate the probability P (Y|xi) based upon the training
dataset.

The key challenge of multi-label classification comes from
the fact that the output space of all possible label sets {0, 1}q
is very large, which is exponential to the number of candi-
date labels q. In order to tackle this problem, one simplest
solution is to decompose the multi-label classification prob-
lem into a set of binary classification problems (one for each
label), e.g., Bsvm [2]. This method can estimate P (Y|xi)
for instance Ii approximately by assuming that all labels are
independent:

∀i, P (Y|xi) ≈
∏q

k=1
P (Y k|xi)

However, the correlations among different labels are totally
ignored in these methods.

Most previous multi-label classification approaches focus
on exploiting the label correlations to facilitate the learning
process. For example, the Ecc method [27] captures label
correlations directly from data samples by approximate the
probability P (Y|xi) as follows:

P (Y|xi) ≈ P (Y 1|xi) P (Y 2|Y 1
i ,xi) P (Y 3

i |Y 1, Y 2,xi) · · ·

It is usually assumed implicitly that the label correlations
can be derived directly from the observed data samples by
counting their label co-occurrences.

However, in many real-world multi-label classification tasks,
the label correlations are hard to learn directly from data
samples with a moderate-sized training set. Heterogeneous
information networks [31] can usually provide abundant knowl-
edge about the relationships among different types of enti-
ties including data samples and class labels. In this paper,
we propose to use heterogeneous information networks to
facilitate the multi-label classification process.

2.2 Heterogeneous Information Network
A heterogeneous information network is a special kind of

information network with multiple types of nodes and mul-
tiple types of links [31, 28]. It can be represented as a di-
rected graph G = (V, E). V denotes the set of nodes, which
involves t types of objects: V1 = {v11, · · · , v1n1} , · · · ,Vt =
{vt1, · · · , vtnt}, where vij represents the j-th object of type
i. E ⊆ V × V denotes the links between the objects in V,
which includes multiple types of links.

First we define the type of nodes in the heterogeneous
information network G corresponds to the instances of the
multi-label classification task as the instance type. While
we define type of nodes corresponds to the label concepts

for the multi-label classification task as the label type. For
example, in the task of drug-target binding prediction, the
chemical compound nodes are the instances and the gene
nodes are the labels; in the task of gene-disease association
prediction, the gene nodes are the instances and the disease
nodes are the labels.

3. PROPOSED METHOD
Heterogeneous information networks can provide abun-

dant knowledge about the relationships among different types
of entities including data samples and class labels. By min-
ing the linkage structure of heterogeneous information net-
works, multiple types of relationships among different class
labels and the data samples can be extracted. Such relation-
ships can be used to infer the correlations among different
class labels in general, and the dependencies among the label
sets of different data samples.

In the following subsections, we first discuss how to ex-
tract heterogeneous relationships among different labels from
heterogeneous information networks in section 3.2. We then
discuss how to extract heterogeneous relationships among
the instance from heterogeneous information networks in
section 3.3. We then integrate these two parts into a unified
model in section 3.4.

3.1 Meta-path
Before discussing in detail about the proposed method, we

first introduce the concept of meta-path in heterogeneous in-
formation networks. Following the works [28, 20, 18, 30], we
first briefly review the concept of meta-path. Then we use
meta-paths to describe the possible relationships among in-
stances and labels derived from a heterogeneous information
network.

Generally, meta-path is defined as a sequence of relations
in the network schema. The objects in heterogeneous in-
formation networks (including the instances and labels) are
inter-connected through multiple types of links. Each type
of links from node type i to node type j corresponds to a
binary relation R, where R(vip, vjq) holds if object vip and
vjq are linked by a link of type R. For example, in Fig-
ure 1, the link type “hasPathway” is a relation between gene
nodes and pathways nodes, where R(vip, vjq) holds if the
gene node vip has a link of type “hasPathway” to the path-
way node vjq in the network. We can write the link type as

“gene
hasPathway−−−−−−−−→ pathway” or “Vi

R−→ Vj”.
A meta-path P corresponds a type of path within the net-

work graph, containing a certain sequence of link types. For

example, in Figure 1, a meta-path “gene
hasPathway−−−−−−−−→ path-

way
hasPathway−1

−−−−−−−−−−→ gene” denotes the composite relation-
ship between gene nodes where the semantic meaning of
this meta-path is that the two gene nodes share a common
pathway node. The link type“hasPathway−1” represents the
inverted relation of “hasPathway”.

Different meta-paths usually represent different relation-
ships among the linked objects with totally different seman-

tic meanings. For example, the meta-path “gene
PPI−−−→gene”

denotes the two gene nodes are connected through “PPI”

links; while meta-path “gene
hasGO−−−−→GO

hasGO−1

−−−−−−→gene” cor-
responds to the semantic meaning that the two gene nodes
share common gene ontology terms.



Input:
G: a heterogeneous information network, p max,: maximum meta-path length (default=4) X : attribute vectors for all instances.
YL: label sets for the training instances, A: a base learner for local model, Tmax: maximum # of iteration (default=10)

Meta-path Construction:
- Construct the meta-path set for label correlations S` = {P1, · · · ,Pc`

}:
Breadth first search on schema graph of G starting from label type by adding short meta-paths that ends with label type into S` first:

1. If the length of meta-path is greater than p max, exit the BFS;
2. If current meta-path Pj cannot be reconstructed by the paths in S`, add Pj into S`; Otherwise, prune the current path from BFS.

- Construct the meta-path set for instance correlations SI = {P′1, · · · ,P
′
cI
}:

similar BFS, but starting and ending with instance type.
Training Initialization:

- Learn the local model f :

1. Construct q extended training sets ∀1 ≤ k ≤ q,Dk =
{

(xk
i , y

k
i )
}

by converting each instance xi to xk
i as follows:

xk
i = (xi,LabelPathFeature(`k,Yi), InstancePathFeature(i,YL))

2. Let fk = A(Dk) be the local model trained on Dk.
Bootstrap:

- Estimate the label sets, for i ∈ U : produce an estimated values Ŷi for Yi as follows: Ŷi = f ((xi, 0)) using attributes only.
Iterative Inference:

- Repeat until convergence or #iteration> Tmax

1. Construct the extended testing instance by converting each instance xi to xk
i ’s (i ∈ U) as follows:

xk
i =

(
xi,LabelPathFeature(`k, Ŷi), InstancePathFeature(i,YL ∪ {Ŷi|i ∈ U},S)

)
2. Update the estimated value Ŷi for Yi on each testing instance (i ∈ U) as follows: ∀1 ≤ k ≤ q, Ŷ k

i = fk(xk
i ).

Output:

ŶU =
(
Ŷ1, · · · , Ŷnu

)
: the label sets of testing instances (i ∈ U).

Figure 3: The PIPL algorithm

3.2 Meta-path-based Label Correlations
Heterogeneous information networks can involve various

existing knowledge about the candidate label concepts, where
the complex correlations among label concepts are embed-
ded within the network structures. For example, in Figure 1,
the label nodes (i.e., the gene nodes) are linked with each
other directly through “PPI” links.

It indicates one type of label correlation within the net-
work structure: gene labels that are linked by “PPI” links
can be more likely (or less likely) to appear together in the
label set of a chemical compound than those without “PPI”
links.

To generalize, the label concepts can also be linked by
certain meta-paths, thus being correlated. For example, the
gene labels are also linked with each other through the meta-

path “gene
hasGO−−−−→GO

hasGO−1

−−−−−−→gene”. It indicates another
type of label correlations: gene labels that share similar gene
ontology terms can be more likely (or less likely) to appear
together in the label set of a chemical compound than those
without such meta-path links. Thus meta-paths among the
label nodes, i.e., the meta-path starting and ending with
the label node type, can effectively capture different types
of label correlations embedded in heterogeneous information
networks.

We propose to exploit meta-path-based label correlations
for multi-label classification. Given a set of meta-paths
among the label nodes, S` = {P1, · · · ,Pc`}, the meta-path-
based label correlations can be used as follows:

∀i, P (Yi|xi) ≈
q∏

k=1

P (Yk
i |xi,Y

P1(k)
i , · · · ,YPc`

(k)

i )

where Pj(k) denotes the index set of labels that are linked
to the k-th label through meta-path Pj ∈ S`.

3.3 Meta-path-based Instance Correlations
Existing approaches for multi-label classification usually

have i.i.d. assumptions, where the label set predictions on

different instances are assumed to be independent:

P (Y|X ) ≈
∏

i
P (Yi|xi)

However, in heterogeneous information networks, there are
complex correlations not only among different labels but
also among different instances. Heterogeneous information
networks can involve various existing knowledge about the
instances, where the complex correlations among the label
sets of different instances are embedded within the network
structures.

Similar to the previous subsection, the instance nodes can
also be linked by certain meta-paths, thus the label sets
of the linked instances can be correlated. For example, the
chemical compound nodes are linked with each other through

the meta-path “chemical compound
causeSideEffect−−−−−−−−−−−→ Side Ef-

fect
causeSideEffect−1

−−−−−−−−−−−−−→ chemical compounds”. It indicates
the type of instance correlations: chemical drugs that share
similar side effects can be more likely (or less likely) to have
similar label sets than those without such meta-path links.
Thus meta-paths among the instance nodes, i.e., the meta-
path starting and ending with the instance node type, can
effectively capture different types of instance correlations
embedded in heterogeneous information networks.

We propose to exploit meta-path-based instance correla-
tions for multi-label classification. Given a set of meta-paths
among the instance nodes, SI = {P ′1, · · · ,P ′cI}, the meta-
path-based instance correlations can be used as follows:

P (Y|X ) ≈
∏

i
P (Yi|xi,YP′1(i), · · · ,YP′cI (i))

where P ′j(i) denotes the index set of instances that are linked
to the i-th instance through meta-path P ′j ∈ SI .

3.4 The Unified Model
In order to perform multi-label collective classification

more effectively in heterogeneous information networks, in
this paper, we explicitly consider both meta-path-based la-



• x` = LabelPathFeature (`k,Yi)
For each meta-path Pj ∈ S`:
1. Get related labels for node `k through meta-path Pj

i.e., the related index set C = Pj(i)
2. xj = Aggregation

(
{Y k

i |k ∈ C}
)

Return (· · · ,x>j , · · · )>

• xI = InstancePathFeature (i,Y)
For each meta-path P ′j ∈ SI :

1. Get related instances for node Ii through meta-path P ′j ,

i.e. the related index set C = P ′j(i)

2. xj = Aggregation ({Yi|i ∈ C})
Return (· · · ,x>j , · · · )>

Figure 4: The functions of constructing relational
features for meta-path-based label correlations and
meta-path-based instance correlations

bel correlations and meta-path-based intance correlations si-
multaneously.

P (Y|X ) ≈
∏

i

∏q

k=1
P (Yk

i |xi,Y
Pj(k)

i , · · · ,Yk
P′

j′ (i)
, · · · )

In Figure 3, we summarize the proposed multi-label col-
lective classification algorithm, called PIPL. The algorithm
includes the following steps:
Meta-path Construction: Given a heterogeneous infor-
mation network, we first extract all non-redundant meta-
paths for label correlations and instance correlations sepa-
rately. A meta-path Pj in S` (or P ′j in SI) is non-redundant
if Pj (or P ′j) cannot be reconstructed by combining any sub-
set of the meta-paths in S` (or SI). We only extract short
meta-paths with a maximum path length p max. It has been
shown in [28] that long meta-paths are not quite useful in
capturing the linkage structure of heterogeneous information
networks.
Training Initialization: We construct q extended train-
ing sets ∀1 ≤ k ≤ q,Dk =

{
(xk

i , y
k
i )
}

by converting each

instance xi to xk
i using the functions in Figure 4. We train

one classifier on each label, using the extended training sets.
Iterative Inference: Overall, it is an iterative classification
algorithm [22] for the inference step. During the inference,
we iteratively update the label set predictions of the testing
instances, and the relational features corresponding to the
label and instance correlations.

4. EXPERIMENTS

4.1 Data Collections
In order to evaluate the performances of multi-label collec-

tive classification in heterogeneous information networks, we
had our algorithm tested on a bioinformatic dataset SLAP
[4], which is a heterogeneous network composed by over
290K nodes and 720K edges. As shown in Figure 1, the
SLAP dataset contains integrated data related to chemi-
cal compounds, genes, diseases, side effects, pathways etc.
Specifically, there are two different prediction tasks studied
in this section:
• Gene-Disease Association Prediction: The first task we
studied is gene-disease association prediction, where we treat
genes as the instances, and diseases as the labels. In SLAP
dataset, each gene can cause or be related to multiple dis-
eases simultaneously. The label set of each gene is defined

as the set of diseases that the gene can cause. The task of
gene-disease association prediction is that, we are given a set
of training gene instances, and for each unlabeled gene in-
stance, we want to predict which set of diseases the gene can
cause. In this way, we could discover what kinds of diseases
might be caused by a specific gene. In details, we extracted
3000 gene ontology terms (GO terms) and used them as the
features of each gene instance. The top-50 diseases that are
associated with the largest number of genes were used as
the candidate labels. The labels of this task is highly in-
complete. Thus, we kept all the genes which had at least
one label, and randomly sampled additional gene instances
without any direct link connection to any disease, according
to 1 : 10 ratio. The final dataset contains 1943 instances,
3000 features and 50 labels in total. All the remaining nodes
are kept in the network, and can be used in meta-paths.
• Drug-Target Binding Prediction: The second task we stud-
ied is drug-target binding prediction, where we treat chem-
ical compounds as the instances and genes as the labels.
We first represent the structure of each chemical compound
as a graph object. Then we used the multi-label subgraph
mining algorithm [19] to extract 1500 subgraphs from the
dataset and used them as features of the instances. Simi-
lar to the previous task, the top-50 genes that are binded
with the largest number of chemical compounds were used
as the candidate labels. We removed the instances with no
feature. The dataset contains 5651 instances, 1500 features
and 50 labels in total. All the remaining nodes are kept in
the network, and can be used in meta-paths.

4.2 Evaluation Metrics
Multi-label classification problems require more compli-

cated criteria for performance evaluation than conventional
single-label classification problems. We use some evaluation
criteria in [10, 14, 21, 37, 8] to verify the multi-label classifi-
cation performance in heterogeneous information networks.
Given a multi-label dataset DU involving n instances, i.e.,
(xi,Yi). Here Yi ∈ {0, 1}q (i = 1, · · · , n). Denote h(xi) as
the predicted label set for xi by a multi-label classifier h.
We have the following evaluation criteria:
• Micro F1 [10, 14, 21]: is the harmonic mean of micro
average of Precision and Recall. The micro average means
that the score is first computed on each label separately and
then averaged with equal importance.

micro-F1(h,DU ) =
2×

∑n
i=1 ‖h(xi) ∩ Yi‖1∑n

i=1 ‖h(xi)‖1 +
∑n

i=1 ‖Yi‖1

The larger the value, the better the performance.
• Hamming loss [8, 37]: evaluates the symetric difference
between true labels and predicted labels.

HammingLoss(h,DU ) =
1

n

∑n

i=1

1

q
‖h(xi)⊕ Yi‖1

where ⊕ stands for the symmetric difference of two sets. ‖·‖1
denotes the l1-norm. The smaller the value, the better the
performance.
• Subset 0/1 Loss [8, 10]: evaluates 0/1 loss over the label
set prediction.

SubsetLoss(h,DU ) =
1

n

n∑
i=1

I (h(xi) 6= Yi)

I(·) denotes the indicator function, i.e., I(π) = 1 iff π holds,



Table 1: Summary of compared methods.

Method Type of Classification Type of Correlations Exploited Publication

Bsvm Binary Classification all independent [2]

Ecc Multi-Label Classification ¬ label correlcation from data samples [27]

PIsl Collective Classification  instance correlations from heterogeneous network [18]

¬ label correlation from data samples
Icml Multi-Label Collective Classification ® instance correlation from homogeneous network [17]

PIml Multi-Label Collective Classification  instance correlations from heterogeneous network This paper

 meta-path-based instance correlation
PIPL Multi-Label Collective Classification ¯ label correlations from heterogeneous network This paper

Table 2: Classification performances “average score ± std (rank)” on gene-disease association prediction task.
“↓” indicates the smaller the value the better the performance; “↑” indicates the larger the value the better
the performance.

methods

criteria #label Bsvm Ecc Icml PIsl PIml PIPL

10 0.360±0.082 (6) 0.387±0.073 (4) 0.366±0.079 (5) 0.390±0.115 (3) 0.399±0.107 (2) 0.400±0.106 (1)

20 0.385±0.046 (6) 0.406±0.043 (4) 0.389±0.066 (5) 0.417±0.055 (3) 0.426±0.055 (2) 0.433±0.066 (1)

Micro-F1 ↑ 30 0.317±0.035 (6) 0.359±0.027 (2) 0.343±0.039 (5) 0.342±0.037 (4) 0.355±0.013 (3) 0.360±0.007 (1)

40 0.342±0.045 (5) 0.386±0.032 (3) 0.339±0.042 (6) 0.382±0.034 (4) 0.387±0.030 (2) 0.391±0.030 (1)

50 0.303±0.055 (6) 0.346±0.059 (4) 0.321±0.063 (5) 0.348±0.064 (3) 0.360±0.075 (2) 0.366±0.078 (1)

10 0.011±0.002 (1) 0.013±0.002 (6) 0.011±0.002 (1) 0.011±0.003 (1) 0.011±0.003 (1) 0.011±0.002 (1)

20 0.008±0.001 (1) 0.010±0.000 (6) 0.008±0.000 (1) 0.008±0.001 (1) 0.008±0.001 (1) 0.008±0.001 (1)

Hamming Loss ↓ 30 0.008±0.000 (5) 0.009±0.000 (6) 0.007±0.000 (1) 0.007±0.001 (1) 0.007±0.001 (1) 0.007±0.000 (1)

40 0.007±0.000 (4) 0.007±0.000 (4) 0.007±0.000 (4) 0.006±0.000 (1) 0.006±0.000 (1) 0.006±0.000 (1)

50 0.006±0.001 (1) 0.007±0.001 (6) 0.006±0.001 (1) 0.006±0.001 (1) 0.006±0.001 (1) 0.006±0.001 (1)

10 0.108±0.023 (5) 0.125±0.020 (6) 0.107±0.020 (4) 0.103±0.024 (1) 0.103±0.024 (1) 0.103±0.023 (1)

20 0.153±0.008 (4) 0.180±0.011 (6) 0.154±0.006 (5) 0.148±0.005 (2) 0.148±0.009 (2) 0.147±0.007 (1)

Subset 0/1 Loss ↓ 30 0.197±0.009 (4) 0.212±0.006 (6) 0.191±0.010 (5) 0.195±0.011 (3) 0.192±0.010 (2) 0.191±0.009 (1)

40 0.227±0.018 (4) 0.238±0.016 (5) 0.228±0.017 (1) 0.219±0.018 (3) 0.218±0.014 (2) 0.216±0.015 (1)

50 0.255±0.026 (5) 0.275±0.029 (6) 0.250±0.030 (4) 0.244±0.028 (3) 0.243±0.028 (2) 0.241±0.028 (1)

otherwise I(π) = 0. The smaller the value, the better the
performance.

4.3 Compared Methods
In order to demonstrate the effectiveness of our multi-label

classification approach, we compared the following methods
(summarized in Table 1):

• Bsvm (binary SVM): The first baseline method uses
binary decomposition method to solve multi-label clas-
sification problems, which is similar to [2]. The multi-
label dataset is first divided into multiple single-label
datasets by one-vs-all binary decomposition. For each
binary classification task, we use the SVM as the base
classifier. Then the predictions of SVMs for all labels
are combined to make the final prediction. Bsvm as-
sumes all the labels and all instances are independent.

• Ecc (multi-label classification + ensemble): This base-
line method is an ensemble of classifier chains (CC)
[27]. The ensemble is created by training different
classifier chains using randomly sampled subset of in-
stances with random label orders.

• PIsl (binary decomposition + meta-path based in-
stance correlation): We compare with another base-
line using binary decomposition. For each binary clas-
sification task, we use the meta-path based collective

classification method in heterogenous information net-
works [18] to perform the binary collective classifica-
tion. This method can exploit the meta-path based
instance correlation within a heterogenous information
network.

• Icml (simple label correlation + instance correlation
in homogeneous network): This method was proposed
in [17] which can exploit relational features for inter-
instance dependencies based upon homogeneous net-
work for multi-label collective classification. Since this
method requires a homogeneous network among the
instances, we can only run this method on the Gene-
Disease association prediction task, where the PPI net-
work is used as the homogeneous network among the
gene instances.

• PIml (simple label correlation + meta-path based in-
stance correlation): This method is extended from PIsl
[18] by adding relational features according to inter-
instance-cross-label dependencies for multi-label col-
lective classification [17]. This method can only exploit
the instance correlations from heterogeneous networks.
However, the label correlations used in this method
are directly derived from data samples instead of us-
ing heterogeneous networks.

• PIPL (meta-path based instance and label correla-



Table 3: Classification performances “average score ± std (rank)” on drug-target binding prediction task. “↓”
indicates the smaller the value the better the performance; “↑” indicates the larger the value the better the
performance.

methods

criteria #label Bsvm Ecc PIsl PIml PIPL

10 0.532±0.046 (5) 0.576±0.053 (4) 0.608±0.046 (3) 0.611±0.040 (2) 0.625±0.042 (1)

20 0.553±0.019 (5) 0.588±0.018 (4) 0.696±0.016 (3) 0.714±0.011 (2) 0.724±0.011 (1)

Micro-F1 ↑ 30 0.536±0.052 (5) 0.585±0.054 (4) 0.674±0.032 (3) 0.695±0.025 (2) 0.706±0.026 (1)

40 0.523±0.018 (5) 0.568±0.022 (4) 0.599±0.022 (3) 0.618±0.022 (2) 0.642±0.022 (1)

50 0.521±0.028 (5) 0.571±0.036 (4) 0.603±0.031 (3) 0.635±0.028 (2) 0.653±0.026 (1)

10 0.024±0.003 (5) 0.021±0.003 (4) 0.020±0.003 (2) 0.020±0.002 (3) 0.018±0.002 (1)

20 0.019±0.001 (5) 0.017±0.000 (4) 0.012±0.001 (3) 0.012±0.001 (2) 0.011±0.001 (1)

Hamming Loss ↓ 30 0.018±0.002 (5) 0.016±0.002 (4) 0.012±0.001 (3) 0.011±0.000 (2) 0.010±0.000 (1)

40 0.017±0.001 (5) 0.015±0.001 (4) 0.014±0.001 (3) 0.013±0.001 (2) 0.012±0.001 (1)

50 0.016±0.001 (5) 0.014±0.001 (4) 0.013±0.001 (3) 0.012±0.001 (2) 0.011±0.001 (1)

10 0.147±0.012 (5) 0.128±0.017 (4) 0.123±0.011 (2) 0.124±0.010 (3) 0.113±0.010 (1)

20 0.222±0.009 (5) 0.193±0.006 (4) 0.165±0.011 (3) 0.163±0.010 (2) 0.148±0.004 (1)

Subset 0/1 Loss ↓ 30 0.265±0.019 (5) 0.223±0.029 (4) 0.214±0.007 (3) 0.207±0.004 (2) 0.182±0.003 (1)

40 0.305±0.008 (5) 0.250±0.004 (2) 0.268±0.010 (4) 0.257±0.010 (3) 0.223±0.010 (1)

50 0.351±0.009 (5) 0.288±0.018 (2) 0.306±0.013 (4) 0.288±0.020 (3) 0.261±0.017 (1)

tion): The proposed method for multi-label collective
classification in heterogenous information networks. The
only difference between PIPL and PIml is that PIml
does not consider the meta-path based label correla-
tion.

For a fair comparison, we use LibSVM [3] with linear ker-
nel and default parameter as the base classifier for all the
compared methods. The maximum number of iterations in
the methods PIPL, PIml and PIsl are all set as 10.

4.4 Performances of Multi-Label Classification
We first study the effectiveness of the proposed PIPL

method on multi-label collective classification in heteroge-
neous information networks. In our experiments, 5-fold cross
validations are performed on each task to evaluate the per-
formances of multi-label collective classification. We show
the detailed results in Table 2 and Table 3, with the number
of candidate labels varying from 10 to 50. The average per-
formances of the five methods with standard deviations are
reported with respect to three different evaluation metrics.

In both tasks, we can observe that the Bsvm method,
which assumes all instances and labels are independent, is
outperformed by other methods, which explicitly consider
correlations among predictions from various aspects. These
results demonstrate the importance of exploiting different
types of correlations for multi-label collective classification
in heterogeneous information networks. In details, PIsl can
improve performances over Bsvm because it exploits the
meta-path based instance correlation. These results support
our first assumption that in multi-label heterogenous infor-
mation networks, the label sets of related instances through
instance meta-pahts are not independent, and should be
classified collectively. Similar conclusions can also be drawn
from the results that PIml outperforms Ecc. Though both
methods can exploit simple label correlation, PIml can fur-
ther exploit the meta-path based instance correlations, while
Ecc assumes that the label sets of different instances are
independent, and are predicted independently. Thus it is
necessary and important to exploit the meta-path based cor-
relations among the related instances.

We also observe that in gene-disease association predic-

tion task, meta-path based methods designed for hetero-
geous networks (i.e., PIsl, PIml, PIPL) can achieve better
performances than the Icml that only exploits the homoge-
neous network among instances.

We further observe that the proposed PIPL performs the
best among all compared methods. Especially, PIPL out-
performs PIml and PIsl, by taking meta-path based label
correlation into consideration. In heterogeneous informa-
tion networks, both of instances and candidate labels can
be correlated with each other via diverse semantic mean-
ings. In Table 4, we show four examples of the meta paths
used by PIPL method in both tasks, which correspond to
label correlations and instance correlations separately. Such
complex correlations can be effectively exploited through in-
stance and label meta-paths and thus boost the classifica-
tion performances of multi-label collective classification in
heterogeneous information networks.

4.5 Sensitivity to Number Features
In previous subsection, we extracted 3000 GO terms and

used them as features for Gene-Disease association predic-
tion task. For Drug-Target binding prediction task, we ex-
tracted 1500 substructures of the chemical compounds and
used them as features. To test the stability of the per-
formances of PIPL method, we show the micro-F1 scores
of each method under different numbers of features (rang-
ing from 500 to 5000 in Gene-Disease association prediction
task, and from 400 to 2400 in Drug-Target binding predic-
tion task) with 50 candidate labels. Figure 5(a) and Fig-
ure 5(b) illustrate that PIPL performs quite well and stably,
and it is not sensitive to the number of features.

5. RELATED WORK
Multi-label classification has been extensively studied in

recent years [33, 11, 15, 32, 5, 25, 12]. Conventional meth-
ods can be roughly categorized as follows: (1) binary ap-
proaches, which converts the multi-label problem into multi-
ple independent binary classification problems (one for each
label) [2, 36] (2) pairwise approaches which exploit the pair-
wise relation between different labels [10, 9]. (3) High-
order approaches: The third type of approaches considers



Table 4: Examples of meta-paths used in PIPL method

Task Meta-path Correlation

Disease
treated−−−−−→Chemical compound

treat−−−−→Disease label correlation

Gene-Disease Disease
treated−−−−−→Chemical compound

has−−→Substructure
in−−→Chemical compound

treat−−−−→Disease label correlation

Prediction Gene
cause−−−−→Disease

treated−−−−−→Chemical compound
bind−−−→Gene instance correlation

Gene
binded−−−−−→Chemical compound

cause−−−−→Side effect
caused−−−−−→Chemical compound

bind−−−→Gene instance correlation

Gene
PPI−−−→Gene label correlation

Drug-Target Gene
has−−→pathway

has−−→Gene label correlation

Prediction Chemical compound
bind−−−→Gene

PPI−−−→Gene
binded−−−−−→Chemical compound instance correlation

Chemical compound
bind−−−→Gene

has−−→Tissue
has−−→Gene

binded−−−−−→Chemical compound instance correlation
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Figure 5: Micro-F1 scores with different number of features.

Table 5: Summary of related datasets used in network classification.

type of #types
dataset publication network classification (node,link) #Nodes Node Types

Gene [34] homogeneous single-label (1,1) 1,243 gene
Citeseer [22] homogeneous single-label (1,1) 3,312 paper
WebKB [7] homogeneous single-label (1,1) 3,877 webpage
DBLP [17] homogeneous multi-label (1,1) 4638 author
ACM [18] heterogeneous single-label (5,5) 12,499 paper,author,conference,proceeding,school
Cora [23] heterogeneous single-label (5,5) 4,330 paper, author, journal, publisher, editor
IMDB [1] heterogeneous single-label (5,5) 1,382 movie, actor, director, studio, producer
NASD [24] heterogeneous single-label (5,6) 22,000 broker, branck, firm, disclosure, regulator

SLAP this paper heterogeneous multi-label (10,11) 280,792 drug, disease, gene, side effect, pathway
tissue, GO, gene family, substructure,CO

the high-order correlations among different labels. Such ap-
proaches includes random subset ensemble approaches [26,
27], Bayesian network based approach [35] and full-order ap-
proaches [6, 8]. [17] studied the multi-label collective classi-
fication using homogeneous networks.

Heterogeneous information networks have attracted much
attention in recent years [31, 29, 13]. Sun et al. [31, 28]
studied the clustering problem and top-k similarity problem
in heterogeneous information networks. Ji et al. studied
a specialized classification problem on heterogeneous net-
works, where different types of nodes share a same set of
label concepts [13]. [18, 16] studied collective classification
problem in heterogeneous information networks .

In Table 5 we reviewed the datasets used in previous works
on network classification. It shows that among all datasets,

SLAP dataset is one of the best choices for studying multi-
label classification in heterogeneous information networks.

6. CONCLUSION
In this paper, we studied how to exploit heterogeneous

information networks for multi-label collective classification.
Conventional multi-label learning approaches usually assume
that the label correlations are either given or can be derived
directly from data samples by counting their co-occurrences.
We proposed to use heterogeneous information networks to
facilitate the learning process of multi-label classification by
mining label correlations and instance correlations from the
network. We propose a novel solution to multi-label clas-
sification, called PIPL by exploiting complex linkage infor-
mation in heterogeneous information networks. Empirical



studies on real-world tasks demonstrate that the proposed
multi-label classification approach can effectively boost clas-
sification performances.
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