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ABSTRACT

Executing deep-learning inference on cloud servers enables the
usage of high complexity models for mobile devices with limited
resources. However, pre-execution time—the time it takes to prepare
and transfer data to the cloud—is variable and can take orders of
magnitude longer to complete than inference execution itself. This
pre-execution time can be reduced by dynamically deciding the
order of two essential steps, preprocessing and data transfer, to better
take advantage of on-device resources and network conditions. In
this work we present PieSlicer, a system for making dynamic
preprocessing decisions to improve cloud inference performance
using linear-regression models. PieSlicer then leverages these
models to select the appropriate preprocessing location. We show
that for image classification applications PieSlicer reduces median
and 99th percentile pre-execution time by up to 50.2ms and 217.2ms
respectively, when compared to static preprocessing methods.
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1 INTRODUCTION

The ever increasing accuracy of deep learning models comes at the
cost of higher computation [5], often far beyond the capabilities
of mobile devices [16, 21, 34]. By offloading inference execution
to cloud and edge servers, referred to as cloud-based inference,
mobile devices can therefore benefit from these high-accuracy mod-
els [3, 14, 22, 26, 51]. Leveraging cloud servers for inference requires
completing a number of operations, including transferring and pre-
processing the input data, prior to executing inference tasks on the
servers. However, the time to complete these operations, collec-
tively defined as the pre-execution time can be orders of magnitude
longer than inference execution time.

In this work, we characterize pre-execution time and investigate
ways to reduce it. Our first goal is to identify and understand factors
that impact pre-execution time. Due to dynamic mobile environ-
ments and heterogeneous mobile capacities, pre-execution time can
be highly variable. Further, the two major contributors of it, prepro-
cessing and network transfer, are interdependent. While on-device
preprocessing can reduce network transfer time it is slower than
in-cloud preprocessing. This drives our second goal to dynamically
make preprocessing decisions based on these factors.

To these ends we introduce PieSlicer, a system that allows us to
empirically measure and model pre-execution time components in
order to reduce pre-execution time. We isolate the four components
of pre-execution time for an image classification task and observe
that they can be modeled with low prediction error, allowing for
accurate decision making. We demonstrate the ability of PieSlicer

to make accurate predictions across a range of inputs and environ-
ments using two datasets, three devices and two network. These
predictions can lead to a median pre-execution time reduction of
50.2ms–a noticeable improvement for end users–compared to static
on-device processing, and an 𝐹1 accuracy score of over 0.98 in all
test cases, indicating high quality decisions.

Prior work on inference performance optimization has focused
on either reducing model execution latency [6, 9, 24, 30] or network
transfer time [14, 22, 26, 29, 51]. To reduce network transfer time,
researchers have looked at leveraging regions of interest [7, 11, 32],
deep learning aware image compression [33, 49], and model par-
titioning [25, 46]. However, these approaches often require either
infrastructure upgrades or designing new deep learning models,
and often do not consider the interplay between preprocessing loca-
tion and network conditions. Further, as these approaches achieve
low execution time in the orders of tens milliseconds [41], pre-
execution time has now become the dominating component of
cloud-based inference. As such PieSlicer fills the gap by improving
the pre-execution time, via empirical measurement and data-driven
modeling techniques. Consequently, PieSlicer has the potential to
be used in tandem with many existing techniques described above.

We make the following main contributions.
• We identify and characterize key mobile-specific factors that
impact pre-execution time—a dominant component of end-
to-end response time. We show that linear regression models
yield adequate prediction accuracy with low overhead.

• We design and implement a prototype of PieSlicer to dy-
namically select the preprocessing location at runtime. These
preprocessing decisions are powered by our accurate linear
regression models. The source code can be found at [36].

• We evaluate PieSlicer with three devices, two networks,
and two real-world datasets. Our experiments show that
PieSlicer reduces pre-execution time by up to 217.2ms and
achieves a decision 𝐹1 score of 0.99.

2 CLOUD-BASED INFERENCE BACKGROUND

Cloud-based inference can be broadly divided into a number of
steps which we illustrate in Figure 1. We use an image classification
application to detail these steps as it is both an intuitive example
and the current focus of PieSlicer.
Input capture 1 . Data is collected for inference and saved to
the device. For image classification this is image capture, or the
selection of an existing image. Improving image capture generally
works by reducing input size, such as by resizing input data as part
of capture [19] or by optimizing the format for deep learning [49].
On-device preprocessing 2 . Preprocessing for image classifica-
tion generally consists of resizing and cropping the image. This can
result in a decrease of orders of magnitude in terms of file size, from
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Figure 1:Cloud-based Deep InferenceWorkflow. In general, there are five

steps: input capture 1 , on-device pre-processing 2 , network transfer 3 ,
in-cloud preprocessing 4 , and deep learning model execution 5 . Steps
2 - 4 comprise pre-execution and present opportunities to make dynamic

decisions to reduce latency.

tens of KBs to over 10MB. This dramatic reduction can improve
network transfer, the next step, but is slow compared to in-cloud
preprocessing even with specialized hardware. This leads to a po-
tential trade-offwhere small inputs might benefit without on-device
preprocessing, a trade-off that PieSlicer aims to exploit. Prior work
has typically assumed preprocessed input data [23, 25, 34, 38, 41, 46]
leading to this being a rich area for improvement.
Network transfer 3 . The transfer of data across the network oc-
curs regardless of whether data has been preprocessed on device. As
shown in Figure 2(b) this transfer time can lead to large transfer la-
tency, especially for data that was not preprocessed on-device. Com-
pounding this is the range of mobile networks experienced by mo-
bile devices. Prior work handles reducing network impact on cloud-
based inference through leveraging regions of interest [7, 11, 32], or
deep learning aware image compression [33, 49]. Such techniques
often require non-negligible on-device processing power which
might not be available on all mobile devices.
In-cloud preprocessing and preparation 4 . In-cloud preprocess-
ing consists of transforming the data to the format needed for the
deep learning model, as well as the preprocessing that was poten-
tially skipped on-device. Due to the powerful servers and specialized
libraries in-cloud preprocessing is much faster than preprocessing
on-device. In addition to image preprocessing, many deep learn-
ing queries generate a number of sub-requests or need to gather
additional input data before inference execution, which have been
studied by previous systems [26, 51].
Inference execution 5 . After all previous steps have been com-
pleted inference execution can begin. This step has been optimized
by a number of existing frameworks [9, 23, 37] allowing for com-
plex models to be executed with low latency and high throughput,
or better resource utilization [9, 35].

2.1 Pre-execution Time and its Trade-offs

Pre-execution consists of steps 2 , 3 , 4 andminimizing pre-execution
time entails balancing the complex interplays between them. The
selection of preprocessing location between on-device and in-cloud
presents a key trade-off for pre-execution time. Even though on-
device preprocessing can reduce network time due to transferring
less data, we will see in Section 4.2 that in-cloud preprocessing can
be up to 2× faster. We therefore use lightweight models to make
request-by-request decisions, which we discuss in Section 5.

3 PROBLEM STATEMENT

In this work, we look at how to make on-device dynamic prepro-

cessing decisions for cloud deep learning inference. Our key goal
is to improve cloud inference performance by reducing the pre-
execution time. We target pre-execution time because while infer-
ence execution can be as low as tens of milliseconds [35, 44, 48, 51],
pre-execution time can be orders of magnitude longer. A reduction
in pre-execution time has the key benefit of improved response
time but is challenging due to its dependency on on variable factors
such as device capabilities and network connections, necessitating
on-device dynamic decisions.
System model. We focus on a popular category of mobile appli-
cations that leverage convolutional neural networks (CNNs) for
image classification [50]. We chose to target image classification
because state-of-the-art models are a topic of much ongoing re-
search [17, 18, 45, 52]. We assume mobile developers use the API
provided by our work for in-cloud inference in order to utilize com-
plex deep learning models. We further assume that mobile devices
are of varying computational capacity and may be operating un-
der different network conditions. Lastly, the cloud inference server
must be at least as powerful as the most powerful mobile device.
Motivation and Challenges. Figure 2(a) compares the total pre-
execution time distribution between always preprocessing on the
device (e.g. on-device) and always preprocessing in the cloud (e.g. in-
cloud). Even though on-device preprocessing significantly reduces
the network transfer time, as shown in Figure 2(b), it can be up to
an order of magnitude slower than preprocessing on the cheapest
Amazon cloud GPU server, shown in Figure 2(c). Methodology de-
tails are in Section 4. This suggests the need to dynamically choose
between on-device and in-cloud preprocessing. Such decisions are
impacted by factors such as on-device capacity and network condi-
tions, making it challenging to make the correct decision.

Furthermore, we need to address deep learning-specific chal-
lenges. First, deep learning models are highly dependent on the
quality of their input data, so we must consider the impact of differ-
ent input formats on inference performance; lossy storage formats
like JPEG may reduce pre-execution latency but lead to lower in-
ference accuracy [49]. Second, the size of input data, both raw and
preprocessed can lead to different networking trade-offs based on
how much on-device processing occurs. In summary, due to these
trade-offs it is insufficient to simply apply a single, static decision
as this often leads to poor performance.
Solution Overview. To dynamically decide when to preprocess
images based on mobile factors, we model the performance of
each step and implement a library, based on these models, to make
preprocessing location decisions. In Section 4 we measure the steps
that comprise pre-execution time and demonstrate that using linear
regression models strikes a balance between prediction accuracy
and latency. Section 5 introduces PieSlicer, a system that leverages
these models for making preprocessing decisions at runtime. We
demonstrate in Section 6 the efficacy of PieSlicer in reducing
pre-execution time using real-world images and mobile devices.

4 CHARACTERIZING PRE-EXECUTION TIME

Being able to accurately predict an inference request’s pre-execution
time is critical to making appropriate preprocessing decisions. As
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(a) Pre-execution time.
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(b) Network transfer time.
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(c) Preprocessing time.

Figure 2: Performance comparison between on-device and in-cloud preprocessing with the image-5k dataset.We used a mid-end phone with university

WiFi to transfer the images in our image-5k dataset and collected the preprocessing time, network transfer time and total pre-execution time for each request.

Displayed points have been binned into 100KB increments. The y-axis is log scale to differentiate the trends.

Table 1: Hardware used in PieSlicer measurement infrastructure.

We chose three representative mobile phones and the cheapest GPU-accelerated

EC2 server to characterize their impact on pre-execution time.

Device OS version CPU Accelerator RAM Storage Cameras

low-end
(Nexus 5) Android 6.0

2.26 GHz

quad-core

129.8 GFLOPs

Adreno 330

2GB 16GB 8/1.3MP

mid-end
(Moto X4) Android 8.1

2.2 GHz

Octa-Core

163.2 GFLOPs

Adreno 508

3GB 32GB 12/16MP

high-end
(Pixel 2) Android 8.1

2.35 GHz

Octa-Core

567 GFLOPs

Adreno 540 &

Pixel Visual Core

4GB 128GB 12.2/8MP

server
(p2-xlarge)

Deep Learning AMI

Version 24.0

4x 2.3GHz

4.113 TFLOPs

Tesla K80

61GB 75GB N/A

such decisions need to be made at inference time it is also impor-
tant that these decisions be efficient and thus rely on features that
are cheap to obtain, such as image file size and resolution. In this
section, we study the impact of mobile-specific factors (Section 4.2)
on predicting pre-execution time by leveraging data collected with
two mobile networks, three mobile phones, and two Flickr image
datasets. We explore five common modeling approaches and show
that we can effectively model network time, especially when using
device- and network-specific models (Section 4.3). We will describe
how we design PieSlicer to leverage these modeling insights for
making dynamic preprocessing decisions in Section 5.

4.1 Measurement Methodology

Datasets. We created two Flickr image datasets image-1k and
image-5k in order to more closely resemble the wide range of image
sizes that would be captured in real world scenarios than exist-
ing datasets [12, 28]. The image-1k dataset contains 1000 images
evenly distributed in size, while the image-5k has > 5000 randomly
selected images. Details can be found in our github repository[36].
Hardware.We used three mobile devices and a cloud-based server,
detailed in Table 1, for collecting relevant performance data. These
three phones have different processing power, and the high-end
device also has a specialized image processing hardware. We used a
p2.xlarge as it represents the cheapest GPU-accelerated EC2 server,
and connected over university and residential WiFi networks.
Measurement setup. We measured components of inference ex-
ecution through our Android application and an inference server
plug-in that form the basis of PieSlicer (further described in Sec-
tion 5). For on-device preprocessing we used Android’s built-in
BitmapFactory class and performed in-cloud preprocessing using

the Pillow-SIMD library, both using the nearest neighbor filter. Each
request was created with one JPEG image from our datasets and
was sent from the mobile device to the cloud inference server. Each
requests record pre-execution time components and five easy-to-
obtain features: (i) original file size, (ii) width, (iii) height, (iv) reso-
lution, and (v) sent file size.

Measuring pre-execution time. To understand the key factors
that impact pre-execution time, we divide it into the following
components. (i) On-device preprocessing time refers to the time to
resize an image to a pre-specified resolution, and then save the
resulting bitmap to the mobile storage; (ii) in-cloud preprocessing
time measures the time for a cloud server to perform the same
resizing operation; (iii) network transfer time is the sum of the time
to send the inference request to and to send the response back from
the cloud server; (iv) cloud preparation time is defined as the time to
transform the preprocessed image into the input structure required
by deep learning frameworks for executing CNN models.

We measured each time component independently and saved the
mobile preprocessing time to an on-device sqlite database. Cloud-
based time measurements were returned with the inference re-
sponse. Network transfer time was derived as the difference be-
tween the total remote time recorded by the mobile device and the
total time reported by the cloud server. We performed the above
measurements for all three mobile devices on both networks.

4.2 Impact of Mobile-specific Factors

We first examine how mobile-specific factors impact pre-execution
time. Figure 3 shows the relationship between original image size
(i.e., file size before preprocessing) and each of the four measured
time components. Each marker corresponds to one image.

Our first observation is that preprocessing time has a strong
linear relationship with both on-device and in-cloud preprocessing.
This suggests that original file size is useful in predicting prepro-
cessing time. Additionally, we observe that in-cloud preprocessing
is up to 2× faster than on-device preprocessing, demonstrating a
potential benefit of skipping on-device preprocessing. Second, we
observe that each device has a distinct preprocessing speed, and
each network has a distinct transfer latency. This suggests that
per-device and per-network models will be beneficial. Third, the
cloud preparation time took less than 0.25ms for all tested inputs
with little relation to input file size. This suggests we can safely
represent it as a constant of 1ms throughout this work.
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Figure 3: Pre-execution time breakdown using image-1k. We observe that image size exhibited strong linear relationship for all but cloud preparation time.

As expected, preprocessing time worsened as the device capacity decreased, e.g., the low-end phone was 2.3X slower than the high-end phone. Additionally, using

residential WiFi (shown as Res.) had 5.2X higher network transfer latency compared to using university WiFi (shown as Univ.).
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Figure 4: CDF of model accuracy.More than 85% Linear regression models

had similar MAPE compared to two best performing models KNN and SVR.

4.3 Modeling Network Time

In this section, we explore five different machine learning models
for predicting network transfer time. We focus on network transfer
time as it is on the critical path and shares similar patterns to other
pre-execution time components.

Training data preprocessing. We first partitioned the collected
measurement data into 36 subsets based on mobile device, network,
image dataset, or some combination of these factors, and one-hot en-
coding to identify specific devices and networks. We then removed
data outliers that are below the 5𝑡ℎ and above the 95𝑡ℎ percentile of
network time. Finally, we applied min-max normalization to each
subset and used an 80-20 training and testing split.

Machine learning models. First, based on the linear trend we
observed in Figure 3, we chose to model the data using linear re-
gression. Second, we used a Lasso approach to identify unnecessary
features. Third, we used a K-nearest neighbors regression model,
which estimates latency as the average of the most similar training
datapoints. We evaluated all k values from the set {1..29, 50, 100}
and chose the best performing k value for each dataset. Fourth,
we used a random forest regressor which allows finding the most
important features. We performed a grid-search for two hyper-
parameters, the number of estimators in in {1, 2, 4, 8, 16} and the
maximum depth of 10. Finally, Support Vector Regression (SVR) is
chosen to find the best, potentially non-linear, prediction boundary
for our data. Each model was trained for each of the 36 subsets of
data described previously.

Training details. Each model was trained on a subset of data
using 10-fold cross validation with Mean Absolute Percentage Error
(MAPE) as the training metric. MAPE is the average absolute error
as a percentage of the ground-truth value, with lower values being
better. This metric allows us to scale the prediction error based

Table 2: Linear regression MAPE for network transfer time. Modeling

based on mobile device type and network type (e.g. residential or university)

shows a range of accuracy depending on the specificity of the training dataset.

Generally, modeling specific network-device combinations results in lower

error and modeling disparate networks with image-1k resulted in higher error.

image-6k image-5k image-1k
All Res. Univ. All Res. Univ. All Res. Univ.

All 45.66 25.92 25.59 31.24 26.21 16.97 257.56 29.33 67.95

High-End 42.92 32.78 28.92 35.73 32.32 15.37 295.58 19.01 30.27

Mid-End 42.55 24.29 16.56 30.29 26.59 12.52 255.40 16.91 71.78

Low-End 41.01 21.31 21.39 20.24 17.31 17.34 214.51 35.54 23.08

on the predicted value, thus enabling fair comparison of training
performance.
Analysis of results. Figured 4 shows the CDF of MAPE for the five
different model types on the 36 subsets of data. We observe that in
85% of cases the linear regression model performs as well as more
complex SVR and KNN models. In Table 2 we see that the poor
performance for linear regression was all due to using the image-1k

dataset without specifying the network. This poor performance is
not surprising given that large images exacerbate the difference
between different networks, as seen in Figure 3(b).

Despite the slightly lower prediction accuracy in some cases
linear regression models are preferable to both KNN and SVR due
to training and usage constraints. KNN not only requires hyperpa-
rameter tuning but also requires the usage of all training data for
each inference. SVR has greater than quadratic training time [31]
(compared to linear time for Linear Regression) leading to a scaling
issue as more data is collected. Given the relatively close prediction
accuracy among all models and drawbacks of other models, we
choose to use linear regression models in PieSlicer.

4.4 Other Factors: Compression and Resolution

Lastly, we briefly discuss the impact of two factors, image qual-
ity and resolution, on pre-execution time and inference accuracy.
We use the NasNet Large model with in-cloud preprocessing as
the baseline and define normalized accuracy as the percentage of
image inferences that match the results of in-cloud preprocessing.
We found that these two factors only had negligible impact when
compared to the baseline. Consequently, in designing PieSlicer,
we assume these two factors are pre-determined and provided by
mobile developers.
Image quality. The JPEG standard includes a quality setting, rang-
ing from 1-100, that denotes how much information to keep when
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Figure 5: PieSlicer design and an example workflow. Mobile applica-
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compressing the image [47], which allows for a trade-off between
image quality and file size. We observed that a quality setting of 90
provides the largest time reduction while exhibiting a small impact
on inference accuracy, thus we use this setting throughout the rest
of this work. Similar results have been shown by previous works
which aim to alleviate the impact of lossy compression on accuracy
either through improving the deep learning model [45] or changing
the image compression algorithm [49].
Preprocessing resolution. Similar to image compression quality,
resolution also presents an opportunity to reduce network time.
We used the same measurement setup from Section 4.1 and tested
three resolutions using image-1k. We observed that preprocessing to
128×128pixels reduced the average network transfer time by 27.7ms,
but reduced normalized accuracy by 14.2% (from 98.6%). Therefore
in this work we use a preprocessing resolution of 331×331pixels.

5 PIESLICER

PieSlicer is designed to be a dynamic image preprocessing frame-
work for cloud-based deep learning inference. Using our empirically
derived models, PieSlicer considers both on-device and in-cloud
preprocessing, and chooses the one with the lower pre-execution
time. Figure 5 shows an example workflow of using PieSlicer.

PieSlicer is prototyped as an Android library and a python-
based inference server plug-in and consists of three main com-
ponents. The first is a modeling and decision engine that uses
performance models to determine the best preprocessing path and
retrains these models as needed. The second is a preprocessing
engine which preprocesses the input image data, based on the de-
cision of the modeling and decision engine. The third is a server
plug-in which records and reports the in-cloud preprocessing time,
allowing the on-device performance models to be retrained.

5.1 Modeling Pre-execution Time

For each time component𝑇 , we use the linear model in the form of
𝑇 (𝑥) = 𝑥⊺𝛽 + 𝜖 where 𝑥⊺ is the vector of inputs, 𝛽 is the calculated
coefficients of our model and 𝜖 is the random error. The coefficients
vector 𝛽 captures each time component’s dependence on input
features. We used the input features described in Section 4.3. The
pre-execution time is then estimated as

∑
𝑇 for each predicted

Table 3: Linear regression MAPE for on-Device and in-cloud prepro-

cessing time. We see that the more accurate models tend to be those using

image-1k, likely due to the wide range of input file sizes used in training. We

see in all cases relatively low MAPE values, indicating a good fit.

image-6k image-5k image-1k
On-Device In-Cloud On-Device In-Cloud On-Device In-Cloud

All 32.77 21.90 20.56 18.60 16.69 7.15

High-End 8.45 28.96 9.90 20.79 6.83 5.85

Mid-End 7.22 10.20 6.77 10.31 6.59 6.43

Low-End 32.01 28.28 24.23 16.94 12.61 6.65

latency on the potential execution path (more detail is provided
in Section 5.2). We chose to model each component individually
to increase the modularity and reduce situations where a single
runtime change, such as switching to a different mobile network,
requires a new prediction model.

As briefly discussed in Section 4.3, training the model with dif-
ferent subsets of data led to different prediction accuracies. Table 2
compares the prediction performance of linear regression models
for network transfer time, trained with different data subsets. Simi-
larly, Table 3 compares the test accuracy for on-device and in-cloud
preprocessing. We report Mean Absolute Percentage Error (MAPE).
For example, the prediction accuracy of the model trained with
measurement data collected with our mid-end device on university

WiFi with the image-6k dataset is 16.56%, one of the lowest reported
errors. The four lowest and highest reported errors are highlighted
in green and red, respectively.

We make two observations. First, we see in Table 2 that network
models that combine measurements from different networks, even
when using one-hot encoding to differentiate networks, have high
error. This is especially true for models trained with the image-1k

dataset where there is a 10x increase in MAPE. We suspect that this
increase for image-1k is due to the large average image file sizes
of the image-1k dataset, making them more sensitive to network
performance variations.

Second, models trained with more specified datasets (e.g. a mid-
end phone on university WiFi) tend to have lower error. We see this
both in Table 2 and Table 3 where in many cases combined datasets
have the highest error rate. This observation can understood by
observing the distinct trendlines that are seen in Figures 3(a)-3(b).
Therefore, we opt to use per-device and per-network models to best
account for different hardware and network in PieSlicer.

5.2 Using Pre-execution Time Models

We next describe how we leverage the performance models to
make dynamic decisions regarding preprocessing location. For each
inference request, PieSlicer leverages the performance models
corresponding to the device, network, and server that are currently
being used. That is, we estimate the pre-execution time for both
on-device preprocessing 𝑇𝑚 and in-cloud preprocessing 𝑇𝑐 as:

𝑇𝑚 (𝑥) = 𝑇𝑚
𝑝𝑟𝑒𝑝 (𝑥) +𝑇𝑛𝑤 (𝑥) +𝑇𝑐

𝑝𝑟𝑒𝑝 (𝑥) + 𝑐,
𝑇𝑐 (𝑥) = 𝑇𝑛𝑤 (𝑥) +𝑇𝑐

𝑝𝑟𝑒𝑝 (𝑥) + 𝑐,

where 𝑥 is the input features to our model. The cloud preparation
time is denoted as 𝑐 and is set to be 1𝑚𝑠 as discussed in Section 4.2.
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𝑇𝑚
𝑝𝑟𝑒𝑝 and 𝑇𝑐

𝑝𝑟𝑒𝑝 are the preprocessing models for the mobile de-
vice and the cloud server, respectively. 𝑇𝑛𝑤 is the specific network
transfer time model for the currently active mobile network. If
𝑇𝑚 (𝑥) < 𝑇𝑐 (𝑥), PieSlicer will choose to perform preprocessing
on the mobile device, and otherwise will use in-cloud preprocessing.
Currently, one of the features, image file size to send, is estimated
to be the average size of previously preprocessed images.
Retraining models. In order to ensure the accuracy of decisions
made by PieSlicer, it is important to keep performance models up
to date. PieSlicer retrains its linear regression models periodically
to ensure that each mobile device has access to up-to-date perfor-
mance models. As the time to retrain regression-based models is
low but non-negligible, the frequency of retraining is in large part
related to the amount of new performance data collected as well as
the accuracy of the current on-device performance models. In this
work, we use a simple strategy to trigger the retraining once the
prediction accuracy falls below the training accuracy [13].

Retraining is done either on-device or in the cloud, depending
on the type of models. Mobile-specific models, such as those for
on-device preprocessing and network models, are trained on-device.
This allows for keeping mobile-specific data local and ensuring that
the data used for modeling is relevant to the device being used.
Cloud-specific models, such as those for in-cloud preprocessing,
are trained in the cloud and parameters are attached to inference
responses. This is enabled by using linear regression models since
they require only as many parameters as they have inputs.
Adapting to network transfer time variations. Because mobile
networks are inherently variable even when using the same type
of networks, the predicted network transfer time can deviate from
the actual time. Although retraining models, as outlined above, will
mitigate long-term network changes, transient changes can still
be problematic. To mitigate the impact of these transient network
changes on preprocessing decisions, we use a delta-based approach
to reactively adjust the predicted network transfer time based on
recently observed variations, if any. Concretely, for each inference
request 𝑖 , we record the predicted network transfer time as𝑇 𝑖

𝑛𝑤 and

the actual network time 𝑇 𝑖
𝑛𝑤 . We use 𝛿𝑖 = (𝑇 𝑖

𝑛𝑤−𝑇 𝑖
𝑛𝑤 )

𝑠𝑖𝑧𝑒𝑖
to represent

the difference in bandwidth prediction where 𝑠𝑖𝑧𝑒𝑖 is the size of
request 𝑖 , with a positive 𝛿𝑖 indicating network conditions are worse
than predicted. Applying exponential smoothing, we calculate Δ𝑖 =
(1−𝛼)Δ𝑖−1+𝛼𝛿𝑖 where𝛼 ∈ (0, 1). For the next inference request 𝑖+1,
PieSlicer will estimate the network transfer time to be 𝑇 𝑖+1

𝑛𝑤 + Δ𝑖 .
Selectively using the on-device performance models. In some
cases real-world input results in very small inputs which would be
inefficient to consider for on-device preprocessing. In these cases
we leverage two fast on-device checks (< 4𝜇𝑠) to decide whether to
use the on-device performance models. These checks considered
two factors: (i) file size; and (ii) image resolution.

In the first we see whether the filesize is larger than the average
transmitted filesize (∼53kB). If it is smaller then PieSlicer then it
is likely that it is a very small image and on-device preprocessing
is unnecessary. In the second check we see whether the image reso-
lution is less than the preprocessing target size (e.g. 331×331pixels).
If it is then any preprocessing would only increase the filesize and
potentially decrease accuracy. If either of these conditions is true
then the raw image data is transmitted to the cloud-based server.

Table 4: Comparison of pre-execution latency to baselines. We com-

pared the pre-execution time achieved by PieSlicer and the baseline approaches

in terms of what percentage they were of the the empirically derived static

minimum, which is shown as absolute time in milliseconds. PieSlicer in many

cases outperforms any of the static baselines.

Residential University

Device Algorithm 50𝑡ℎ 95𝑡ℎ 99𝑡ℎ 50𝑡ℎ 95𝑡ℎ 99𝑡ℎ

Static Minimum 713.2ms 1231.0ms 1876.6ms 707.2ms 1215.7ms 1984.5ms

Static remote 922.6% 1094.7% 1524.9% 274.2% 288.8% 316.9%

Static local 100.1% 100.0% 100.0% 100.5% 101.0% 100.0%

Low-End

PieSlicer 95.0% 100.3% 113.8% 93.4% 94.5% 94.1%

Static Minimum 582.4ms 875.6ms 1316.1ms 502.4ms 749.7ms 1090.2ms

Static remote 1082.3% 1353.0% 1003.1% 275.4% 599.5% 502.6%

Static local 100.1% 100.0% 103.1% 100.3% 100.0% 100.0%

Mid-End

PieSlicer 97.3% 96.7% 83.5% 97.6% 96.6% 94.1%

Static Minimum 448.7ms 690.0ms 979.8ms 384.2ms 666.7ms 951.7ms

Static remote 1457.6% 1818.5% 1454.4% 234.9% 238.8% 223.9%

Static local 100.1% 100.0% 100.0% 100.2% 102.1% 100.0%

High-End

PieSlicer 98.9% 96.3% 104.7% 98.1% 98.7% 105.7%

6 EXPERIMENTAL EVALUATION

Our key evaluation goal is to quantify the effectiveness of PieSlicer
in reducing pre-execution time and examine its decision accuracy.
We found that PieSlicer incurs minimal overhead of 0.33ms on
average, or 0.07% per request.

6.1 Experimental Setup

We use the same setup as in Section 4.1 for evaluating PieSlicer.
Baseline policies. We evaluated PieSlicer against three baselines.
Static local always preprocesses the inference request on mobile
devices before sending it to the cloud servers. Static remote always
sends the raw input data directly to the cloud servers for prepro-
cessing. We also derive a static inimum baseline by picking the
lower pre-execution time out of the above two static baselines.
Performance metrics.We chose 𝐹1 score to measure PieSlicer’s
ability in making preprocessing placement decisions. The 𝐹1 score
is calculated as a harmonic mean of the precision and the recall. A
perfect precision and recall corresponds to an 𝐹1 score of 1. In our
case, precision is calculated as the number of correctly predicted
requests preprocessed locally divided by the total number of local
preprocessing decisions made by PieSlicer. The recall is calculated
as the number of correctly decided local preprocessing decisions
divided by the total number of requests that should use local pre-
processing. To analyze the reduction in bandwidth usage due to
PieSlicer, we use the metric of bandwidth utilization. This metric
is calculated by comparing the number of sent bytes by PieSlicer
to the bytes incurred when using static remote.

6.2 Latency Reduction and Prediction Accuracy

In this experiment, we quantify the pre-execution time savings pro-
vided by PieSlicer, as well as PieSlicer’s decision accuracy. We
used PieSlicer running on each mobile device to make preprocess-
ing decisions dynamically. We sent all images from the image-1k

dataset over both the university and residential WiFi, and report
the pre-execution time for PieSlicer and our three baselines.
Pre-execution time reduction. In Table 4 we compare the pre-
execution time of PieSlicer and three baselines at a range of quan-
tiles. We report the absolute time for static minimum and normalize
the performance of other approaches against it.
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Table 5: Bandwidth utilization

Residential Network University Network

Low-End Device 1.91% 4.93%
Mid-End Device 1.86% 4.79%
High-End Device 1.86% 7.33%

We make the following two main observations. First, PieSlicer
achieved comparable, or better, pre-execution time to the static min-

imum baseline for all three mobile devices. PieSlicer outperformed
the static minimum baseline in 77.8% of cases and was within 6%
for all but one case. Specifically, at median PieSlicer always per-
formed better, with a decrease in latency of up to 50.2ms (7.1%)
compared to the static local baseline and more than 1.2s (180.8%)
better than the static remote baseline. At higher percentiles we see
an even larger improvement, with up to 217.2ms decrease in latency
at the 99th percentile when compared to the static minimum base-
line. These improvements are all noticeable to end users [40] and
thus can improve their experiences. Second, PieSlicer performed
more accurately on university WiFi rather than residential WiFi.
This supports the design choice of modeling distinct networks and
devices individually.
Classification accuracy. To understand the ability of PieSlicer
in making dynamic pre-processing decisions, we recast it as a bi-
nary classification problem. To do this we use the choices of static
minimum as a ground truth and examine the choices made by Pie-
Slicer. For all tested scenarios, PieSlicer achieved an 𝐹1 score of at
least 0.980, with a maximum score of 0.990 indicating very high clas-
sification accuracy. This suggests that our linear regression models
were sufficient for making dynamic preprocessing decisions.

6.3 Bandwidth Reduction and its Implications

PieSlicer’s dynamic preprocessing does not only affect the pre-
execution time, but also the amount of data sent. Table 5 shows the
bandwidth utilization of PieSlicer. We first observe that PieSlicer
significantly reduced the bandwidth requirements for all tested
cases. This also suggests that PieSlicer decided to preprocess most
tested images on mobile devices. Second, we see that PieSlicer had
lower bandwidth utilization when using residential WiFi than using
university WiFi. This suggests that PieSlicer chose to preprocess
more images in the cloud when using university WiFi, which aligns
with our previous observation that university WiFi was faster in
Figure 3(b). Finally, the high-end device had the highest bandwidth
utilization on university WiFi, despite having the most powerful
hardware. This indicates PieSlicer’s ability to make trade-offs
based on computational capacity and network connection.
Implication for Energy Savings. Below we show that PieSlicer
leads to mobile energy reduction by judiciously making prepro-
cessing decisions for images of different sizes and imposing neg-
ligible energy overhead. We present the analysis as the following.
Previous work has shown that energy consumption for the trans-
mission of data over a WiFi network by a mobile device is at least
0.005J/kB [42]. This equates to roughly 0.265J of energy for a 53kB
preprocessed image and 50J for our largest unpreprocessed image.
On-device preprocessing for our Pixel device is done on the Pixel
Visual Core device which uses a maximum of 8W [4], leading en-
ergy consumption for on-device preprocessing ranging from 0.8J to

2.5J, for small and larger images respectively. This further shows
that small images are more energy efficient to transmit for remote
preprocessing while large images can be an order of magnitude
more energy efficient through local preprocessing. Thus, PieSlicer
can reduce energy consumption through a reduction in network
bandwidth. Further, since PieSlicer makes these decisions quickly,
always in < 1𝑚𝑠 which equates to approximately 4mJ of energy [1],
it does so with negligible overhead.

6.4 Effectiveness of Optimizations

Next, we quantify the effectiveness of PieSlicer’s two optimiza-
tions: delta-based network adaptiveness and selective usage of
on-device performance models. For this test we set 𝛼 = 0.5. When
using both optimizations we see a reduction in pre-execution time
by 49.3ms (6.4%) at the 95𝑡ℎ percentile and 85.3ms (7.4%) at the
99𝑡ℎ percentile. If only the adaptive optimization is enabled, we
observe that PieSlicer reduces per-execution time by up to 3.2%;
while if only the selective optimization is used, we observe that
PieSlicer reduces pre-execution by up to 4.0%. Our observations
suggest that both adaptive and selective optimizations are beneficial
in improving PieSlicer’s robustness and with minimal overhead.

7 RELATEDWORK

Computation offloading for Deep Learning. Offloading compu-
tationally intensive tasks to remote servers is a common technique
for mobile devices. This can be done either to reduce latency and
energy consumption [8, 10, 27]. Offloading of deep learning infer-
ence [20, 25, 46] generally partitions execution between on-device
and remote execution, requiring prepartitionedmodels to be present
on the mobile device. PieSlicer proposes an alternative approach to
deep learning offloading that fully takes advantage of cloud-based
hardware when possible by having model execution be entirely
handled on this more powerful hardware. This is more similar to tra-
ditional off-loading techniques by removing the need to manually
partition deep learning models.
In-cloud Inference Execution. High-accuracy deep learning mod-
els have high computational requirements [5], which has driven
the need to run them on powerful cloud servers, potentially with
specialized hardware[24]. Industry frameworks [2, 37] aim to make
models available for inferencewhileminimizing latency by allowing
optimizations. Other approaches may try to optimize for other fac-
tors such as throughput [9, 15, 26], accuracy [35], or cost [43]. Since
many frameworks accept a target execution latency [26, 35, 43], by
reducing pre-execution latency PieSlicer increases their ability to
meet these targets.

8 DISCUSSION

Generalizability. In this work we used pre-execution time in im-
age classification as a motivational example, but PieSlicer could be
used in analyzing other deep learning applications [3, 7, 39] which
have similar workflows but different preprocessing trade-offs. For
example, virtual assistants could leverage the profile aspect of Pie-
Slicer to identify choke points and dynamically adapt accuracy.
Implications of future technology. As other fields develop they
will improve aspects of the steps discussed in Section 2, which

7



ICPE’21, April 2021, Rennes, France Samuel S. Ogden, Xiangnan Kong, and Tian Guo

potentially only increases the need to understand the interplay be-
tween the different factors. One such improvement is the increased
bandwidth provided by the introduction of 5G, which would be ex-
pected to encourage more in-cloud preprocessing due to decreased
network latency. The modular models used by PieSlicer allow
it to incorporate such improvements and are thus orthogonal to
PieSlicer by further reducing overall response latency.

9 CONCLUSION

We demonstrated the importance of modeling the pre-execution
latency for mobile devices that leverage cloud inference, and in-
troduced effective techniques for reducing this latency. Through
empirical characterization, we found that pre-execution latency
can often be orders of magnitude longer than execution time itself,
making it a prime candidate for optimization. Further, our explo-
ration of machine learning based performance models showed that
linear regression models allow for adequate modeling accuracy for
the steps that comprise pre-execution time with low overhead.

Based on the key findings from our empirical characterization
and modeling, we further designed and built PieSlicer, a system
for dynamically determining preprocessing location in an accurate
and agile manner. Using simple models PieSlicer achieved a clas-
sification 𝐹1 accuracy of up to 0.99, leading to 217.2ms reduction
over the best static approach.
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