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Abstract. Graph classification has been showing critical importance in a wide variety
of applications, e.g. drug activity predictions and toxicology analysis. Current research
on graph classification focuses on single-label settings. However, in many applications,
each graph data can be assigned with a set of multiple labels simultaneously. Extract-
ing good features using multiple labels of the graphs becomes an important step before
graph classification. In this paper, we study the problem of multi-label feature selec-
tion for graph classification and propose a novel solution, called gMLC, to efficiently
search for optimal subgraph features for graph objects with multiple labels. Different
from existing feature selection methods in vector spaces which assume the feature set
is given, we perform multi-label feature selection for graph data in a progressive way
together with the subgraph feature mining process. We derive an evaluation criterion
to estimate the dependence between subgraph features and multiple labels of graphs.
Then a branch-and-bound algorithm is proposed to efficiently search for optimal sub-
graph features by judiciously pruning the subgraph search space using multiple labels.
Empirical studies demonstrate that our feature selection approach can effectively boost
multi-label graph classification performances and is more efficient by pruning the sub-
graph search space using multiple labels.

Keywords: Feature selection; Graph classification; Multi-label learning; Subgraph
Pattern; Label correlation

1. Introduction

Due to the recent advances of data collection technology, many application fields
are facing various data with complex structures, e.g., chemical compounds, pro-
gram flows and XML web documents. Different from traditional data in feature
spaces, these data are not represented as feature vectors, but as graphs which
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Fig. 1. Examples of multi-label graphs. a) In kinase inhibition, each molecule can
inhibit the activities of multiple types of kinases; b) In anti-cancer prediction,
each molecular medicine can have anti-cancer efficacies on multiple types of
cancers; c) In toxicology analysis, each chemical compound has carcinogenicity
activities in multiple animal models.

raise one fundamental challenge for data mining research: the complex structure
and lack of vector representations (Chen et al., 2009; Tasourakakis and Falout-
sos, 2010; Jia et al., 2011; Ying and Wu, 2010). An effective model for graph
data should be able to extract or find a proper set of features for these graphs in
order to perform analysis or management steps. Motivated by these challenges,
graph mining research problems, in particular graph classification, have received
considerable attention in the last decade.

In the literature, graph classification problem has been extensively studied.
Conventional approaches focus on single-label classification problems (Yan et al.,
2008; Thoma et al., 2009; Fei and Huan, 2010; Zou et al., 2010), which assume,
explicitly or implicitly, that each graph has only one label. However, in many
real-world applications, each graph can be assigned with more than one label.
For example, in Figure 1, a chemical compound can inhibit the activities of
multiple types of kinases, e.g., ATPase and MEK kinase; One drug molecular
can have anti-cancer efficacies on multiple types of cancers. The selection and
discovery of drugs or kinase inhibitors can be significantly improved if these
chemical molecules are automatically tagged with a set of multiple labels or
potential efficacies. This setting is also known as multi-label classification where
each instance can be associated with multiple categories. It has been shown
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(a) One-vs-All Single-label Feature Selection Process for Multi-label Graph Classification

(b) gMLC Feature Selection Process for Multi-label Graph Classification

Fig. 2. Two types of Feature Selection Processes for Multi-label Graph Classifi-
cation

useful in many real-world applications such as text categorization (McCallum,
1999; Schapire and Singer, 2000) and bioinformatics (Elisseeff and Weston, 2002).
Multi-label classification is particularly challenging on graph data. The reason
is that, in the single-label case, conventional graph mining methods can extract
or find one set of discriminative subgraph features for the single label concept
within the graph dataset. But in multi-label cases, each graph contains multiple
label concepts, and multiple sets of subgraph features should be mined, one
for each label concept, in order to decide all the possible categories for each
graph using binary classifiers (one-vs-all technique (Boutell et al., 2004)). Thus
the time and memory used for classifying multi-label graph data is much larger
than for the single-label graphs. A major difficulty in performing multi-label
classification on graph data lies in the complex structure of graphs and lack
of features which is useful for multiple labels concepts. Selecting a proper set
of features for graph data becomes an essential and important procedure for
multi-label graph classification.

Despite its value and significance, the multi-label feature selection problem
for graph data has not been studied in this context so far. If we consider graph
mining and multi-label classification as a whole, the major research challenges
on multi-label feature selection for graph classification are as follows:

1.Graph Data: One fundamental problem in multi-label feature selection on
graph data lies in the complex structures and lack of feature representations
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of graphs. Conventional feature selection approaches in vector spaces assume,
explicitly or implicitly, that a full set of features is given before the feature
selection. In the context of graph data, however, the full set of features for a
graph dataset, are usually too large or even infeasible to obtain. For example,
in graph mining, the number of subgraph features grows exponentially with
the size of the graphs, which makes it impossible to enumerate all the subgraph
features before the feature selection.

2.Multiple Labels: Another fundamental problem in multi-label feature se-
lection on graph data lies in the multiple label concepts for each graph,
i.e. how to utilize the multiple label concepts in a graph dataset to find a
proper set of subgraph features for classification tasks. Conventional feature
selection in graph classification approaches focuses on single-labeled settings
(Kudo et al., 2005; Yan et al., 2008; Thoma et al., 2009). The mining strat-
egy of discriminative subgraph patterns strictly follows the assumption that
each graph has only one label. However, in many real-world applications, one
graph can usually be assigned with multiple labels simultaneously. Directly
applying single-label graph feature selection methods by adopting the popu-
lar one-versus-all binary decomposition (Figure 2(a)), which performs feature
selection on each label concept, will result in different sets of subgraph fea-
tures on different classes. Thus most state-of-the-art multi-label classification
approaches in vector spaces cannot be used, since they assume that the in-
stances should have a same set of features in the input space (Schapire and
Singer, 2000; Elisseeff and Weston, 2002).

3. Label Correlations: In many real-world applications, the multiple labels of
graphs are usually correlated, not independent from each other. For example,
in anti-cancer drug activity prediction tasks, chemical compounds which are
active to one type of cancer are more likely to be active to some other related
cancers. It is much desirable that the correlations between different labels be
exploited in the feature selection process.

Figure 2(a) illustrates the process of directly applying single-label graph fea-
ture selection methods by adopting the popular one-versus-all binary decompo-
sition. The problems with this approach are as follows:

– multiple sets of discriminative subgraph features, one for each label or label
combination, should to be mined before the classification, which could be too
expensive when the number of labels is large;

– the correlations among multiple labels of the graphs are ignored in the fea-
ture selection process. In addition, the correlations among labels may result
in similar feature sets for different labels. Redundancies in these sets of dis-
criminative subgraph features cause unnecessary time and memory costs, since
many of the features are mined multiple times.

In this paper, we introduce a novel framework to the above problems by
mining subgraph features using multiple labels of graphs. Our framework is il-
lustrated in Figure 2(b). Different from existing single-label feature selection
methods for graph data, our approach, called gMLC, can utilize multiple labels
of graphs to find an optimal set of subgraph features for graph classification. We
first derive an evaluation criterion for subgraph features, named gHSIC, based
upon a given graph dataset with multiple labels. Then in order to avoid ex-
haustive enumeration of all subgraph features, we propose a branch-and-bound
algorithm to efficiently search for optimal subgraph features by pruning the sub-
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graph search space using multiple labels of graphs. Label correlations can also be
considered in our proposed framework. In order to evaluate our proposed model,
we perform comprehensive experiments on real-world multi-label graph classifi-
cation tasks, which consist three real-world multi-label graph classification tasks,
built on 18 conventional binary graph classification datasets. The experiments
demonstrate that our feature selection approach can effectively boost multi-label
graph classification performances. Moreover, we show that gMLC is more effi-
cient by pruning the subgraph search space using multiple labels.

The rest of the paper is organized as follows. We start by a brief review on
related work of graph feature selection and multi-label classification in Section 2.
Then introduce the preliminary concepts, give the problem analysis and present
the gHSIC criterion in Section 3 and Section 4; In Section 5, we derive a branch
and bound algorithm gMLC based upon gHSIC. In Section 6, we discuss how to
incorporate label correlations into the gMLC framework. Then Section 7 reports
the experiment results. In Section 8, we conclude the paper.

2. Related Work

To the best of our knowledge, this paper is the first work addressing the multi-
label feature selection problem for graph classification. Our work is related to
both multi-label classification techniques and subgraph feature based graph min-
ing. We briefly discuss both of them.

Multi-label learning deals with the classification problem where each instance
can belong to multiple different classes simultaneously. Conventional multi-label
approaches are focused on instances in vector spaces. One well-know type of ap-
proaches is binary relevance (one-vs-all technique (Boutell et al., 2004)), which
transforms the multi-label problem into multiple binary classification problems,
one for each label. Ml-knn(Zhang and Zhou, 2007) is one of the binary rel-
evance methods, which extends the lazy learning algorithm, kNN, to a multi-
label version. It employs label prior probabilities gained from each example’s k
nearest neighbors and use maximum a posteriori (MAP) principle to determine
label set. Elisseeff and Weston (Elisseeff and Weston, 2002) presented a kernel
method Rank-svm for multi-label classification, by minimizing a loss function
named ranking loss. Extension of other traditional learning techniques have also
been studied, such as probabilistic generative models (McCallum, 1999; Ueda
and Saito, 2003), decision trees (Comité et al., 2003), maximal margin methods
(Godbole and Sarawagi, 2004; Kazawa et al., 2005) and ensemble methods(G.
Tsoumakas, 2007), etc.

Extracting subgraph features from graph data have also been investigated by
many researchers. The goal of such approaches is to extract informative subgraph
features from a set of graphs. Typically some filtering criteria are used. Upon
whether considering the label information, there are two types of approaches:
unsupervised and supervised. A typical evaluation criterion is frequency, which
aims at collecting frequently appearing subgraph features. Most of the frequent
subgraph feature extraction approaches are unsupervised. For example, Yan and
Han develop a depth-first search algorithm: gSpan (Yan and Han, 2002). This
algorithm builds a lexicographic order among graphs, and maps each graph to an
unique minimum DFS code as its canonical label. Based on this lexicographic or-
der, gSpan adopts the depth-first search strategy to mine frequent connected sub-
graphs efficiently. Many other frequent subgraph feature extraction approaches
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have been developed, e.g. AGM (Inokuchi et al., 2000), FSG (Kuramochi and
Karypis, 2001), MoFa (Borgelt and Berthold, 2002), FFSM (Huan et al., 2003),
and Gaston (Nijssen and Kok, 2004). Supervised subgraph feature extraction ap-
proaches have also been proposed in literature, such as LEAP (Yan et al., 2008),
CORK (Thoma et al., 2009), which look for discriminative subgraph patterns
for graph classifications, and gSSC (Kong and Yu, 2010) for semi-supervised
classification.

Our approach is also relevant to graph feature selection approaches based on
Hilbert-Schmidt independence criterion (Borgwardt, 2007), but there are signif-
icant differences between them. Previous graph feature selection approaches as-
sume each graph object only has one label and they focus on evaluating subgraph
features effectively using HSIC criterion and perform feature selection using fre-
quent subgraph mining methods (gSpan) as black-boxes. However, our approach
assumes that each graph can have multiple labels, and focuses on extracting
good subgraph features efficiently by pruning the subgraph search space using
branch and bound method inside gSpan. So, our method searches the pruned
gSpan tree. In fact, we only generated and searched a much smaller tree than
gSpan as the size of the search tree dominates the execution time.

3. Problem Formulation

Before presenting the feature selection model for multi-label graph classification,
we first introduce the notations that will be used throughout this paper. Multi-
label graph classification is the task of automatically classifying a graph object
into a subset of predefined classes. Let D = {G1, · · · , Gn} denote the entire graph
dataset, which consists of n graph objects, represented as connected graphs. The
graphs in D are labeled by {y1, · · · ,yn}, where yi ∈ {0, 1}Q denotes the multiple
labels assigned to Gi. Here Q is the number of all possible labels within a label
concept set C.
Definition 3.1 (Connected Graph). A graph is represented asG = (V , E,L, l),
where V is a set of vertices V = {v1, · · · , vnv

}, E ⊆ V × V is a set of edges, L
is the set of labels for the vertices and the edges. l : V ∪ E → L, l is a function
assigning labels to the vertices and the edges. A connected graph is a graph such
that there is a path between any pair of vertices.

Definition 3.2 (Multi-label Graph). A multi-label graph is a graph assigned
with multiple class labels (G,y), in which y = [y1, · · · , yQ] ∈ {0, 1}Q denotes
the multiple labels assigned to the graph G. yk = 1 iff graph G is assigned with
the k-th class label, 0 otherwise.

Definition 3.3 (Subgraph). Let G′ = (V ′, E′,L′, l′) and G = (V , E,L, l) be
connected graphs. G′ is a subgraph of G (G′ ⊆ G) iff there exist an injec-
tive function ψ : V ′ → V s.t. (1) ∀v ∈ V ′, l′(v) = l (ψ(v)); (2) ∀(u, v) ∈ E′,
(ψ(u), ψ(v)) ∈ E and l′(u, v) = l (ψ(u), ψ(v)). If G′ is a subgraph of G, then G
is a supergraph of G′.

In our current solution, we focus on the subgraph-based graph classification
problem, which assumes that a graph object Gi is represented as a binary vector
xi = [x1i , · · · , xmi ]⊤ associated with a set of subgraph patterns {g1, · · · , gm}. Here
xki ∈ {0, 1} is the binary feature of Gi corresponding to the subgraph pattern
gk, and x

k
i = 1 iff gk is a subgraph of Gi (gk ⊆ Gi).
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The key issue of feature selection for multi-label graph classification is how
to find the most informative subgraph patterns from a given multi-label graph
dataset. So, in this paper, the studied research problem can be described as
follows: in order to train an effective multi-label graph classifier, how to efficiently
find a set of optimal subgraph features using multiple labels of graphs?

Mining the optimal subgraph features for multi-label graphs is a non-trivial
task due to the following problems:

1)How to properly evaluate the usefulness of a set of subgraph features based
upon multiple labels of graphs?

2)How to determine the optimal subgraph features within a reasonable amount
of time by avoiding the exhaustive enumeration using multiple labels of the
graphs? The subgraph feature space of graph objects are usually too large,
since the number of subgraphs grows exponentially with the size of graphs.
It is infeasible to completely enumerate all the subgraph features for a given
graph dataset.

3)How to incorporate the correlations among different labels in the feature se-
lection process?

In the following sections, we will first introduce the optimization framework
for selecting informative subgraph features from multi-label graphs, and propose
an efficient subgraph mining strategy using branch-and-bound to avoid exhaus-
tive enumeration. Then we propose solutions to incorporate label correlations
into the feature selection process.

4. Optimization Framework

In this section, we address the problem 1) discussed in Section 3 by defining the
subgraph feature selection for multi-label graph classification as an optimization
problem. The goal is to find an optimal set of subgraph features based on the
multiple labels of graphs. Formally, let us introduce the following notations:

• S = {g1, g2, · · · , gm}: a given set of subgraph features, which we use to predict
a set of multiple labels for each graph object. Usually there is only a subset of
the subgraph features T ⊆ S relevant to the multi-label graph classification
task.

• T ∗: the optimal set of subgraph features T ∗ ⊆ S.
• E(T ): an evaluation criterion to estimate the usefulness of subgraph feature
subsets T .

• X : the matrix consisting binary feature vectors using S to represent the

graph dataset {G1, G2, · · · , Gn}. X = [x1,x2, · · · ,xn] = [f1,f2, · · · ,fm]
⊤ ∈

{0, 1}m×n, where X = [Xij ]m×n
, Xij = 1 iff gi ⊆ Gj .

We adopt the following optimization framework to select an optimal subgraph
feature set:

T ∗ = argmax
T ⊆S

E(T ) (1)

s.t. |T | ≤ t,
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where t denotes the maximum number of feature selected, | · | is the size of the
feature set. Similar optimization framework to select an optimal subgraph feature
set has also been defined in the context of single-label graph feature selection in
(Thoma et al., 2009; Borgwardt, 2007). In Eq. 1 the objective function has two
parts: the evaluation criterion E and the subgraph features of graphs S.

For evaluation criterion, we assume that the optimal subgraph features should
have the following property, i.e. Dependence Maximization: Optimal subgraph
features should maximize the dependence between the subgraph features of graph
objects and their multiple labels. This indicates that two graph objects with sim-
ilar sets of multiple labels are likely to have similar subgraph features. Similar
assumptions have also been used for multi-label dimensionality reduction in vec-
tor spaces (Zhang and Zhou, 2008).

Many criteria that can be used as dependence evaluation between subgraph
features and multiple labels. In this paper, we derive a subgraph evaluation
criterion for multi-label graph classification based upon a dependence evalua-
tion criterion named Hilbert-Schmidt Independence Criterion (HSIC) (Gretton
et al., 2005). We briefly introduce the Hilbert-Schmidt Independence Criterion
as a dependence measure between two variables in kernel space. In our case, the
target is to derive a dependence measure between the graph objects using a set
of subgraph features and their multiple labels. Suppose we have two reproduc-
ing kernel Hilbert spaces (RKHS) of functions G and F , with feature mapping
φ(Gi) ∈ G and ψ(yi) ∈ F . The corresponding kernel functions are denoted as
〈φ(Gi), φ(Gj)〉G = k(Gi, Gj) and 〈ψ(yi), ψ(yj)〉F = k′(yi,yj). Let C be a co-
variance operator defined as

C = E {[p(Gi)− E(p(Gi))][p
′(yi)− E(p′(yi))]}

for all p ∈ G and p′ ∈ F .
Then the HSIC is defined as the Hilbert-Schmidt norm of the operator C,

i.e. ‖C‖2HS . Given a sample of data, an empirical estimate of HSIC is HSIC =
tr(K H L H), where tr(·) is the trace of matrix and H = [Hij ]n×n, Hij =
δij − 1/n, δij is the indicator function which takes 1 when i = j and 0 otherwise.
K and L are kernel matrices on the samples with respect to the kernel functions
k(·, ·) and l(·, ·).

There are basically two reasons for using HSIC measure for feature selection:

– The HSIC can evaluate the dependence of two variables in kernel space, which
is more general than measuring dependence in the original space. HSIC has
been widely used for feature selection on single-label cases. It can also be ex-
tended to feature selection in multi-label cases. Moreover, correlations among
different labels can naturally be considered in our framework by adopting ad-
vanced kernels into the HSIC. Thus it is more effective and flexible to measure
the dependence in the kernel space.

– In addition to many good theoretical properties, HSIC has a very simple em-
pirical estimator, tr(KHLH), which we can use to estimate the dependencies
between input and output variables. The feature selection problem corresponds
to selecting a subset of features such that the dependence between the input
of the graph objects and the outputs (multiple labels) are maximized.

According to our Dependence Maximization assumption on the optimal sub-
graph features for multi-label graph classification, we can adopt the HSIC crite-
rion to evaluate the dependence between the graph objects using a set of sub-



gMLC: a multi-label feature selection framework for graph classification 9

graph features and their multiple label outputs. Suppose we select a set of sub-
graph features T , and each graph object Gi can be mapped into a feature space
G by φ(Gi) = DT xi with the kernel function k(Gi, Gj) = 〈φ(Gi), φ(Gj)〉 =
〈DT xi, DT xj〉. Here DT = diag(δT ) is a diagonal matrix indicating which fea-
tures are selected into feature set T from S. And δT = [δ1T , δ

2
T , · · · , δmT ]⊤ ∈

{0, 1}m is an indicator vector, and δiT = 1 iff gi ∈ T . Then the kernel ma-
trix on the graph objects with subgraph features T is denoted as KT . Suppose
L = [Lij ]n×n is a kernel matrix based upon the multiple labels of each graph, and
the kernel function is l(yi,yj) = 〈ψ(yi), ψ(yj)〉. In our current implementation,
l(yi,yj) = 〈yi,yj〉 is used as the default label kernel. Other kernels can also be
directly used, which will be discussed in Section 6. Then we can evaluate the
dependence between graph objects using feature set T and the multiple labels
as follows:

HSIC = tr(KT HLH)

The subgraph feature selection task corresponds to the selection of a subset of
features in S, such that the dependence between graph objects and their multiple
labels are maximized.

In detail, we can rewrite the optimization problem in Eq. 1 as follows:

argmax
T ⊆S

tr (KT H L H) (2)

s.t. |T | ≤ t,

The formula in Eq. 2 can be rewritten as follows:

tr (KT HLH)

= tr
(

X⊤DT
⊤DTXHLH

)

= tr
(

DTXHLHX⊤DT
⊤
)

=
∑

gi∈T

(

fi
⊤HLHfi

)

=
∑

gi∈T

(

fi
⊤Mfi

)

where M = HLH. By denoting function h(gi,M) = fi
⊤Mfi, the optimization

(2) can be written as

max
T

∑

gi∈T

h(gi,M)

s.t. T ⊆ S, |T | ≤ t

(3)

Definition 4.1 (gHSIC). Suppose we have a multi-labeled graph dataset D =
{(G1,y1), · · · , (Gn,yn)}. Let L be a kernel matrix defined on the multiple label
vectors, and M = HLH. We define a quality criterion q called gHSIC, for a
subgraph feature g as

q(g) = h(g,M) = fg
⊤Mfg
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where fg = [f
(1)
g , · · · , f (n)

g ]⊤ ∈ {0, 1}n is the indicator vector for subgraph fea-

ture g, f
(i)
g = 1 iff g ⊆ Gi (i = 1, 2, · · · , n). Since matrix L and M are positive

semi-definite, for any subgraph pattern g, we have q(g) ≥ 0.

The optimal solution to the problem in Eq. 2 can be found by using gHSIC
to forward feature selection on a set of subgraphs S. Suppose the gHSIC values
for all subgraphs are denoted as q(g1) ≥ q(g2) ≥ · · · ≥ q(gm) in sorted order.
Then the optimal solution to the optimization problem in Eq. 3 is:

T ∗ = {gi|i ≤ t}.

5. The Proposed Solution

Now we address the second problem discussed in Section 3, and propose an
efficient method to find the optimal set of subgraph features from a given multi-
label graph dataset.

Exhaustive enumeration: One of the most simple and straightforward solu-
tion for finding an optimal feature set is the exhaustive enumeration, i.e., we
first enumerate all subgraph patterns in a multi-label graph dataset, and then
calculate the gHSIC values for all subgraph patterns. However, in the context of
graph classification, the number of subgraphs grows exponentially with the size
of graphs, which makes the exhaustive enumeration approach usually impractical
in real-world data.

Inspired by recent advances in graph classification approaches, e.g. (Yan et al.,
2008; Kong and Yu, 2010), which put their evaluation criteria into the subgraph
pattern mining steps and develop constraints to prune search spaces, we take
a similar approach by deriving a different constraint for multi-label cases. In
order to avoid the exhaustive search, we proposed a branch-and-bound algorithm,
named gMLC, which is summarized as follows: a) Adopt a canonical search space
where all the subgraph patterns can be enumerated. b) Search through the space,
and find the optimal subgraph features by gHSIC. c) Propose an upper bound
of gHSIC and prune the search space.

5.1. Subgraph Enumeration

In order to enumerate all subgraphs from a graph dataset, we adopted an effi-
cient algorithm, gSpan, proposed by Yan et al(Yan and Han, 2002). We briefly
review the general idea of gSpan approach: Instead of enumerating subgraphs
and testing for isomorphism, they first build a lexicographic order over all the
edges of a graph, and then map each graph to an unique minimum DFS code
as its canonical label. The minimum DFS codes of two graphs are equivalent iff
they are isomorphic. Details can be found in (Yan and Han, 2002). Based on
this lexicographic order, a depth-first search (DFS) strategy is used to efficiently
search through all the subgraphs in a DFS code tree. By a depth-first search
through the DFS code tree’s nodes, we can enumerate all the subgraphs of a
graph in their DFS code’s order. And the nodes with non-minimum DFS codes
can be directly pruned in the tree, which saves us from performing an explicit
isomorphic test among the subgraphs.
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5.2. Upper Bound of gHSIC

Now, we can efficiently enumerate all the subgraph patterns of a graph dataset
in a canonical search space using gSpan’s DFS Code Tree. Then, we derive an
upper bound for the gHSIC value which can be used to prune the search space
as follows:

Theorem 5.1 (Upper bound of gHSIC). Given any two subgraphs g, g′ ∈
S, g′ is a supergraph of g (g′ ⊇ g). The gHSIC value of g′ (q(g′)) is bounded by
q̂(g) (i.e., q(g′) ≤ q̂(g)), where q̂(g) is defined as follows:

q̂(g) = fg
⊤M̂fg (4)

where the matrix M̂ = [M̂ij ]n×n is defined as M̂ij = max ( 0, Mij ). fg =
{I(g ⊆ Gi)}ni=1 ∈ {0, 1}n is a vector indicating which graphs in a graph dataset
{G1, · · · , Gn} contain the subgraph g, I(·) is the indicator function. Suppose the
gHSIC value of g is q(g) = fg

⊤Mfg.

Proof.

q (g′) = fg′

⊤Mfg′ =
∑

i,j:Gi,Gj∈G(g′)

Mij

where G(g′) = {Gi|g′ ⊆ Gi, 1 ≤ i ≤ n}. Since g′ is the supergraph of g
(g′ ⊇ g), according to anti-monotonic property, we have G(g′) ⊆ G(g). Also

M̂ij = max(0,Mij), we have M̂ij ≥Mij and M̂ij ≥ 0. So,

q (g′) =
∑

i,j:Gi,Gj∈G(g′)

Mij

≤
∑

i,j:Gi,Gj∈G(g′)

M̂ij

≤
∑

i,j:Gi,Gj∈G(g)

M̂ij = q̂ (g)

Thus, for any g′ ⊇ g, q(g′) ≤ q̂(g).

5.3. Subgraph Search Space Pruning

In this subsection, we make use of the the upper bound of gHSIC to efficiently
prune the DFS Code Tree using a branch-and-bound method, which is similar to
(Kong and Yu, 2010) but under different problem context: In depth-first search
through the DFS Code Tree, we maintain the temporally suboptimal gHSIC
value (denoted by θ) among all the gHSIC values calculated before. If q̂(g) < θ,
the gHSIC value of any supergraph g′ (g′ ⊇ g) is no greater than θ. Now, we
can safely prune the subtree from g in the search space. If q̂(g) ≥ θ, we can not
prune this space since there might exist a supergraph g′ ⊇ g (q(g′) ≥ θ).

Figure 3 shows the algorithm gMLC. We first initialize the subgraphs T as
an empty set. Then we prune the search space by running gSpan, while always
maintaining the top-t best subgraphs according to q. In the course of mining,
whenever we search to a subgraph g with q̂(g) ≤ mingi∈T q(gi), such that for
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T = gMLC(D, min sup, t)

Input:
D : Multi-label graphs {(G1,y1), · · · , (Gn,yn)}

min sup : Minimum support threshold
t : Maximum number of subgraph feature selected

Process:
1 T = ∅, θ = 0;
2 Recursively visit the DFS Code Tree in gSpan:
3 g = currently visited subgraph in DFS Code Tree
4 if |T | < t, then
5 T = T ∪ {g};
6 else if q(g) > ming′∈T q(g

′), then
7 gmin = argming′∈T q(g

′) and T = T /gmin;
8 T = T ∪ {g} and θ = ming′∈T q(g

′);
9 if q̂(g) > θ and freq(g) ≥ min sup, then
10 Depth-first search subtree rooted from node g;
11 return T ;

Output:
T : Set of optimal subgraph features

Fig. 3. The gMLC algorithm

any supergraph g′ ⊇ g (q(g′) ≤ q̂(g)) according to the bound defined in Eq. (4),
we can prune the branches of the search tree originating from g . In the other
hand, as long as the resulting subgraph g can still improve the gHSIC value of
any subgraph gi ∈ T , it is accepted into T and the last best subgraph is dropped
off from T .

Note that in our experiments with the three datasets, the gHSIC criterion
based on multiple labels provides such a bound that we can even omit the support
threshold min sup and still find a set of optimal subgraphs within a reasonable
time cost.

6. Exploiting Label Correlations

Now we address the third problem discussed in Section 3, and explain how label
correlations can be considered in gMLC framework by adopting more informative
and advanced kernels.

In the previous sections, we used the simple kernel function, l(yi,yj) =
〈yi,yj〉, to generate the label kernel matrix L. The linear kernel treats each
label as being independent without considering the correlations among different
labels. However in many real world applications, the multiple labels of the graphs
are usually correlated. For example, in anti-cancer drug activity prediction tasks,
chemical compounds which are active to one type of cancer are more likely to be
active to some other related cancers. Subgraph patterns that corresponds to such
label co-occurrences can be very useful for multi-label graph classification. In or-
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der to put label correlations into consideration during feature mining process,
we need to adopt more informative kernels for L than linear kernel.

One simple solution is that the label correlations can be exploited by adopting
more advanced kernels like polynomial or RBF kernels in the label kernel calcu-
lation. i.e., the label vector y is mapped to a new feature space using ψ(y) with
kernel function l(yi,yj) = 〈ψ(yi), ψ(yj)〉, and the correlations among different
labels are explicitly considered in the new feature space.

For example, suppose we use a polynomial kernel with degree 2, l(yi,yj) =

〈yi,yj〉2, as the label kernel function. Given any two label vectors α = [α1, α2] ∈
{0, 1}2 and β = [β1, β2] ∈ {0, 1}2, we have

l(α,β) = 〈α,β〉2

=(α1β1 + α2β2)
2

=
〈[

α1
2, α2

2,
√
2α1α2

]

,
[

β1
2, β2

2,
√
2β1β2

]〉

= 〈ψ(α), ψ(β)〉

Here, ψ(α) =
[

α1
2, α2

2,
√
2α1α2

]

, and the component (
√
2α1α2) considers the

correlations between label l1 and l2 explicitly. Intuitively, by adopting polynomial
kernels with degree 2, the second-order correlations among different labels can
be exploited in our gMLC framework. Higher orders of correlations among labels
can also be exploited by adopting polynomial kernels with higher degrees or even
RBF kernels to construct the label kernel L.

After using these kernel functions, the new label kernel matrix L can be
directly plugged in the subgraph evaluation criterion, q(g) = fg

⊤HLHfg. Sub-
graph patterns that best corresponds to the co-occurrence of different labels will
get high values, thus being selected into the optimal feature set for multi-label
graph classification.

7. Experiments

7.1. Experimental Setup

7.1.1. Data Collections

In order to evaluate the multi-label graph classification performances, we tested
our algorithm on three real-world multi-label graph classification tasks as follows:
(Summarized in Table 1.)

1)Anti-cancer activity prediction (NCI1): The first task is to classify chemical
compounds’ anti-cancer activities on multiple types of cancer. We build up
a multi-label graph dataset using a benchmark dataset, NCI1 (Yan et al.,
2008), which consists of records of chemical compounds’ anti-cancer activities
against a set of 10 types of cancer (e.g. Leukemia, Prostate, Breast), and each
chemical compound is represented as a graph. After removing compounds with
incomplete records for 10 types of cancer, we thus have a multi-label graph

1 http://pubchem.ncbi.nlm.nih.gov
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Table 1. Summary of experimental tasks studied. “AvgL” denotes the average
number of labels assigned to each graph.

Prediction Task Dataset # Graphs # Labels AvgL

Anti-cancer NCI1 812 10 4.36
Toxicology PTC 253 4 1.60
Kinase Inhibition NCI2 5,660 4 1.04

Table 2. Details of the anti-cancer activity prediction task (NCI1 dataset). Each
label represents the assay result for one type of cancer. “Pos (%)” denotes the
average percentage of positive instances for each cancer assay.

Assay ID Class Name Pos (%) Cancer Type

1 NCI-H23 35.6 Non-Small Cell Lung
33 UACC-257 47.7 Melanoma
41 PC-3 38.5 Prostate
47 SF-295 34.1 Central Nerve System
81 SW-620 17.5 Colon
83 MCF-7 59.2 Breast
109 OVCAR-8 42.2 Ovarian
123 MOLT-4 73.5 Leukemia
145 SN12C 54.8 Renal
330 P388 33.4 Leukemia

Table 3. Details of toxicology prediction task (PTC dataset), where each of the
multiple labels represents the toxicology test result on one type of animal. “Pos
(%)” denotes the average percentage of positive instances for each cancer assay.

Class Name Pos (%) Animal Model

MR 41.9 Male Rats
FR 36.0 Female Rats
MM 38.7 Male Mice
FM 43.1 Female Mice

Table 4. Details of kinase inhibition prediction task (NCI2 dataset), where each
of the multiple labels represents the inhibition of one type of kinase. “Pos (%)”
denotes the average percentage of positive instances for each cancer assay.

Assay ID Pos (%) Kinase Type

1416 6.11 PERK
1446 40.5 JAK2
1481 15.9 ATPase
1531 41.4 MEK
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classification dataset with 812 graphs assigned with 10 candidate labels. Table
2 provides a brief description of the 10 types of cancer in NCI1 dataset.

2)Toxicology prediction of chemical compounds (PTC): The second task is to
classify chemical compounds’ carcinogenicity on multiple animal models. We
build up our second multi-label graph dataset using a benchmark dataset,
PTC2 (Helma et al., 2001), which consists carcinogenicity records of 417 chem-
ical compounds on 4 animal models: MM (Male Mouse), FM (Female Mouse),
MR (Male Rat) and FR (Female Rat). Each chemical compound is assigned
with carcinogenicity labels for the 4 animal models. On each animal model the
carcinogenicity label is one of {CE, SE, P, E, EE, IS, NE, N}. We assume {CE,
SE, P} as ‘positive’ labels, {NE, N} as ‘negative’ and { E, EE IS} labels are re-
moved, which is the same setting as (Kashima et al., 2003; Kudo et al., 2005).
Each chemical compound is represented as a graph with an average of 25.7
vertices. After removing compounds with incomplete records for the 4 animal
models, we thus have a multi-label graph classification dataset with 253 graphs
assigned with four candidate labels (MR, FR, MM, FM). Table 3 provides a
brief description of the 4 animal models in PTC dataset.

3)Kinase inhibition prediction of chemical compounds (NCI2): The third task
is to classify the ability of chemical compounds to inhibit multiple kinases’
activity, which is a important problem in finding effective inhibitors for ki-
nase associated diseases (e.g. infectious diseases, cancers). We build up our
third multi-label graph dataset also from NCI database, which consists kinase
inhibition records of 5,660 chemical compounds against a set of 4 types of
kinases (i.e. ATPase, PERK, MEK, JAK2). After removing compounds with
incomplete records for the 4 types of kinases, we thus have a multi-label graph
classification dataset with 5,660 graphs assigned with 4 candidate labels. Ta-
ble 4 provides a brief description of the 4 types of kinases in NCI2 dataset.

7.1.2. Evaluation Metrics

Multi-label classification requires different evaluation metrics than conventional
single-label classification problems. Here we adopt some metrics used in (Schapire
and Singer, 2000; Elisseeff and Weston, 2002; Zhang and Zhou, 2007) to evaluate
the multi-label graph classification performance. Assume we have a multi-label
graph dataset D = {(G1,y1), · · · , (Gn,yn)}, where graph Gi is labeled as yi ∈
{0, 1}Q. Let f(Gi, k) denote the classifier’s real-value outputs for Gi on the k-
th label (lk), and h(Gi) ∈ {0, 1}Q denotes the classifier’s binary output label
vector. According to f(Gi, k) we can define a ranking function rankf (Gi, k) ∈
{1, 2, · · · , Q}, and rankf (Gi, k

′) < rankf (Gi, k) iff f(Gi, k
′) < f(Gi, k). We have

the following evaluation criteria:

• Ranking Loss (Elisseeff and Weston, 2002): evaluates the performance of clas-
sifier’s real-value outputs f(Gi, k). It is calculated as the average fraction of
incorrectly ordered label pairs:

RankLoss =
1

n

n
∑

i=1

1

1⊤yi1⊤yi

Lossf(Gi,yi)

2 http://www.predictive-toxicology.org/ptc/
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Where the yi denotes the complementary of yi in {0, 1}Q.

Lossf (Gi,yi) =
∑

k:yk
i
=1

∑

k′:yk′

i
=0

Jf(Gi, k) ≤ f(Gi, k
′)K

For any predicate π, JπK equals 1 if π holds and 0 otherwise. RankLoss ∈ [0, 1].
The smaller the value, the better the performance.

• Average Precision (Zhang and Zhou, 2007): evaluates the average fraction of
labels ranked above a particular label y s.t. y is in the ground-truth label
set. This criterion is originally used in information retrieval (IR) systems to
evaluate the document ranking performance for query retrieval:

AvgPrec =
1

n

∑n

i=1

1

1⊤yi

∑

k:yk
i
=1

Precf (Gi, k)

rankf (Gi, k)

which measure the number of assigned class labels that are ranked before k-th
class. Here

Precf (Gi, k) =
∑

k′ :yk′

i
=1

Jrankf (Gi, k
′) ≤ rankf (Gi, k)K

And AvgPrec ∈ [0, 1], the larger the value, the better the performance.

• One error : evaluates how many times the top-ranked label is not in the set of
ground-truth labels of the instance.

OneError =
1

n

∑n

i=1
Jyki

i = 0K

where ki = argmaxk∈[1,Q] f(Gi, k). OneError ∈ [0, 1], the smaller the value,
the better the performance.

• Coverage: evaluates the performance by considering how far, on average, we
need to go down the ranked label list to cover all the ground-truth labels of
the instance.

Coverage =
1

n

∑n

i=1
max
k:yk

i
=1
rankf (Gi, k)− 1

where Coverage ∈ [0, Q− 1]. The smaller the coverage, the better the perfor-
mance.

• Hamming loss : evaluates how many times an instance-label pair is misclassi-
fied. For single-label problems, it equals the classification error.

HammingLoss =
1

n

∑n

i=1
θ(h(Gi),yi)

where

θ(h(Gi),yi) =
1

Q

∑Q

k=1
Jyki 6= h(Gi)

k)K

and HammingLoss ∈ [0, 1], the smaller the value, the better the performance.

In our experiment, we will show the value of 1 − AvePrec instead of Average
Precision. Thus under all these evaluation criteria, smaller values are all indicat-
ing better performances. Note that all the criteria evaluate the performance of
multi-label classification systems from different aspects. Usually few algorithms
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could outperform another algorithm on all those criteria. All experiments are
conducted on machines with 4 GB RAM and Intel XeonTMQuad-Core CPUs of
2.40 GHz.

7.1.3. Comparing Methods

In order to demonstrate the effectiveness of our multi-label graph feature selec-
tion approach, we test with following methods:

• Binary decomposition + single-label feature selection + binary classifications
(Binary IG+ SVM): We first compare with a baseline using a binary decompo-
sition method similar to (Boutell et al., 2004): The multi-label graph dataset is
first divided into multiple single-label graph datasets by one-vs-all binary de-
composition. For each binary classification task, we use the Information Gain
(IG), an entropy based measure, to select a subset of discriminative features
from frequent subgraphs. Then SVMs are used as the binary classification
models to classify the graphs into multiple binary classes respectively. We use
SVM-light software package3 to train the SVMs, where the parameters are set
as default settings.

• Multi-label feature selection (gMLC) + binary classifications (SVM): gMLC is
used to find a set of optimal subgraph features. Then the one-vs-all deduction
with one SVM trained for each class is used as the multi-label classifier.

• Top-k frequent subgraph features (Freq) + multi-label classification (BoosTexter):
We also compare with another baseline: multi-label classification using the
top-k frequent subgraphs as features, i.e., we use the top-k frequent subgraph
features in the graph dataset without the gHSIC selections on the subgraph
features. Then BoosTexter(Schapire and Singer, 2000) is used as the multi-
label classifier. The number of boosting rounds for BoosTexter is set as 500,
which does not significantly affect the classification performance.

• Multi-label feature selection (gMLC) +multi-label classification (BoosTexter):
gMLC is used to find a set of optimal subgraph features. Then BoosTexter

is used as the multi-label classifier.

• Top-k frequent features (Freq) + multi-label classification (Ml-knn): multi-
label classification using the top-k frequent subgraphs as features. Ml-knn

(Zhang and Zhou, 2007) is used as the multi-label classifier. The number of
neighbors is set as the default value 10.

• Multi-label feature selection (gMLC) + multi-label classification (Ml-knn):
We first use gMLC to find a set of optimal subgraph features. Then Ml-knn

is used as the multi-label classifier.

7.2. Performances on Multi-label Graph Classification

In our experiment, we use 10-round 10-fold cross validation to evaluate the multi-
label graph classification performance. Each graph dataset is evenly partitioned
into 10 parts. Only one part is used as testing graphs and the other nine are used
as training graphs for frequent subgraph mining, feature selection and multi-label
classification. We repeat the 10-fold cross validation 10 times and we report the

3 http://svmlight.joachims.org/
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Fig. 4. Multi-label graph classification performances on Anti-cancer Activity Pre-
diction (NCI1 dataset)

average results for the 10 rounds. The result of the feature selection methods for
multi-label graph classification on NCI1, NCI2 and PTC datasets are displayed
in Figure 4, Figure 5 and Figure 6. We show the number of selected subgraphs
t among frequent subgraphs using min sup = 10%, together with evaluation
metrics mentioned before.

Now, we first study the effectiveness of selecting subgraph features by com-
paring two approaches: gMLC+SVM, Binary IG+ SVM, where the binary SVMs
are used as base learners. It is worth noticing that, this comparison is only used
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Fig. 5. Multi-label graph classification performances on Kinase Inhibition Pre-
diction (NCI2 dataset)

for reference, since different number of features are used in the two methods.
Our gMLC is designed for conventional multi-label classification methods, thus
in the baseline gMLC+SVM, we select one set of subgraph features which is used
on multiple SVMs separately. However, Binary IG+ SVM selects a different set
of subgraph features for each label concept and these feature sets are used on
multiple SVMs separately. Hence, Binary IG+ SVM method has an advantage
over our method by using different feature sets for different SVMs, while gMLC
uses the same set of feature for all the SVMs. Figure 4, Figure 5 and Figure 6
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Fig. 6. Multi-label graph classification performances on Toxicology Prediction
Task (PTC dataset)

indicate that gMLC+SVM can achieve comparable or even better performances
than Binary IG+ SVM in most cases. This is because the multiple labels of the
graphs usually have certain correlations, and the useful subgraph features on
one label concept are also likely to be useful on some other label concepts. Thus
our gMLC method can achieve better performances over Binary IG+ SVM even
though we use a same set of feature for all binary SVMs. Utilizing the potential
relations among multiple label concepts to select subgraph features are crucial
to the success of our method in this case.
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Fig. 7. Average CPU time for nested gMLC versus un-nested gMLC with varying
min sup.

We further study the effectiveness of subgraph features using the general
purposed multi-label classification methods, i.e. BoosTexter and Ml-knn, as
the base classifiers. It is also worth noticing that, to the best of our knowledge,
gMLC is the first multi-label feature selection method for graph data. Thus we
cannot find any other baseline which select one set of features for multiple label
concepts in order to make a fair comparison. So our only choices are compar-
ing the following methods: gMLC+BoosTexter v.s. Freq+BoosTexter and
gMLC+Ml-knn v.s. Freq+Ml-knn. We observe that on most tasks the per-
formances of gMLC+BoosTexter are better than Freq+BoosTexter, i.e.
multi-label classification approaches without gHSIC subgraph feature selection.
Similar results can also be found with the cases when Ml-knn is used as the base
classifier. These results support our intuition that the gHSIC evaluation criterion
in gMLC can find better subgraph patterns for multi-label graph classification
than unsupervised top-k frequent subgraph approaches. The exception is only
the case on PTC dataset when the number of features selected is small (less than
15). Nonetheless, the Freq+BoosTexter can never reach the best performance
achievable by gMLC with a larger number of features. This is because the top
15 frequent features happen to be good classification features. However, the Freq
cannot find other good features that are not that frequent.

Now, we first study the effectiveness of selecting subgraph features by com-
paring two approaches: gMLC+SVM, Binary IG+ SVM, where the binary SVMs
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Fig. 8. Average number subgraph patterns explored during mining for nested
gMLC versus un-nested gMLC with varying min sup.

are used as base learners. It is worth noticing that, our gMLC is specially de-
signed for conventional multi-label classification methods which require one set
of features for all labels concepts. Thus gMLC only selects one set of subgraph
features and uses it on multiple SVMs separately. However, Binary IG+ SVM se-
lects a different set of subgraph features for each label concept and these feature
sets are used on multiple SVMs separately. Hence, Binary IG+ SVM method has
an advantage over our method by using different feature sets for different SVMs,
while gMLC uses the same set of feature for all the SVMs. Figure 4, Figure 5
and Figure 6 indicate that gMLC+SVM can achieve compariable or even better
performances than Binary IG+ SVM in most cases. This is because the multiple
labels of the graphs usually have certain correlations, and the useful subgraph
features on one label concept are also likely to be useful on some other label
concepts. Thus our gMLC method can achieve better performances over Binary
IG+ SVM even though we use a same set of feature for all binary SVMs. Uti-
lizing the potential relations among multiple label concepts to select subgraph
features are crucial to the success of our method in this case.

We further observe that in all tasks and evaluation criteria, our multi-label
feature selection algorithmwith multi-label classification (gMLC+BoosTexter)
outperforms the binary decomposition approach using single-label feature selec-
tions (Binary IG+ SVM). gMLC+BoosTexter can achieve good performances
with only a small number of features. We note that the big improvement can both
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be counted on the good performance of gMLC feature selection and the state-
of-the-art multi-label classification method, BoosTexter. However, this result
can just be used for a reference to the relative performances of the two types of
multi-label graph classification methods, binary decomposition based and gMLC
based. These results support the importance of the proposed multi-label feature
selection method in the multi-label graph classification problems.

Additionally, by comparing over different evaluation criteria, we can find that
gMLC shows more improvements over other baselines on criteria, e.g. Ranking
Loss, which are most related to multi-label performances, than Hamming Loss.
For Hamming Loss, gMLC gets better performances over other baselines on
PTC dataset, but comparible performances on NCI1 and NCI2 dataset. This
can be explained that Hamming Loss evaluates the classification performance
in a binary way, simply averaging the binary classification error on each label
without considering the ranking of all labels which is more important for multi-
label classification evaluation.

7.3. Effectiveness of Subgraph Search Space Pruning

In our second experiment, we evaluated the effectiveness of the upper-bound
for gHSIC proposed in Section 5.2. So, in this section we compare the runtime
performance of two versions of implementation for gMLC: “nested gMLC” versus
“un-nested gMLC”. The “nested gMLC” denotes the proposed method using
the upper-bound proposed in Section 5.2 to prune the search space of subgraph
enumerations; the “un-nested gMLC” denotes the method without the gHSIC’s
upper-bound pruning, which first uses gSpan to find a set of frequent subgraphs,
and then selects the optimal set of subgraphs via gHSIC. We run both approaches
on the three tasks and record the average CPU time used on feature mining and
selection. The result is shown in Figure 7.

In the NCI1, NCI2 and PTC dataset, we observe that as we decrease the
min sup in the frequent subgraph mining, the un-nested gMLC would need to
explore larger subgraph search spaces, and this size increases exponentially with
the decrease of min sup. In the NCI1 dataset, when the min sup get too low
(min sup < 4%), the subgraph feature enumeration step in un-nested gMLC
can run out of the computer memory. However, the nested gMLC’s running time
does not increase as much, because the gHSIC can help pruning the subgraph
search space using the multi-label information of the graphs. As we can see, the
min sup can go to very low value in all datasets for the “nested gMLC”.

Figure 8 shows the number of subgraph feature explored in the process of
subgraph pattern enumeration in the three tasks. In all tasks, we observe that
the number of searched subgraph patterns in nested gMLC is much smaller than
that of un-nested gMLC (the gSpan step). In our experiments, we further noticed
that on most datasets, nested gMLC provides such a strong bound that we may
even allow nested gMLC to omit the minimum support threshold min sup and
still receive an optimal set of subgraph features within a reasonable time.

7.4. Effectiveness of Embedding Label Correlations

In our third experiment, we evaluated the effectiveness of the label kernels after
incorporating the label correlations in Section 6. In order to consider label cor-
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Fig. 9. Performances of gMLC with/without considering label correlations on
anti-cancer activity prediction task (NCI1 dataset)

relations of first-order, second-order and higher-orders etc., we use the following
kernel functions to produce the label kernel matrix L:

• gMLC(Linear) denotes our gMLC method with linear kernels for L, which does
not consider the label correlation. The kernel function is l(yi,yj) = 〈yi,yj〉.

• gMLC(Poly) denotes the gMLC method with polynomial kernels with different
degrees, which can consider label correlations of second-orders or even higher-

orders. The kernel function is l(yi,yj) = (γ 〈yi,yj〉+ η)d. The γ is set as
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the default value γ = 1
#features , and η = 0. d denotes the degree of polynomial

kernels. For example, gMLC(Poly2) corresponds to the polynomial kernel with
degree two (d = 2).

• gMLC(RBF) denotes our gMLC method with RBF kernels for L, which can
consider label correlations of any orders. The kernel function is l(yi,yj) =
exp (−γ|yi − yj |2). The γ is set as the default value γ = 1

#features .

In all methods, Ml-knn is used as the base classifier, with default parameter
settings (k = 10). The result of NCI1 dataset is illustrated in Figure 9. From
the results, we can see that gMLC with polynomial kernel and RBF kernels can
get better performances than gMLC with linear kernels, by considering label
correlations in the label kernel matrix L. Here we only use simple strategies to
consider label relationship in our gMLC model, and greater improvements are
likely to be obtain by defining more advanced kernels for label matrix L.

8. Conclusion

In this paper, we study the problem multi-label feature selection for graph clas-
sification. It is significantly more challenging than the conventional single-label
feature selection in graph data because of the multiple labels assigned to each
graph. To address this challenge, we propose an evaluation criterion gHSIC to
evaluate the dependence of subgraph features with the multiple labels of graphs,
and derived an upper-bound for gHSIC to prune the subgraph search space. Then
we propose a branch-and-bound algorithm to efficiently find a compact set of sub-
graph feature which is useful for the classification of graphs with multiple labels.
Empirical studies on real-world tasks show that our feature selection method for
multi-label graph classification, gMLC, can effectively boost multi-label graph
classification performances and is more efficient by pruning the subgraph search
space using multiple labels. Additionally, the correlations among different labels
can be exploited effectively by adopting more informative and advanced kernels
for label kernel matrix.

In our current implementation, we only use simple strategies to construct
label kernel matrix. Actually various other types of label kernels can also be
used to exploit the label correlations among multiple labels more effectively. We
will leave related discussions to potential future works.
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