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Abstract—Learning to compare two objects are essential in
applications, especially when labeled data are scarce and im-
balanced. As these applications can involve humans and make
high-stake decisions, it is critical to explain the learned models.
We aim to study post-hoc explanations of Siamese networks
(SN) widely used in learning to compare. We characterize the
instability of gradient-based explanations due to the additional
compared object in SN, in contrast to architectures with a
single input instance. We optimize for global invariance based
on unlabeled data using self-learning to promote the stability
of local explanations for individual input. The invariance leads
to constrained optimization problems that can be solved using
gradient descent-ascent (GDA), or KL-divergence regularized
unconstrained optimization solved by SGD. We provide conver-
gence proofs when the objective functions are nonconvex due
to the Siamese architecture. Results on tabular and graph data
from neuroscience and chemical engineering show that our local
explanations robustly respects the self-learned invariance while
optimizing the explanation faithfulness and simplicity. We further
demonstrate the convergence of GDA experimentally.

I. INTRODUCTION
Siamese networks (SN for short in the sequel) are widely

used in similarity metric learning [16] and contrastive learning
[4] where objects are compared. Different from conventional
architectures that take one input instance, an SN maps a pair
of instances (the “query” and the “reference”) to a similarity
score [17]. As SN is widely used in high-stake applications
involving individual humans and societal values, it is urgent
to provide simple and convincing explanations [9].

Challenges. We focus on post-hoc explanations consisting
of a few salient input elements that can closely approximate
the prediction made on the original input [19]. In contrast
to explaining architectures with one single input [19], [26],
explanations for SN should consider both query and reference,
and explanations insensitive to either of the inputs [17] are
misleading. However, the additional reference can make the
explanation over-sensitive to irrelevant perturbations.

A stable explanation should retain the robust features of
one input regardless of the other. One example is when SN
is used for graph comparison [16]. Neuroscience studies have
shown that the global Default Mode Network (DMN) [18]
consisting of several brain regions of interest (ROI) involves
multiple cognitive and affective functions. Researchers can be
interested in an invariant subgraph of the ROIs when using SN
to extract the difference between a bipolar patient and various
healthy reference controls [28].

Proposed Method. To control superfluous variations due
to the compared object, we find global invariant salient fea-
‡

This author now works at Intel Labs.

tures for individual objects using self-supervision. We then
formulate optimization problems to adapt the global salient
features to explain an SN prediction local to an input pair. The
adaptation balances the conformity to the invariance and the
local flexibility when comparing a query to different references
(“global” means “regardless of the references compared with
a query”, rather than the universal behaviors of the explained
model over all data [15]). Under this framework, we de-
sign a gradient descent ascent (GDA) algorithm to solve a
constrained optimization problem SNX (SN Explainer), and
an unconstrained optimization problem with KL-divergence
regularization (SNX-KL) solved by SGD.

The optimization problems can incorporate additional con-
straints. One-hot encoding is widely used on tabular datasets
with categorical attributes [11]. For example, in Fig. 1, three
binary features (“minor” features) represent the three values
(young, midlife, and old) of the attribute Age (“major” fea-
tures). One-hot encoding leads to the constraints that a major
categorical attribute is salient if and only if at least one of the
associated minor binary features is salient. Local explanations
on the same query but different reference instances can select
different binary minor features under the same major features
that globally characterize the query. Prior methods explaining
SN [22] on images do no have such constraints.

Regarding graph data, explaining the predicted similarity by
subgraphs enumeration is NP-hard. Recent graph explanation
approaches treat the edges independently, possibly leading to
less coherent subgraphs that are not interpretable, as larger
connected subgraphs can have biological or chemical sig-
nificance [26]. We introduce structural constraints to make
adjacent edges more likely to be selected into a subgraph as
global invariant characterization of each graph.

Contributions. 1) We formulate the explanations of SN
as two optimization problems and design algorithms with
convergence guarantee theoretically. 2) We demonstrate that
self-supervised learning can find meaningful invariant to find
more stable local explanations, and our methods outperform
the state-of-the-art on six datasets in terms of faithfulness,
counterfactual, and conformity. 3) The methods work on both
tabular and graph data with convincing case studies.

II. PROBLEM DEFINITION
A. Data with structures

Tabular data is a set of vectors, each with the same list of
q categorical major features z = [z1, . . . , zq], such as age and
deposits of a credit card applicant [11]. Using one-hot encod-
ing, each major feature zi is transformed to a set of binary



1

0

0

1

0

0

0

0

1

…

‘cellphone’

0

20

…

major features 

minor features 

1

0

0

0

1

0

0

1

0

…

Is Alice different from Bob and Charles for the same reason? 

(reference)

Cardholder

Charles

1

0

0

1

0

0

0

0

1

…

0

0

1

0

0

1

0

1

0

…

0

20 Global invariant salient major features

Preferred minor features 

1 Actual selected local salient minor features

‘cellphone’

0

20

…

Comparing query and reference on minor features

Prediction:

Different

classes

age

deposits

contact

…

‘cellphone’

0

20

‘telephone’

1000

25

…

…

1

0

1

0

0

0

0

1

1

0

0

0

1

0

0

1

0

…

…

young
midlife
old

<500

<10k

<100k

>100k

‘telephone’
‘cellphone’

(reference)

(query)

Applicant

Alice

Cardholder

Bob

SN Explanation

SN

Fig. 1: Explaining Siamese networks with invariant. Left: major feature vectors z can be converted to minor feature vectors x by one-hot encoding, and
the SN predicts the similarity of the query xs and reference xt. Right: SN explanation (SNX) for tabular data is enclosed in the dash-lined box. Global
invariant salient features for Alice are {Age, Deposits}, on both the major and minor levels (light purple values and boxes). The comparisons of Alice
with references Bob and Charles lead to different local explanations (dark purple boxes), with two minor features selected beyond global invariant features.

minor features xi,j ∈ {0, 1}, where xi,j = 1 if zi takes the j-
th possible value. As a result,

∑
j xi,j = 1,∀i = 1, . . . , q. The

minor feature vector x ∈ {0, 1}p is the concatenation of all
binary minor features, and p is the number of minor features.

Graph data is a set of graphs, and each graph G = (V,E)
contains a set of vertices V and edges E ⊂ V ×V . We assume
G is undirected and its adjacency matrix A is symmetric. To
unify the descriptions of optimization problems, A is flattened
to a vector x of length (|V |−1)(|V |−2)/2 due to symmetry.

B. Siamese Networks
An SN accepts a pair of instances, denoted as query

xs ∈ Rps and reference xt ∈ Rpt [17], with ps = pt
for two vectors, and ps 6= pt in general for two different
graphs. The superscript s or t will be omitted when refer-
ring to a single instance in general. The SN consists of a
mapping function emb(x;θ) that maps xs and xt to a latent
space, where a metric measures the similarity between the
two embeddings. The SN is then the composite function
f(xs,xt;θ) = sim(emb(xs;θ), emb(xt;θ)). f is trained to
maximize the similarity between any two instances of the same
class using some loss function `SN as follows,

min
θ

∑
(s,t)∈T

`SN(f(xs,xt;θ), yst),

where T is the training set containing all query-reference pairs.
The label of a pair (xs,xt) is yst = 1[ys = yt].

C. Post-hoc explanation of SN
We assume a trained SN f(xs,xt;θ) and focus on ex-

plaining the SN’s predictions on test data. The parameter
θ is fixed and thus omitted from f(xs,xt;θ) when there
is no confusion. Given a pair of query xs ∈ {0, 1}ps and
reference xt ∈ {0, 1}pt , let ms ∈ [0, 1]ps and mt ∈ [0, 1]pt

be the corresponding multiplicative masks. A large element
in a mask indicates that the corresponding feature value
contributes more to the SN prediction [26], [20]. The element-
wise product m⊗x is a masked instance so that mixi ∈ [0, 1]
is the importance/saliency of the i-th element of x. Additive
perturbations [19], [14] are less interpretable, as the perturbed

binary features can be outside of [0, 1]. A prediction f(xs,xt)
depends on both inputs (xs,xt), so does its explanation,
leading to robustness issues of the gradient-based explanations.

Robustness of SN explanations. Using a simple example
SN f(xs,xt;θ) = σ(< θ>xs,θ>xt >), we characterize the
robustness of gradient-based explanations of SN. Taking the
gradient of `SN with respect to the query xs, we obtain a
saliency map over xs proportional to θθ>xt. The salient map
explains the prediction using the magnitudes of elements in
θθ>xt and depends on the SN parameter θ and the reference
xt. The saliency map can be manipulated to any pre-defined
target explanation m̃s, by perturbing the reference xt:

minδ∈Rpt‖(θθ>)(xt + δ)− m̃s‖22 s.t. < xs, (θθ>)(δ) >= 0.

The objective pushes the saliency map to the target mask m̃s

[5], [8], while the equality constraint specifies that the SN
prediction is not changed and any vector δ orthogonal to xs

will work. Since the one-hot encoding or a sparse graph can
result in a large number of zeros in xs, there are many such
orthogonal vectors.

Desiderata. We aim to find local explanations (i.e., masks,
denoted by m in general), with the following merits:
• Simplicity [19] of an explanation is measured by the number

of important features or edges according to m, such as ‖m‖,
the `1 norm of m.

• Faithfulness [19], [14] can be evaluated by feeding the
masked instances (ms ⊗ xs,mt ⊗ xt) to the target SN f
and measuring the distortion in the original output:

`(f(xs,xt), f(ms ⊗ xs,mt ⊗ xt)), (1)

where ` is some loss functions, such as the cross-entropy
loss. A low faithfulness loss indicates that the masks can
select salient features to preserve the SN output f(xs,xt).

• Counterfactuals [23] is the complement (1−m) of m and
can show “what” would the predictions be “if” keeping the
non-salient features. We define the following counterfactual
loss to measure how much ms and mt miss salient features:

`(f(xs,xt), f((1−ms)⊗ xs, (1−mt)⊗ xt)). (2)



• Conformity measures how much a local explanation overlaps
the global salient features. Conforming to an invariant leads
to more robustness against variations in the reference xt.

III. SELF-LEARN TO EXPLAIN ROBUSTLY
A. A general optimization formulation

The variables to be optimized are the two masks ms ∈
[0, 1]ps and mt ∈ [0, 1]pt output by the sigmoid function over
xs and xt, respectively. To balance faithfulness and simplicity,
we have:
min

ms,mt
`
(
f(xs,xt), f(ms ⊗ xs,mt ⊗ xt)

)
+ γ(‖a(ms)‖+ ‖a(mt)‖),

(3)
where γ is a hyperparameter to fine-tune the relative impor-
tance of the two goals. `(·, ·) as defined by Eq. (1) promotes
faithfulness and ‖ · ‖ is the `1-norm that promotes simplicity.
Note that simplicity can be structural (such as joint sparsity
[21]) and the auxiliary function a(m) maps from an unstruc-
tured mask to another vector, upon which structural sparsity
constraints can be imposed on Section III-B and III-C.

Stage 1. Saliency maps may lack robustness and we use a
global invariant to regulate ms for more robustness against
varying xt. If there is domain knowledge regarding which
features/edges in a query x are salient, we can set the binary
values in the global mask M ∈ [0, 1]p for x accordingly. There
is no such knowledge in a more general case, and we propose
to extract M as an invariant to encode global salient elements
in x, regardless of references, using self-supervision learning
(SSL). SSL [27], [10] train a predictive model h by contrasting
x and its transformation T (x), where x can be a graph [27],
[10] or an image [4]. The objective function in SSL is:

h∗ = argminh Lself (T,x, h) = argminh `(h(x), h(T (x))),

where T (·) is a given transformation. For example, T (·) can
be random walk masking out irrelevant parts of a graph [10],
and T (x) = M ⊗ x. SSL uses a fixed T function to learn
h, while we are interested in learning a T , which is a global
mask for x regardless of different references compared:

min
M

` (f(x,x), f(x,M⊗ x)) + γ‖a(M)‖, (4)

s.t. gi(M) ≤ 0, i = 1, . . . , c. (5)

M extracts the salient features of x to maximally preserve
information in x, thus a low faithfulness loss (Eq. (1)).

Stage 2. After finding Ms and Mt for xs and xt, respectively,
using Eqs. (4)-(5), we fix the global masks Ms and Mt and
incorporate them as constraints in the following optimization
problem (termed “SNX”) to find local masks ms and mt:

min
ms,mt

`
(
f(xs,xt), f(ms ⊗ xs,mt ⊗ xt)

)
+γ
(
‖a(ms)‖+ ‖a(mt)‖

) (6)

s.t. gi(m) = a(ms)i − a(Ms)i ≤ 0, i = 1, . . . , cs, (7)
gcs+i(m) = a(mt)i − a(Mt)i ≤ 0, i = 1, . . . , ct. (8)

a(·)i means the i-th element of a(·), and cs and ct are the
numbers of the constraints.

B. Optimization problem for tabular data
Stage 1. Without a particular reference xt, a global mask over
a query can at best identify salient major features, such as
Age, in zs. We use the auxiliary function to find a global
invariant mask N ∈ [0, 1]q over the major features, where
Ni = a(M)i = 1−

∏
j(1−Mi,j) is the importance of the i-th

major feature1, and Mi,j indicates the global importance of the
j-th value of the i-th major categorical feature of the query x.
As we already encode the dependencies among minor features
in a(M), there is no more constraints in Eq. (5) (c = 0).
Stage 2. Comparing with xt, we further identify salient minor
features, such “Age<25”, associated with the salient major
features. For tabular data, any two input vectors to SN are
aligned, so we optimize a single mask m = ms = mt to find
salient features for both instances. We use the same auxiliary
function for the local masks n = a(m) such that ni = 1 −∏

j(1−mi,j) in Eq. (6). As we focus on finding masks for the
query xs with varying references xt, only Eq. (7) is kept (cs =
q, the number of major features). Alternatively, we formulate
an unconstrained optimization problem (termed “SNX-KL”):

minm ` (f(xs,xt), f(m⊗ xs,m⊗ xt)) + γ‖n‖+ βKL(n‖N),

(9)
where KL(n‖N) =

∑q
i=1 KL(ni‖Ni) and KL(ni‖Ni) is the

KL-divergence between ni and Ni, which encourages ni to
be smaller than Ni (according to Section 10.1 in [2]).

C. Optimization problems for graphs
We set a(M) = M for masks on graphs. Isolated single-

edged subgraphs are not only difficult for domain experts to
interpret, but can also disturb the working of GNNs within SN.
Thus, the selection of two adjacent edges should be related.
We consider such dependencies in Eq. (5) in stage 1,

gjk(M) = ‖Mj −Mk‖ − ε ≤ 0, j, k adjacent in G, (10)

where Mj ∈ [0, 1] is the mask for the j-th edge. The constraint
indicates that the selection of the j-th edge can lead to the
selection of the k-th edge if they share a node [15], and ε
controls the co-occurrence of the two edges. After obtaining
Ms and Mt for each graph, the local masks ms and mt over
Gs and Gt are optimized by solving problem Eqs. (6)-(8),
using Ms and Mt as constants in the constraints. In general,
Gs and Gt have different numbers of nodes, which are not
aligned. Therefore, ms and mt can lead to different numbers
of constraints (cs = ps and ct = pt). Similar to Eq. (9), one
can use KL-regularization terms to enforce the constraints.

D. Optimization algorithm and convergence
SNX-KL defined in Eq. (9) is unconstrained optimization

and SGD can be used. Alternatively, global explanations on
graph data (Eq. (4)-(5)) and local explanations on both tabular
and graph data (Eq. (6)-(8)) are constrained optimization

1We tried alternatives, such as Ni =
∑

k Mi,k and Ni =
∏

k Mi,k .
They cannot focus on minor features for a significant major feature, or lead
to numerical underflow issues.



Algorithm 1 SNX: Siamese Network Explanation with GDA
1: Input: a target SN model f , a query instance xs and reference

instance xt, optional human-defined constraints in Ms and Mt,
learning rate η1, η2 for m and λ.

2: Output: local masks ms for xs, and mt for xt.
3: Init: λ = [1/c, . . . , 1/c] ∈ Rc.
4: if Ms and Mt not given then
5: Extract global masks Ms and Mt by Eqs. (4)-(5) BSSL
6: end if
7: Pretrain ms,mt without constraints using Eq. (6).
8: Solve the full constrained optimization problems Eqs. (6)-(8)

using GDA to find local masks ms and mt.

problems. We adopt the gradient descent-ascent (GDA) algo-
rithm [13] (Algorithm 1) to allow violations of the constraints.
Take optimizing local masks as an example, the mask to opti-
mize is primal variables m = ms = mt for tabular data and
m = [ms;mt] for graph data. The objective function g0(m) is
that defined in Eq. (4) or Eq. (6), and the inequality constraints
gi(m),∀i ∈ {1, . . . , c} are those defined in Eq. (5) or Eqs.
(7)-(8), and c is the number of inequality constraints. We
introduce the non-negative dual Lagrange multipliers λ ∈ Rc

+

and construct the Lagrangian function

L(m,λ) = g0(m) +
∑c

i=1 λigi(m), (11)

Then gradient descent is applied to m and gradient ascent is
applied to λ with learning rates η1 and η2:

m←m− η1 ∂L
∂m , λ← λ+ η2

∂L
∂λ . (12)

Between the two updates, we use the latest m to evaluate
the partial derivatives with respect to λ. Also, the λ vector is
normalized to a probability distribution before starting the next
iteration. The time complexity of each optimization iteration
is the sum of that of training the SN using back-propagation
and that of evaluating the c constraints.
Convergence. The Lagrangian is nonconvex in the primal
variables and linear in the dual variables. The GDA algorithm
is convergent based on Theorem 4.4 of the work [13], given
that the Lagrangian satisfies their Assumption 4.2:
1) L is l-smooth and L(·,λ) is L-Lipschitz for each λ and
L(m, ·) is concave for each m.

2) The domain of λ is convex and bounded.
We verify these assumptions in the full version [3].

IV. EXPERIMENTS
A. Experimental settings
Datasets. We conduct experiments on four tabular datasets and
two graph datasets. More details about experimental settings
and more comprehensive results for evaluation of global
masks, conformity, convergence of GDA, sensitivity analysis,
and case studies are provided in the full version [3].
Metrics. We evaluate the faithfulness (FA, Eq. (1)) and coun-
terfactual loss (CF, Eq. (2)). The conformity is also calculated
by averaging the Jaccard similarity between global mask M
and local mask m J = |a(M)∩a(m)|

|a(M)∪a(m)| for both xs and xt.
Baselines and variants. There are several options to obtain
local masks ms for the queries. The following three methods
use global masks as local masks and are agnostic to references.

• Pick-all: set all elements in the global masks to one.
• DES (tabular data only) [25]: an unsupervised feature selec-

tion that generates pseudo labels for all pairs of instances
using kNN to supervise the learning of a feature selector.

• SNX-global: solve Eq. (4) for Ms which is treated as a local
mask without stage 2 local mask optimization.

The following baselines disregard constraints by global masks.
• Saliency maps (SM) [1]: take the gradient of `SN w.r.t. input
xs and retain features with the largest gradient magnitudes.

• SNX-unconstrained (SNX-UC): minimize the objective Eq.
(6) without the constraints Eqs. (7)-(8).

• PGExplainer (PGExp) [15]: train a shareable generator for
all graphs by maximizing the MI.

• GNNExplainer (GNNExp) [26]: learn soft masks for edges
by maximizing the mutual information (MI).

The following three baselines extract local masks with variants
of global masks. They apply to tabular data only.
• SNX-DES: optimize m by Eqs. (6)-(8), with global mask
Ms found by DES used in the constraints Eqs. (7)-(8).

• SNX-inter / SNX-union: use the element-wise minimum
M = min(Ms,Mt) (or maximum M = max(Ms,Mt))
to simulate the intersection (or union) of Ms and Mt.

B. Quantitative evaluation on tabular datasets
In Table I, we compare the faithfulness (FA) and counter-

factual losses (CF) of local masks found by various methods.
We answer the following questions.

Does the two-stage optimization find better local masks? Over-
all, the best-performing methods in local mask faithfulness are
in the last four columns representing variants of the SNX using
GDA, with different global masks as constraints. In terms of
counterfactual loss, the optimal local masks outperform the
remaining methods, except on the Credit dataset (SNX-UC
has no constraint and can include more salient features).

Why do the other methods underperform SNX and its variants?
• DES has the worst FA except on COMPAS, where SM

is the worst. That is because DES is agnostic about the
SN architecture and does not consider the reference when
finding Ms to mask both xs and xt. DES does not perform
well in CF, indicating that it fails to include the most salient
features.

• SNX-global uses Ms found in Stage 1 and takes the target
SN into account. It has good performance in FA. While it is
worse than DES in the CF on 3 out of 4 datasets, meaning
that it can miss even more salient features.

• SNX-UC performs Stage 2 optimization to find local masks
without constraints. It is the runner-up in FA on Adult and
Bank and is the best in CF on Credit. However, no constraint
leads to less conformity to global invariant masks (Fig. 2).

• SNX-KL is very similar to SNX-UC, except that the
soft constraints are implemented as KL-divergence penalty
terms. They have similar FA, but SNX-KL significantly
underperforms SNX-UC in CF, indicating that SNX-KL
selects just enough salient features but can possibly excludes
other salient ones.



TABLE I: Performance of local masks. The best methods except Pick-all on each dataset is boldfaced, and the runner-up is highlighted by
∗. ◦ indicates significantly better performance according to t-tests. Column Pick-all provides lower (underlined) and upper bounds (overlined)
of faithfulness (the counterfactual (CF) of selecting all features is equivalent to the faithfulness (FA) of selecting no feature)).

Performance (mean with std. in parentheses) of each algorithm in terms of faithfulness. Lower is better (↓).

Method Pick-all DES SNX-global SM SNX-UC SNX-KL SNX-DES SNX-inter SNX-union SNX

Adult 0.65 (0.14) 1.67 (2.46) 0.71 (0.18) 0.81 (0.72) 0.68 (0.14) ∗ 0.69 (0.20) 0.66 (0.14) 0.66 (0.14) 0.66 (0.14) 0.66 (0.14) ◦
Bank 0.62 (0.16) 0.82 (0.85) 0.72 (0.22) 0.71 (0.24) 0.65 (0.16) ∗ 0.66 (0.16) 0.63 (0.16) 0.63 (0.16) 0.63 (0.16) 0.63 (0.16) ◦
Credit 0.64 (0.15) 1.15 (1.73) 0.70 (0.19) 1.13 (1.35) 0.72 (0.19) 0.74 (0.21) 0.69 (0.18) ∗ 0.68 (0.16) 0.68 (0.16) 0.68 (0.16) ◦

COMPAS 0.62 (0.19) 0.76 (0.57) 0.71 (0.65) 0.79 (0.73) 0.64 (0.17) 0.63 (0.19) ∗ 0.62 (0.19) 0.62 (0.19) 0.62 (0.19) 0.62 (0.19) ◦

Performance (mean with std. in parentheses) of each algorithm in terms of counterfactual. Higher is better. (↑)

Method Pick-all DES SNX-global SM SNX-UC SNX-KL SNX-DES SNX-inter SNX-union SNX

Adult 7.50 (2.05) 0.85 (0.49) 0.78 (0.14) 1.02 (1.09) 1.28 (1.57) ∗ 0.99 (0.92) 1.31 (1.62) ◦ 1.25 (1.53) 1.26 (1.54) 1.26 (1.54)
Bank 6.86 (2.49) 1.26 (1.58) 0.71 (0.11) 1.67 (2.09) 1.80 (2.25) 1.25 (1.47) 2.54 (2.83) 2.78 (2.97) ∗ 2.78 (2.97) ∗ 2.79 (2.97) ◦
Credit 7.54 (2.26) 0.74 (0.23) 0.83 (0.19) 1.23 (0.82) ∗ 1.24 (1.17) ◦ 0.89 (0.57) 1.16 (1.10) 0.97 (0.90) 0.97 (0.90) 0.97 (0.88)

COMPAS 7.02 (2.52) 1.86 (2.53) 0.72 (0.09) 1.76 (2.07) 3.65 (3.22) 2.65 (2.74) 4.56 (3.48) 4.93 (3.43) 5.00 (3.43) ◦ 4.98 (3.43) ∗

Fig. 2: Conformity of local masks to global ones.

Fig. 3: FA, CF, and conformity of local masks on graph datasets.

How well do the local masks conform to the global masks? In
Fig. 2, we report the average of Jaccard similarities between
the important major features selected by global masks Ns and
local masks ns, when comparing xs to multiple xt. The higher
similarity indicates the more conformity of local masks to
global masks. Except for the COMPAS dataset, SNX with
GDA results in the best conformity (highest similarity).

C. Quantitative evaluation on graph datasets
In Fig. 3, we compare local graph masks with respect to FA,

CF, and conformity. On the molecule dataset, SNX-KL can
achieve the best (lowest) FA and highest conformity (∼90%)
to global masks found by SNX-global (whose conformity is
1). SNX with GDA and SNX-UC have the best CF loss,
while SNX achieves better FA than SNX-UC. Both PGExp
and GNNExp are competitive baselines, whose CF is similar
to SNX-KL’s but are significantly worse in the other two
metrics. SM, PGExp, GNNExp, and SNX-UC, disregard any
constraints and have worse conformity (∼ 60%) and worse FA
than SNX-KL.

Fig. 4: Ratio of constraints violated by SNX-KL and SNX.

On the BP dataset where graphs are much larger, both SNX-
KL and SNX achieve better FA and conformity, and thus
more robust than other methods. Since SNX-global has already
provided very competitive global masks w.r.t. FA and CF,
SNX-KL has a similarly good performance when following
SNX-global closely, while SNX sacrifices a bit of conformity
to bypass some global constraints for better masks w.r.t. FA
and CF. On the contrary, SM has the worst conformity (<50%)
with only a slightly better FA than SNX-KL, and it validates
the analysis in Section II-C that SM has worse robustness as
it is too sensitive to various references given a query.

D. More on conformity
Fig. 4 compares the ratio of constraints violated by SNX and

SNX-KL during optimization for three datasets. We evaluate
Eqs. (7)-(8) using the masks without selecting top edges.

E. Qualitative evaluation
Fig. 5 shows masks learned by SNX-global and four lo-

cal methods on the BP dataset, respectively. The numbered
colored nodes are brain regions of interest (ROIs) related to
the human dorsal and ventral systems, and edges connected
to these nodes are colored accordingly. These ROIs, such as
ventromedial prefrontal cortex (#39), dorsolateral prefrontal
cortex (#17), superior parietal lobule (#10), and anterior
cingulate cortex (#51), could be highly affected by bipolar
disorder according to neuroscience studies [28]. As a result,
SNX-global well captures many edges adjoined to these ROIs,
particularly the interconnections among the aforementioned
four ROIs. Also, SNX and SNX-KL found local masks more
conformal to global mask than the baselines.



Fig. 5: Explaining brain network comparisons on the BP dataset. Details are in Section IV-E.

V. RELATED WORK

Explainability have been extensively studied for tabular
data [19], images [20], and more recently, graph data [26], [1],
[15], [7], [12]. Robustness in explanations is gaining attention
[6], [24]. In [6], the goal is to train neural networks for im-
age classification that has robust explanations with malicious
data manipulations. In [24], vulnerability of explanations of
architecture with a single image is analyzed.

Explaining why two instances are similar or different has
been only sparsely researched [7], [12], [22]. [7] extracts the
most contrastive parts of the graphs to tell the similarity among
those in the same class. [12] extracts contrasting subgraphs to
discriminate two different groups of brain networks.

The closest work to this work is [23], where the authors
used GDA to solve a constrained optimization problem to find
counterfactual explanations for a classifier. Rather, we apply
the algorithm to solve a novel problem for SN explanation.

VI. CONCLUSIONS

We address the robustness in explaining Siamese networks
due to the varying reference objects. We formulate the global
invariance in explaining SN as a self-supervised learning
problem, and propose to use SGD and GDA to find superior
explanations with provably and empirically convergence. Case
studies demonstrate the relevance of the found invariants when
explaining individual comparisons.
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