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Abstract—Mining discriminative subgraph patterns from
graph data has attracted great interest in recent years. It has a
wide variety of applications in disease diagnosis, neuroimaging,
etc. Most research on subgraph mining focuses on the graph
representation alone. However, in many real-world applications,
the side information is available along with the graph data. For
example, for neurological disorder identification, in addition to
the brain networks derived from neuroimaging data, hundreds of
clinical, immunologic, serologic and cognitive measures may also
be documented for each subject. These measures compose mul-
tiple side views encoding a tremendous amount of supplemental
information for diagnostic purposes, yet are often ignored. In this
paper, we study the problem of discriminative subgraph selection
using multiple side views and propose a novel solution to find
an optimal set of subgraph features for graph classification by
exploring a plurality of side views. We derive a feature evaluation
criterion, named gSide, to estimate the usefulness of subgraph
patterns based upon side views. Then we develop a branch-and-
bound algorithm, called gMSYV, to efficiently search for optimal
subgraph features by integrating the subgraph mining process
and the procedure of discriminative feature selection. Empirical
studies on graph classification tasks for neurological disorders
using brain networks demonstrate that subgraph patterns se-
lected by the multi-side-view guided subgraph selection approach
can effectively boost graph classification performances and are
relevant to disease diagnosis.

Index Terms—subgraph pattern, graph mining, side informa-
tion, brain network.

I. INTRODUCTION

Recent years have witnessed an increasing amount of data
in the form of graph representations, which involve complex
structures, e.g., brain networks, social networks. These data are
inherently represented as a set of nodes and links, instead of
feature vectors as traditional data. For example, brain networks
are composed of brain regions as the nodes, e.g., insula, hip-
pocampus, thalamus, and functional/structural connectivities
between the brain regions as the links. The linkage structure
in these brain networks can encode tremendous information
about the mental health of the human subjects. For example, in
the brain networks derived from functional magnetic resonance
imaging (fMRI), functional connections/links can encode the
correlations between the functional activities of brain regions.
While structural links in diffusion tensor imaging (DTI) brain
networks can capture the number of neural fibers connecting
different brain regions. The complex structures and the lack of
vector representations within these graph data raise a challenge

for data mining. An effective model for mining the graph data
should be able to extract a set of subgraph patterns for further
analysis. Motivated by such challenges, graph mining research
problems, in particular graph classification, have received
considerable attention in the last decade.

The graph classification problem has been studied exten-
sively. Conventional approaches focus on mining discrimina-
tive subgraphs from graph view alone. This is usually feasible
for applications like molecular graph analysis, where a large
set of graph instances with labels are available. For brain
network analysis, however, usually we only have a small
number of graph instances, ranging from 30 to 100 brain
networks [18]. In these applications, the information from
the graph view alone are usually not sufficient for mining
important subgraphs. We notice that, fortunately, the side infor-
mation is available along with the graph data for neurological
disorder identification. For example, in neurological studies,
hundreds of clinical, immunologic, serologic and cognitive
measures may be available for each subject [5], apart from the
brain networks derived from neuroimaging data, as shown in
Figure 1. These measures compose multiple side views which
contain a tremendous amount of supplemental information
for diagnostic purposes. It is desirable to extract valuable
information from a plurality of side views to guide the process
of subgraph mining in brain networks.

Despite its value and significance, the feature selection

problem for graph data using auxiliary views has not been
studied in this context so far. There are two major difficulties
in learning from multiple side views for graph classification,
as follows:
The primary view in graph representation: Graph data nat-
urally composes the primary view for graph mining problems,
from which we want to select discriminative subgraph patterns
for graph classification. However, it raises a challenge for data
mining with the complex structures and the lack of vector
representations. Conventional feature selection approaches in
vector spaces usually assume that a set of features are given
before conducting feature selection. In the context of graph
data, however, subgraph features are embedded within the
graph structures and usually it is not feasible to enumerate
the full set of subgraph features for a graph dataset before
feature selection. Actually, the number of subgraph features
grows exponentially with the size of graphs.
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Fig. 1. An example of multiple side views associated with brain networks in
medical studies.

The side views in vector representations: In many applica-
tions, side information is available along with the graph data
and usually exists in the form of vector representations. That
is to say, an instance is represented by a graph and additional
vector-based features at the same time. It introduces us to
the problem of how to leverage the relationship between the
primary graph view and a plurality of side views, and how
to facilitate the subgraph mining procedure by exploring the
vector-based auxiliary views. For example, in brain networks,
discriminative subgraph patterns for neurological disorders
indicate brain injuries associated with particular regions. Such
changes can potentially express in other medical tests of the
subject, e.g., clinical, immunologic, serologic and cognitive
measures. Thus, it would be desirable to select subgraph
features that are consistent with these side views.

Figure 2(a) illustrates the process of selecting subgraph
patterns in conventional graph classification approaches. Ob-
viously, the valuable information embedded in side views is
not fully leveraged in feature selection process. Most subgraph
mining approaches focus on the drug discovery problem which
have access to a great amount of graph data for chemical
compounds. For neurological disorder identification, however,
there are usually limited subjects with a small sample size
of brain networks available. Therefore, it is critical to learn
knowledge from other possible sources. We notice that transfer
learning can borrow supervision knowledge from the source
domain to help the learning on the target domain, e.g.,
finding a good feature representation [9], mapping relational
knowledge [23], [24], and learning across graph database [28].
However, as far as we know, they do not look at transferring
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(a) Conventional methods treat side views and subgraph patterns separately and
may only concatenate them in the final step for graph classification.
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(b) Our method uses side views as guidance for the process of selecting
subgraph patterns.

Fig. 2. Two strategies of leveraging side views in feature selection process
for graph classification.

complementary information from vector-based side views to
graph database whose instances are complex structural graphs.

To solve the above problems, in this paper, we introduce a
novel framework for discriminative subgraph selection using
multiple side views. Our framework is illustrated in Fig-
ure 2(b). In contrast to existing subgraph mining approaches
that focus on a single view of the graph representation, our
method can explore multiple vector-based side views to find an
optimal set of subgraph features for graph classification. We
first verify side information consistency via statistical hypoth-
esis testing. Based on auxiliary views and the available label
information, we design an evaluation criterion for subgraph
features, named gSide. By deriving a lower bound, we develop
a branch-and-bound algorithm, called gMSV, to efficiently
search for optimal subgraph features with pruning, thereby
avoiding exhaustive enumeration of all subgraph features. In
order to evaluate our proposed model, we conduct experiments
on graph classification tasks for neurological disorders, using
fMRI and DTI brain networks. The experiments demonstrate
that our subgraph selection approach using multiple side
views can effectively boost graph classification performances.
Moreover, we show that gMSV is more efficient by pruning
the subgraph search space via gSide.

II. PROBLEM FORMULATION

Before presenting the subgraph feature selection model, we
first introduce the notations that will be used throughout this
paper. Let D = {G4, - - - , G, } denote the graph dataset, which
consists of n graph objects. The graphs within D are labeled
by [y1, -+ ,Yn] ', where y; € {—1,+1} denotes the binary
class label of G;.

DEFINITION [ (Side view): A side view is a set of vector-
based features z; = [21,- -, 24] " associated with each graph
object GG;, where d is the dimensionality of this view. A side
view is denoted as Z = {z1,--- ,Zp}.



We assume that there are multiple side views
{2MW) ... 2} available for the graph dataset D, where
v is the number of side views. We employ kernels x() on
Z(®) | such that /11(5 ) represents the similarity between G; and
G; from the perspective of the p-th view. The RBF kernel
is used as the default kernel in this paper, unless otherwise

specified:
® 2" — 2|3
p) o K3
K7 = exp - (1)

DEFINITION 2 (Connected graph): A graph is represented
as G = (V,E,L,l), where V = {v1,--- ,v,, } is the set of
vertices, ' C V x V is the set of edges, L is the set of labels
for the vertices and the edges, and [ is a function assigning
labels to the vertices and the edges [ : VUE — L. A connected
graph is a graph such that there is a path between any pair of
vertices.

DEFINITION 3 (Subgraph): Let G' = (V' E',L',l’) and
G = (V,E,L,l) be connected graphs. G’ is a subgraph of
G (denoted as G’ C @) iff there exists an injective function
¢V = Vst (1) Vo e V,I(v) =1(pw)); 2) V(u,v) €
E' (¢(u),¢(v)) € E and ' (u,v) = l(d(u), ¢p(v)). If G’ is a
subgraph of G, then G is supergraph of G'.

In this paper, we adopt the idea of subgraph-based graph
classification approaches, which assume that each graph object
G is represented as a binary vector X; = [Ty, ,Tmj]
associated with the full set of subgraph patterns {g1, -+ , gm }
for the graph dataset {G1,--- ,Gy,}. Here z;; € {0,1} is the
binary feature of G; corresponding to the subgraph pattern g;,
and z;; = 1 iff g; is a subgraph of G; (g; C G;), otherwise
x;; = 0. Let X = [x;;]™*™ denote the matrix consisting of
binary feature vectors using S to represent the graph dataset
D. X =[x1, - ,%X,] = [f1, -+, ] " € {0,1}™*". The full
set S is usually too large to be enumerated. There is usually
only a subset of subgraph patterns 7 C S relevant to the task
of graph classification. We briefly summarize the notations
used in this paper in Table 1.

The key issue of discriminative subgraph selection using
multiple side views is how to find an optimal set of subgraph
patterns for graph classification by exploring the auxiliary
views. This is non-trivial due to the following problems:

« How to leverage the valuable information embedded in
multiple side views to evaluate the usefulness of a set of
subgraph patterns?

o How to efficiently search for the optimal subgraph pat-
terns without exhaustive enumeration in the primary
graph space?

In the following sections, we will first introduce the op-
timization framework for selecting discriminative subgraph
features using multiple side views. Next, we will describe our
subgraph mining strategy using the evaluation criterion derived
from the optimization solution.

III. DATA ANALYSIS

A motivation for this work is that the side information could
be strongly correlated with the health state of a subject. Before

proceeding, we first introduce real-world data used in this
work and investigate whether the available information from
side views has any potential impact on neurological disorder
identification.

A. Data Collections

In this paper, we study the real-world datasets collected
from the Chicago Early HIV Infection Study at Northwestern
University [26]. The clinical cohort includes 56 HIV (positive)
and 21 seronegative controls (negative). The datasets contain
functional magnetic resonance imaging (fMRI) and diffusion
tensor imaging (DTI) for each subject, from which brain
networks can be constructed, respectively.

For fMRI data, we used DPARSF toolbox! to extract a se-
quence of responds from each of the 116 anatomical volumes
of interest (AVOI), where each AVOI represents a different
brain region. The correlations of brain activities among differ-
ent brain regions are computed. Positive correlations are used
as links among brain regions. For details, functional images
were realigned to the first volume, slice timing corrected, and
normalized to the MNI template and spatially smoothed with
an 8-mm Gaussian kernel. The linear trend of time series and
temporally band-pass filtering (0.01-0.08 Hz) were removed.
Before the correlation analysis, several sources of spurious
variance were also removed from the data through linear
regression: (i) six parameters obtained by rigid body correction
of head motion, (ii) the whole-brain signal averaged over a
fixed region in atlas space, (iii) signal from a ventricular region
of interest, and (iv) signal from a region centered in the white
matter. Each brain is represented as a graph with 90 nodes
corresponding to 90 cerebral regions, excluding 26 cerebellar
regions.

For DTI data, we used FSL toolbox? to extract the brain
networks. The processing pipeline consists of the following
steps: (i) correct the distortions induced by eddy currents in the
gradient coils and use affine registration to a reference volume
for head motion, (ii) delete non-brain tissue from the image of
the whole head [29], [14], (iii) fit the diffusion tensor model at
each voxel, (iv) build up distributions on diffusion parameters
at each voxel, and (v) repetitively sample from the distributions
of voxel-wise principal diffusion directions. As with the fMRI
data, the DTI images were parcellated into 90 regions (45 for
each hemisphere) by propagating the Automated Anatomical
Labeling (AAL) to each image [33]. Min-max normalization
was applied on link weights.

In addition, for each subject, hundreds of clinical, imaging,
immunologic, serologic and cognitive measures were docu-
mented. Seven groups of measurements were investigated in
our datasets, including neuropsychological tests, flow cytome-
try, plasma luminex, freesurfer, overall brain microstructure,
localized brain microstructure, brain volumetry. Each group
can be regarded as a distinct view that partially reflects subject
status, and measurements from different medical examina-
tions can provide complementary information. Moreover, we

Uhttp://rfmri.org/DPARSF
Zhttp://fsl.fmrib.ox.ac.uk/fsl/fslwiki



TABLE I
IMPORTANT NOTATIONS.

Symbol Definition and Description

] cardinality of a set
111 norm of a vector
D={Gy, - ,Gn}

given graph dataset, GG; denotes the i-th graph in the dataset

binary vector for subgraph pattern g;, f;; = 1iff g; C G}, otherwise f;; = 0

y=1[y1, - ,yn]" class label vector for graphs in D, y; € {—1,+1}
S={g1, - ,9m} set of all subgraph patterns in the graph dataset D
£ =[fir, -, fin]

xj = [z15, - 2mg] "

X = [aig]m>n

matrix of all binary vectors in the dataset, X = [x1,- -+

binary vector for G; using subgraph patterns in S, x;; = 1 iff g; C G, otherwise z;; =0

»xn] = [flv"' :fm]T € {Ovl}mxn

set of selected subgraph patterns, 7 C S

Z7 € {0,1}mxm

diagonal matrix indicating which subgraph patterns are selected from S into 7

min_sup minimum frequency threshold; frequent subgraphs are contained by at least min_supx|D| graphs
k number of subgraph patterns to be selected

A(P) weight of the p-th side view (default: 1)

k(P kernel function on the p-th side view (default: RBF kernel)

preprocessed the features by min-max normalization before
employing the RBF kernel on each view.

B. Verifying Side Information Consistency

We study the potential impact of side information on select-
ing subgraph patterns via statistical hypothesis testing. Side
information consistency suggests that the similarity of side
view features between instances with the same label should
have higher probability to be larger than that with different
labels. We use hypothesis testing to validate whether this
statement holds in the fMRI and DTT datasets.

For each side view, we first construct two vectors agp ) and
a&p ) with an equal number of elements, sampled from the sets

Agp ) and .A(dp ), respectively:
AP = {5 lyiy; = 1} @)
AP = (k) lyiys = 1) 3)
Then, we form a two-sample one-tail t-test to validate the
existence of side information consistency. We test whether
there is sufficient evidence to support the hypothesis that the
similarity score in agp ) is larger than that in a((ip ). The null

u? — 4P) < 0, and the alternative

hypothesis is H; : ,ugp ) u{(f > 0, where ,ugp ) and u((ip )
represent the sample means of similarity scores in the two

groups, respectively.

hypothesis is Hj

TABLE I
HYPOTHESIS TESTING RESULTS (P-VALUES) TO VERIFY SIDE
INFORMATION CONSISTENCY.

Side views fMRI dataset DTI dataset
neuropsychological tests 1.3220e-20 3.6015e-12
flow cytometry 5.9497e-57 5.0346e-75
plasma luminex 9.8102e-06 7.6090e-06
freesurfer 2.9823e-06 1.5116e-03
overall brain microstructure 1.0403e-02 8.1027e-03
localized brain microstructure 3.1108e-04 5.7040e-04
brain volumetry 2.0024e-04 1.2660e-02

The t-test results, p-values, are summarized in Table II. The
results show that there is strong evidence, with significance
level o = 0.05, to reject the null hypothesis on the two
datasets. In other words, we validate the existence of side
information consistency in neurological disorder identification,
thereby paving the way for our next study of leveraging
multiple side views for discriminative subgraph selection.

IV. MULTI-SIDE-VIEW DISCRIMINATIVE
SUBGRAPH SELECTION

In this section, we address the first problem discussed in
Section II by formulating the discriminative subgraph selection
problem as a general optimization framework as follows:

T* = argmin F(T)
TCS

st |T|<k 4)

where |-| denotes the cardinality and k is the maximum number
of feature selected. F(7) is the evaluation criterion to estimate
the score (can be the lower the better in this paper) of a
subset of subgraph patterns 7. 7* denotes the optimal set
of subgraph patterns 7* C S.

A. Exploring Multiple Side Views: gSide

Following the observations in Section III-B that the side
view information is clearly correlated with the prespecified
label information, we assume that the set of optimal sub-
graph patterns should have the following properties. The
similarity/distance between instances in the space of subgraph
features should be consistent with that in the space of a side
view. That is to say, if two instances are similar in the space of
the p-th view (i.e., a high liz(-;) ) value), they should also be close
to each other in the space of subgraph features (i.e., a small
distance between subgraph feature vectors). On the other hand,
if two instances are dissimilar in the space of the p-th view
(i.e., a low Iil(-;)) value), they should be far away from each
other in the space of subgraph features (i.e., a large distance
between subgraph feature vectors). Therefore, our objective
function could be to minimize the distance between subgraph
features of each pair of similar instances in each side view,



and maximize the distance between dissimilar instances. This
idea is formulated as follows:

) 1 v n
argmin g > A7 37 |1 Trxi = Trxs 36 6)
cs 2%

i,j=1
where Z7 is a diagonal matrix indicating which subgraph
features are selected into 7 from S, (Z7); = 1iff g, € T,
otherwise (Z7);; = 0. The parameters A(P) > 0 are employed
to control the contributions from each view.

o — @ .5) €2 ©6)

] — Tz (’L,j) c L(P)
where H®) = {(i, )|} = u®}, L0 = {0, )Ix]] <
w1}, and p(P) is the mean value of HE?), ie, X oot HE?).
This normalization is to balance the effect of similar instances
and dissimilar instances.

Intuitively, Eq. (5) will minimize the distance between
subgraph features of similar instance-pairs with nff ) > u®),
while maximize the distance between dissimilar instance-pairs
with I{g) < p® in each view. In this way, the side view
information is effectively used to guide the process of discrim-
inative subgraph selection. The fact verified in Section III-B
that the side view information is clearly correlated with the
prespecified label information can be very useful, especially
in the semi-supervised setting.

With prespecified information for labeled graphs, we further
consider that the optimal set of subgraph patterns should
satisfy the following constraints: labeled graphs in the same
class should be close to each other; labeled graphs in different
classes should be far away from each other. Intuitively, these
constraints tend to select the most discriminative subgraph
patterns based on the graph labels. Such an idea has been
well explored in the context of dimensionality reduction and
feature selection [2], [31].

The constraints above can be mathematically formulated as
minimizing the loss function:

1
argmin o Z | Zrxi — Trx;]13; 7
TCs 250
where
ﬁ (i.j) € M
Qj=9 -7 GI)ec ®)
0 otherwise
and M = {(4,j)|yiy; = 1} denotes the set of pairwise

constraints between graphs with the same label, and C =
{(4,j)|yiy; = —1} denotes the set of pairwise constraints
between graphs with different labels.

By defining matrix & € R™"*" as

v
0=y + Y AP ©)

p=1

we can combine and rewrite the function in Eq. (5) and Eq. (7)
as

1 n n
F(T) =5 SO N Trxi — Trx; [5®i;

i=1 j=1
=t(Z; X(D — )X 'Z7) (10)
=t(Z; XLX "ZI7)
= > fLf,

gr€T

where tr(-) is the trace of a matrix, D is a diagonal matrix
whose entries are column sums of ®, i.e., D;; = > j ®;;, and
L =D — @ is a Laplacian matrix.

DEFINITION 4 (gSide): Let D = {G1,--- ,Gy} denote a
graph dataset with multiple side views. Suppose ® is a matrix
defined as Eq. (9), and L is a Laplacian matrix defined as
L = D—®, where D is a diagonal matrix, D;; = Zj ;. We
define an evaluation criterion ¢, called gSide, for a subgraph
pattern g; as

q(g:) = £ Lf; (11)

where f; = [fi1, -, fin] " € {0,1}" is the indicator vector
for subgraph pattern g;, f;; = 1 iff g; C G, otherwise f;; =
0. Since the Laplacian matrix L is positive semi-definite, for
any subgraph pattern g;, ¢(g;) > 0.

Based on gSide as defined above, the optimization problem
in Eq. (4) can be written as

T* = argmin i) st T <k
i > algi) 7]

9:€T

(12)

The optimal solution to the problem in Eq. (12) can be
found by using gSide to conduct feature selection on a set
of subgraph patterns in S. Suppose the gSide values for all
subgraph patterns are denoted as ¢(g1) < -+ < ¢(gm) in
sorted order, then the optimal solution to the optimization
problem in Eq. (12) is

k
T = igl{gi}

B. Searching with A Lower Bound: gMSV

Now we address the second problem discussed in Section II,
and propose an efficient method to find the optimal set of
subgraph patterns from a graph dataset with multiple side
views.

A straightforward solution to the goal of finding an optimal
feature set is the exhaustive enumeration, i.e., we could first
enumerate all subgraph patterns from a graph dataset, and then
calculate the gSide values for all subgraph patterns. In order to
enumerate all subgraph patterns from a graph dataset, we adopt
an efficient subgraph mining method, gSpan, proposed by Yan
and Han [37]. We briefly review the general idea of the gSpan
algorithm. Instead of enumerating subgraphs and testing for
isomorphism, a lexicographic order is first built over all the
edges of a subgraph pattern, and then each subgraph pattern is
mapped to a unique minimum DFS code as its canonical label.
The minimum DFS codes of two subgraphs are equivalent

13)



iff they are isomorphic. Based on this lexicographic order, a
depth-first search (DFS) strategy is used to efficiently search
through all the subgraphs in a DFS code tree. The subgraphs
with non-minimum DFS codes can be directly pruned from
the tree. Details can be found in [37].

In the context of graph data, however, it is usually not
feasible to enumerate the full set of subgraph patterns before
feature selection. Actually, the number of subgraph patterns
grows exponentially with the size of graphs. Inspired by recent
advances in graph classification approaches [6], [19], [20],
[36], which nest their evaluation criteria into the subgraph
mining process and develop constraints to prune the search
space, we adopt a similar approach by deriving a different
constraint based upon gSide.

By adopting the gSpan algorithm, we can enumerate all the
subgraph patterns for a graph dataset in a canonical search
space. In order to prune the subgraph search space, we now
derive a lower bound of the gSide value:

THEOREM /: Given any two subgraph patterns g;,g; € S,
g; is a supergraph of g;, i.e., g; C g;. The gSide value of g;
is bounded by ¢(g;), i.e., q(g;) > 4(g:). 4(gi) is defined as

Qi) = £ Lf; (14)
where the matrix L is defined as L,, £ min(0, L,,).
PROOF. According to Definition 4,
alg) =£[LE = > Ly (15)

1,4:Gp,G4€G(g5)

where G(g;) £ {Gklg; € Gi,1 < k < n}. Since g; C g;

9i Ve
according to anti-monotonic property, we have G(g;) € G(g;).
Also Ly, £ min(0, L,,), we have L,, < L,, and L,, < 0.
Therefore,
q(g;) = Z Lpg 2 Z Lipq
p,¢:Gp,Gqa€G(g;) P,q:Gp,Gq€G(g5) (16)

2 Z i’pq = 4(9:)

P,q:Gp,Gq€G(g1i)

Thus, for any g; € g;, q(g;) > q(gi). O

We can now nest the lower bound into the subgraph mining
steps in gSpan to efficiently prune the DFS code tree. During
the depth-first search through the DFS code tree, we always
maintain the currently top-k best subgraph patterns according
to gSide and the temporally suboptimal gSide value (denoted
by ) among all the gSide values calculated before. If G(g;) >
6, the gSide value of any supergraph g; of g; should be no less
than (g;) according to Theorem 1, i.e., ¢(g;) > G(g;) > 6.
Thus, we can safely prune the subtree rooted from g; in the
search space. If §(g;) < 6, we cannot prune this subtree since
there might exist a supergraph g; of g; such that ¢(g;) < 0.
As long as a subgraph g; can improve the gSide values of
any subgraphs in 7, it is added into 7 and the least best
subgraph is removed from 7. Then we recursively search for
the next subgraph in the DFS code tree. The branch-and-bound
algorithm gMSV is summarized in Algorithm 1.

Algorithm 1 The Proposed Method: gMSV
Input: D, min_sup, k, {\P), H(p)};’:l
Output: 7 Set of optimal subgraph patterns
1. T=0,0=1Inf
2: while unexplored nodes in the DFS code tree # () do
3: g = currently explored node in the DFS code tree
4 if freq(g) > min_sup then
5 if |7| < k or ¢(g) < 6 then
6: T=TU{g}
7
8
9

if |7| > k then
Imaz = argmax e q(g’)

T =T /{9gmaz}
10: end if
11: 0 = maxg 7 q(g’)
12: end if
13: if G(g) < ¢ then
14: Depth-first search the subtree rooted from g
15: end if
16:  end if
17: end while
18: return T

V. EXPERIMENTS

In order to evaluate the performance of the proposed solu-
tion to the problem of feature selection for graph classification
using multiple side views, we tested our algorithm on brain
network datasets derived from neuroimaging, as introduced in
Section III-A.

A. Experimental Setup

To the best of our knowledge, this paper is the first work
on leveraging side information in feature selection problem
for graph classification. In order to evaluate the performance
of the proposed method, we compare our method with other
methods using different statistical measures and discriminative
score functions. For all the compared methods, gSpan [37] is
used as the underlying searching strategy. Note that although
alternative algorithms are available [36], [16], [17], the search
step efficiency is not the focus of this paper. The compared
methods are summarized as follows:

e gMSV: The proposed discriminative subgraph selection
method using multiple side views. Following the observa-
tion in Section III-B that side information consistency is
verified to be significant in all the side views, the parame-
ters in gMSV are simply set to A(Y) = ... = \(*) =1 for
experimental purposes. In the case where some side views
are suspect to be redundant, we can adopt the alternative
optimization strategy to iteratively select discriminative
subgraph patterns and update view weights.

e gSSC: A semi-supervised feature selection method for
graph classification based upon both labeled and unla-
beled graphs. The parameters in gSSC are set to @ =
B = 1 unless otherwise specified [20].

o Discriminative Subgraphs (Conf, Ratio, Gtest, HSIC):
Supervised feature selection methods for graph classifi-



cation based upon confidence [11], frequency ratio [15],
[17], [16], G-test score [36] and HSIC [19], respectively.
The top-k discriminative subgraph features are selected
in terms of different discrimination criteria.

o Frequent Subgraphs (Freq): In this approach, the eval-
uation criterion for subgraph feature selection is based
upon frequency. The top-k frequent subgraph features are
selected.

We append the side view data to the subgraph-based graph
representations computed by the above algorithms before feed-
ing the concatenated feature vectors to the classifier. Another
baseline that only uses side view data is denoted as MSV.

For a fair comparison, we used LibSVM [8] with linear
kernel as the base classifier for all the compared methods. In
the experiments, 3-fold cross validations were performed on
balanced datasets. To get the binary links, we performed sim-
ple thresholding over the weights of the links. The threshold
for fMRI and DTI datasets was 0.9 and 0.3, respectively.

B. Performance on Graph Classification

The experimental results on fMRI and DTI datasets are
shown in Figure 3 and Figure 4, respectively. The average
performances with different number of features of each method
are reported. Classification accuracy is used as the evaluation
metric.

In Figure 3, our method gMSV can achieve the classification
accuracy as high as 97.16% on the fMRI dataset, which is
significantly better than the union of other subgraph-based
features and side view features. The black solid line denotes
the method MSV, the simplest baseline that uses only side
view data. Conf and Ratio can do slightly better than MSV.
Freq adopts an unsupervised process for selecting subgraph
patterns, resulting in a comparable performance with MSV,
indicating that there is no additional information from the
selected subgraphs. Other methods that use different discrimi-
nation scores without leveraging the guidance from side views
perform even worse than MSV in graph classification, because
they evaluate the usefulness of subgraph patterns solely based
on the limited label information from a small sample size
of brain networks. The selected subgraph patterns can poten-
tially be redundant or irrelevant, thereby compromising the
effects of side view data. Importantly, gMSV outperforms the
semi-supervised approach gSSC which explores the unlabeled
graphs based on the separability property. This indicates that
rather than simply considering that unlabeled graphs should
be separated from each other, it would be better to regularize
such separability/closeness to be consistent with the available
side views.

Similar observations can be found in Figure 4, where gMSV
outperforms other baselines by achieving a good performance
as high as 97.33% accuracy on the DTI dataset. We notice that
only gMSV is able to do better than MSV by adding com-
plementary subgraph-based features to the side view features.
Moreover, the performances of other schemes are not consis-
tent over the two datasets. The 2nd and 3rd best schemes,
Conf and Ratio, for fMRI do not perform as well for DTI.
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Fig. 3. Classification performance on the fMRI dataset with different number
of features.
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Fig. 4. Classification performance on the DTI dataset with different number
of features.

These results support our premise that exploring a plurality of
side views can boost the performance of graph classification,
and the gSide evaluation criterion in gMSV can find more
informative subgraph patterns for graph classification than
subgraphs based on frequency or other discrimination scores.

C. Time and Space Complexity

Next, we evaluate the effectiveness of pruning the subgraph
search space by adopting the lower bound of gSide in gMSV.
In this section, we compare the runtime performance of two
implementation versions of gMSV: the pruning gMSV uses the
lower bound of gSide to prune the search space of subgraph
enumerations, as shown in Algorithm 1; the unpruning gMSV
denotes the method without pruning in the subgraph mining
process, e.g., deleting the line 13 in Algorithm 1. We test
both approaches and recorded the average CPU time used and
the average number of subgraph patterns explored during the
procedure of subgraph mining and feature selection.
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The comparisons with respect to the time complexity and
the space complexity are shown in Figure 5 and Figure 6,
respectively. On both datasets, the unpruning gMSV needs
to explore exponentially larger subgraph search space as we
decrease the min_sup value in the subgraph mining process.
When the min_sup value is too low, the subgraph enumeration
step in the unpruning gMSV can run out of the memory.
However, the pruning gMSV is still effective and efficient
when the min_sup value goes to very low, because its running
time and space requirement do not increase as much as the
unpruning gMSV by reducing the subgraph search space via
the lower bound of gSide.

The focus of this paper is to investigate side information
consistency and explore multiple side views in discriminative
subgraph selection. As potential alternatives to the gSpan-
based branch-and-bound algorithm, we could employ other
more sophisticated searching strategies with our proposed
multi-side-view evaluation criterion, gSide. For example, we
can replace with gSide the G-test score in LEAP [36] or
the log ratio in COM [16] and GAIA [17], etc. However, as
shown in Figure 5 and Figure 6, our proposed solution with
pruning, gMSYV, can survive at min_sup = 4%; considering
the limited number of subjects in medical experiments as
introduced in Section III-A, gMSV is efficient enough for
neurological disorder identification where subgraph patterns
with too few supported graphs are not desired.

D. Effects of Side Views

In this section, we first investigate the different contributions
from different side views. Table III shows the performance of
gMSV on the fMRI dataset by considering only one side view
each time. In general, the best performance is achieved by
simultaneously exploring all the side views. Specifically, we

TABLE III
AVERAGE CLASSIFICATION PERFORMANCES OF GMSV ON THE FMRI
DATASET WITH DIFFERENT SINGLE SIDE VIEWS.

Side views Acc. Prec. Rec. F1

neuropsychological tests 0.743 0.851 0.679 0.734
flow cytometry 0.887 0919 0.872 0.892
plasma luminex 0.715 0.769 0.682 0.710
freesurfer 0.786 0.851 0.737 0.785
overall brain microstructure 0.672 0.824 0.500 0.618
localized brain microstructure  0.628 0.686 0.605 0.637
brain volumetry 0.701 0.739 0.737 0.731
All side views 0.972  1.000 0.949 0.973

TABLE IV

AVERAGE CLASSIFICATION PERFORMANCES OF GMSV ON THE DTI
DATASET WITH DIFFERENT SINGLE SIDE VIEWS.

Side views Acc. Prec. Rec. F1

neuropsychological tests 0.616 0.630 0.705 0.662
flow cytometry 0.815 0.847 0.808 0.822
plasma luminex 0.736  0.801 0.705 0.744
freesurfer 0.631 0.664 0.632 0.644
overall brain microstructure 0.604 0.626 0.679 0.647
localized brain microstructure  0.723 0717 0.775 0.741
brain volumetry 0.605 0.616 0.679 0.644
All side views 0.973 1.000 0951 0974

observe that the side view flow cytfometry can independently
provide the most informative side information for selecting
discriminative subgraph patterns on the fMRI brain networks,
which might imply that HIV brain injuries in the sense of
functional connectivity are most likely to express in measure-
ments from this side view. It is consistent with our finding
in Section III-B that the side view flow cytometry is the most
significantly correlated with the prespecified label information.
Results on the DTI dataset are shown in Table IV.

E. Feature Evaluation

Figure 7 and Figure 8 display the most discriminative
subgraph patterns selected by gMSV from the fMRI dataset
and the DTI dataset, respectively. These findings examining
functional and structural networks are consistent with other
in vivo studies [7], [34] and with the pattern of brain injury
at autopsy [10], [22] in HIV infection. With the approach
presented in this analysis, alterations in the brain can be
detected in initial stages of injury and in the context of clini-
cally meaningful information, such as host immune status and
immune response (flow cytometry), immune mediators (plasma
luminex) and cognitive function (neuropsychological tests).
This approach optimizes the valuable information inherent
in complex clinical datasets. Strategies for combining vari-
ous sources of clinical information have promising potential
for informing an understanding of disease mechanisms, for
identification of new therapeutic targets and for discovery of
biomarkers to assess risk and to evaluate response to treatment.
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Fig. 7. Discriminative subgraph patterns that are associated with HIV, selected
from the fMRI dataset.
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Fig. 8. Discriminative subgraph patterns that are associated with HIV, selected
from the DTI dataset.

VI. RELATED WORK

To the best of our knowledge, this paper is the first work
exploring side information in the task of subgraph feature
selection for graph classification. Our work is related to
subgraph mining techniques and multi-view feature selection
problems. We briefly discuss both of them.

Mining subgraph patterns from graph data has been stud-
ied extensively by many researchers. In general, a variety
of filtering criteria are proposed. A typical evaluation cri-
terion is frequency, which aims at searching for frequently
appearing subgraph features in a graph dataset satisfying a
prespecified min_sup value. Most of the frequent subgraph
mining approaches are unsupervised. For example, Yan and
Han developed a depth-first search algorithm: gSpan [37].
This algorithm builds a lexicographic order among graphs,
and maps each graph to an unique minimum DFS code
as its canonical label. Based on this lexicographic order,
gSpan adopts the depth-first search strategy to mine frequent
connected subgraphs efficiently. Many other approaches for
frequent subgraph mining have also been proposed, e.g., AGM
[13], FSG [21], MoFa [3], FFSM [12], and Gaston [25].

Moreover, the problem of supervised subgraph mining has
been studied in recent work which examines how to improve
the efficiency of searching the discriminative subgraph patterns
for graph classification. Yan et al. introduced two concepts

structural leap search and frequency-descending mining, and
proposed LEAP [36] which is one of the first work in
discriminative subgraph mining. Thoma et al. proposed CORK
which can yield a near-optimal solution using greedy feature
selection [32]. Ranu and Singh proposed a scalable approach,
called GraphSig, that is capable of mining discriminative sub-
graphs with a low frequency threshold [27]. Jin et al. proposed
COM which takes into account the co-occurences of subgraph
patterns, thereby facilitating the mining process [16]. Jin et al.
further proposed an evolutionary computation method, called
GAIA, to mine discriminative subgraph patterns using a ran-
domized searching strategy [17]. Our proposed criterion gSide
can be combined with these efficient searching algorithms
to speed up the process of mining discriminative subgraph
patterns by substituting the G-test score in LEAP [36] or
the log ratio in COM [16] and GAIA [17], etc. Zhu et al.
designed a diversified discrimination score based on the log
ratio which can reduce the overlap between selected features
by considering the embedding overlaps in the graphs [38].
Similar idea can be integrated into gSide to improve feature
diversity.

There are some recent works on incorporating multi-view
learning and feature selection. Tang et al. studied unsupervised
multi-view feature selection by constraining that similar data
instances from each view should have similar pseudo-class
labels [30]. Cao et al. explored tensor product to bring different
views together in a joint space and presents a dual method
of tensor-based multi-view feature selection [4]. Aggarwal et
al. considered side information for text mining [1]. However,
these methods are limited in requiring a set of candidate
features as input, and therefore are not directly applicable for
graph data. Wu et al. considered the scenario where one object
can be described by multiple graphs generated from different
feature views and proposes an evaluation criterion to estimate
the discriminative power and the redundancy of subgraph
features across all views [35]. In contrast, in this paper, we
assume that one object can have other data representations of
side views in addition to the primary graph view.

In the context of graph data, the subgraph features are
embedded within the complex graph structures and usually it
is not feasible to enumerate the full set of features for a graph
dataset before the feature selection. Actually, the number of
subgraph features grows exponentially with the size of graphs.
In this paper, we explore the side information from multiple
views to effectively facilitate the procedure of discriminative
subgraph mining. Our proposed feature selection for graph
data is integrated to the subgraph mining process, which can
efficiently prune the search space, thereby avoiding exhaustive
enumeration of all subgraph features.

VII. CONCLUSION AND FUTURE WORK

We presented an approach for selecting discriminative sub-
graph features using multiple side views. This has impor-
tant applications in neurological disorder diagnosis via brain
networks. We show in this paper that by leveraging the
information from multiple side views that are available along



with the graph data, the proposed method gMSV can achieve
very good performance on the problem of feature selection
for graph classification, and the selected subgraph patterns are
relevant to disease diagnosis.

A potential extension to our method is to combine fMRI and
DTI brain networks to find discriminative subgraph patterns
in the sense of both functional and structural connections.
Other extensions include better exploring weighted links in
the multi-side-view setting. It is also interesting to have our
model applied to other domains where one can find graph data
and side information aligned with the graph. For example, in
bioinformatics, chemical compounds can be represented by
graphs based on their inherent molecular structures and are
associated with properties such as drug repositioning, side
effects, ontology annotations. Leveraging all these information
to find out discriminative subgraph patterns can be transfor-
mative for drug discovery.
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