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Abstract. Translating source code into natural language text helps peo-
ple understand the computer program better and faster. Previous code
translation methods mainly exploit human specified syntax rules. Since
handcrafted syntax rules are expensive to obtain and not always avail-
able, a PL-independent automatic code translation method is much more
desired. However, existing sequence translation methods generally re-
gard source text as a plain sequence, which is not competent to cap-
ture the rich hierarchical characteristics inherently reside in the code. In
this work, we exploit the abstract syntax tree (AST) that summarizes
the hierarchical information of a code snippet to build a structure-aware
code translation method. We propose a syntax annotation network called
Code2Text to incorporate both source code and its AST into the transla-
tion. Our Code2Text features the dual encoders for the sequential input
(code) and the structural input (AST) respectively. We also propose a
novel dual-attention mechanism to guide the decoding process by accu-
rately aligning the output words with both the tokens in the source code
and the nodes in the AST. Experiments on a public collection of Python
code demonstrate that Code2Text achieves better performance compared
to several state-of-the-art methods, and the generation of Code2Text is
accurate and human-readable.

Keywords: Natural Language Generation · Tree-LSTM · Abstract Syn-
tax Tree · Data Mining.

1 Introduction

We have witnessed a large amount of source code been released in recent years,
manually writing detailed annotations (e.g., comments, pseudocode) for them is
a tedious and time-consuming task. However, these annotations play an irreplace-
able role in the development of software. For example, it serves as a guideline
for the new engineers to quickly understand the functionality of each piece of
code, and it helps one grasp the idea of legacy code written in a less popular pro-
gramming language. Accordingly, an effective automatic source code translation
method is desired, where the goal is to translate the code into a corresponding
high-quality natural language translation (we also refer the translated text as
annotation for short throughout this paper).

Given the significance of the code translation problem, most of the existing
methods [1,19] only follow the common natural language translation routine by
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Fig. 1. An illustration of the syntax structure-aware code translation task. We propose
to exploit the abstract syntax tree (AST) that reflects the syntax structure of the code
snippet for an improved code translation (Annotation 2). While conventional sequence
translation methods can only use the sequential input (the code), which may miss key
structural information in the code syntax (Annotation 1).

treating the code as a plain sequence. However, programming languages obey
much more strict syntax rules than natural languages [8], which should not be
ignored in translation. Given the syntax rules of most programming languages
are explicitly defined, each piece of legal code could be represented by a struc-
tural representation called abstract syntax tree (AST). In Fig. 1, the AST of a
simple function declaration (blue box) in Python is illustrated in the underneath
yellow box, which depicts the syntax structure of the code. The plain sequence
translator who only takes the code as input may have difficulty in capturing
the structural information, so the generated annotation may omit crucial de-
tails reside in the original code, such as the function name and the number of
parameters. We show that this limitation could be fixed by considering the corre-
sponding AST, as it represents the code structure and the hierarchical relations
that are hard to learn sequentially.

Thus, it is interesting to investigate whether and how one could combine
the information in source code and its AST for an improved structure-aware
code translation model. Although ASTs are much easier to obtain compared
to handcrafted syntax rules, it is not a trivial task to incorporate it into the
translation method due to the following reasons,

Sequential and Hierarchical Encoding: The encoder plays a vital role in
correctly understanding the semantics of the input text in code translation. Ex-
isting methods usually employ RNN/LSTM to learn the dependencies between
words according to their sequential orders, as shown in Fig. 2(a). However, it
is not applicable to hierarchical inputs such as AST. To additionally consider
the hierarchical patterns of the input source code, we need an approach to en-
code the tree-structured inputs. Besides, we also need the sequential encoder to
process the source code since ASTs focus more on structure rather than token-
level details. How to effectively combine the sequential encoder and hierarchical
encoder is also an open question.
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Fig. 2. Comparison of related methods. (a) Seq2seq model consists of an LSTM encoder
and an LSTM decoder. (b) Tree structured recurrent neural network which encodes
structured text from children to parent nodes. (c) Our Code2Text encodes both se-
quential and hierarchical information to generate the target sequence. Details on the
dual-encoder and dual-attention are illustrated in Fig. 3.

Tree to Sequence Alignment in Hierarchical Attention: Attention mech-
anism is an important component in machine translation. It helps the decoder
chooses more reasonable and accurate tokens by aligning generated words with
the words from the input at each step. Without attention, the decoder may gen-
erate redundant words or miss some words from the source text. As shown in
Fig. 2(c), to obtain the best annotation, we need to align the decoding step with
the words in the source code and the nodes in AST simultaneously. However,
the existing attention models only work on sequential data. It is unknown and
challenging to align each decoding step with the nodes in the AST.

To tackle the challenges above, we propose a novel model called Code2Text.
As Fig. 2(c) and Fig. 3 show, our Code2Text informatively incorporates hi-
erarchical information from code AST, and trains a dual-encoder sequence to
sequence language model with improved attention mechanism for word align-
ment. Experiments on the open-source Python project dataset reveal that our
model achieves better performance than state-of-the-art algorithms. Several case
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studies are displayed to demonstrate that Code2Text generates accurate and un-
derstandable annotations as we pursued.

We summarize our contributions as follow,

1. We are the first work to incorporate code structure information into a code
annotation task.

2. We create a model, Code2Text, with a dual-encoder which can encode both
semantic information from source code and hierarchical information of the
AST. We also propose a dual-attention mechanism to improve the original
attention mechanism by extending it to align the structural AST tokens.

3. We perform extensive experiments on a public benchmark Python code
dataset. Other than the numerical evaluation, we additionally present case
studies to demonstrate the effectiveness of our dual-attention encoder design.

2 Preliminary

2.1 Problem definition

Let’s take a look at the definition of NMT (Neural Machine Translation) first.
Suppose we have a dataset D = {(xs,y)} and the corresponding annotation. X s

and Y are sets of source code and annotation, respectively. xs = (xs1, · · · , xsn)
represents a sequence of source code with n words and y = (y1, · · · , ym) repre-
sents a sequence of annotation with m words. Our task is to translate xs to y for
each pair in dataset D, which is the same task as translating a source language to
a target language. The overall goal of normal Neural Machine Translation models
is to estimate the conditional probability distribution Pr(Y|X s). Conventional
inference approaches usually require i.i.d. assumptions, and ignore dependency
between different instances. The inference for each instance is performed inde-
pendently:

Pr(Y|X s) ∝
∏

(xs,y)∈D

Pr(y|xs) (1)

In this work, our model considers not only semantic information but also hi-
erarchical information. Therefore, we derive another symbol xt = (xt1, · · · , xtq),
who contains AST information of relative source code xs with q words. X t is a set
which contains xt. Accordingly, we create an extended datasetD′ = {(xs,xt,y)}.
To incorporate hierarchical information, we will modify our probability distri-
bution:

Pr(Y|X s,X t) ∝
∏

(xs,xt,y)∈D′

Pr(y|xs,xt) (2)

2.2 Attention seq2seq model

Attention seq2seq model is a sophisticated end-to-end neural translation ap-
proach, which consists of the encoder process and decoder process with an at-
tention mechanism.
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Encoder In the encoder process, we aim to embed a sequence of source code
xs = (xs1, · · · , xsn) into d-dimension vector space.

We usually replace vanilla RNN [10] unit with LSTM (Long Short Term
Memory) [4] unit due to the gradient explosion/vanishing problem. The j-th
LSTM unit has three gates: an input gate isj ∈ Rd×1, a forget gate fsj ∈ Rd×1

and an output gate os
j ∈ Rd×1 and two states: a hidden state hs

j ∈ Rd×1 and a

memory cell csj ∈ Rd×1. Update rules for an LSTM unit are below:

isj = σ(W(i)embed(xsj) + U(i)hs
j−1 + b(i)), (3)

fsj = σ(W(f)embed(xsj) + U(f)hs
j−1 + b(f)), (4)

os
j = σ(W(o)embed(xsj) + U(o)hs

j−1 + b(o)), (5)

c̃sj = tanh (W(c̃)embed(xsj) + U(c̃)hs
j−1 + b(c̃)), (6)

csj = isj � c̃sj + fsj � csj−1, (7)

hs
j = os

j � tanh (csj), (8)

Here, c̃sj ∈ Rd×1 denotes the state for updating the memory cell csj . Function
embed() turns a word into a d-dimension embedding vector. It can be assigned
with a fixed global word vector or trained by the model itself. W(·),U(·) ∈ Rd×d

are weight matrix and b(·) ∈ Rd×1 is a bias vector. σ is the logistic function and
the operator � means element-wise product between two vectors. We initialize
hs
0 as a d-dimension vector of all zeros, and iterate over the sequence and finally

obtain hs
n at the end of the source sentence, which represents the information of

source code.

Decoder After we obtain source code representation vector hs
n from the encoder

process, we then predict the annotation sequence with LSTM in a similar way
in the decoder process. We define dj as the j-th hidden state. Given the input
embedding vector embed(xs) and previous word sequence y<j , we generate j-th
word by estimating the conditional probability:

p(yj |y<j , embed(xs)) = softmax(dj), (9)

where softmax() function produces probabilities according to the j-th hidden
state dj , and dj is calculated by another non-linear function fd as follows:

dj = fd(dj−1, embed(yj−1)), (10)

We initialize d0 = hs
n to ensure that our predictor can generate an annotation

sequence base on source code sequential information.

Attention mechanism Attention mechanism [9] was proposed to align each
decoder hidden state with the encoder output states. With the attention process,
we can explicitly calculate the contribution each encoder output state made to
the word prediction at each step.
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Suppose we have hidden state dj at time j in the decoder process, and
(hs

1, · · · ,hs
n) are encoder hidden states. According to [9], we first calculate

attention weights αs
ij between the i-th hidden state hs

i in encoder and the j-th
hidden state dj in decoder as follows:

αs
ij =

exp(score(hs
i ,dj))∑n

k=1 exp(score(hs
k,dj))

, (11)

where score() function is used to compare the decoder hidden state dj with each
of the source hidden states hs

i , and the result is normalized to produce attention
weights (a distribution over source positions). Then based on attention weights
we compute j-th context vector ws

j as the weighted average of the source encoder
hidden states:

ws
j =

n∑
i=1

αs
ijh

s
i , (12)

Afterward, we apply a non-linear function tanh to the concatenation of the
context vector ws

j and the current decoder hidden state dj , and yield the final
attention vector aj :

aj = tanh(Wd × (dj ⊕ws
j) + bd), (13)

where ⊕ means concatenation of dj and ws
j . Wd ∈ Rd×2d is a weight matrix

and bd ∈ Rd×1 is a bias vector. Once computed, the attention vector aj is used
to derive the softmax logit:

p(yj |y<j ,x
s) = softmax(aj). (14)

In Section 4 our experiments will present performance and cases of this seq2seq
model.

3 Proposed method: Code2Text

In this section, we will formally introduce our model, Code2Text, which is an
extension and improvement of original seq2seq models. We first propose a dual-
encoder by creating a tree encoder for representing the summary of AST infor-
mation along with the original sequential encoder in the encoder process, then we
explain how our dual-attention mechanism works by incorporating hierarchical
outputs from tree encoder. The architecture of our model shows in Fig. 3.

3.1 Dual-encoder

As Fig. 3 describes, in our encoder process, the sequential encoder produces se-
quential representation hs

n, which will be a part of our dual-encoder information.
The other part, tree encoder, will produce hierarchical representation from AST
of source code.
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Fig. 3. Architecture of our Code2Text model. (x1, x2, · · · , xn) are tokens of source code,
(t1, t2, · · · , tq) are tokens of AST and (y1, y2, · · · , ym) are tokens of natural language
annotation. < st > and < eos > are start and end tokens, respectively. Encoder process
consists of sequence encoder and tree encoder, and h0 is initialized with a vector of
all zeros. In the decoder process, d0 is initialized with the bilinear result of hn and
ht
q. Context vector c in attention mechanism is the concatenation of sequence context

vector and hierarchical context vector.

Sequential encoder The encoder introduced in Section 2.2 would be employed
as our sequential encoder directly.

Tree encoder Now we formally formulate our tree encoder. For each pair of
source code sequence xs = (xs1, x

s
2, · · · , xsn) and annotation words sequence y =

(y1, y2, · · · , ym), we preprocess by parsing xs to AST sequence xt = (xt1, x
t
2, · · · , xtq)

and AST parent index list p = (p1, p2, · · · , pq). Here, q is equal to the number
of words in AST sequence.

Our tree encoder aims to represent AST with a vector, hence, for propagating
information from children nodes to the root node, we employ a special LSTM
unit, tree-LSTM [17] to our tree encoder. Tree-LSTM was proposed to improve
semantic representations on tree-structured network topologies, which is appro-
priate for our work. There are two architectures: the Child-Sum Tree-LSTM
and the N-ary Tree-LSTM. Code AST is a natural kind of dependency trees,
and Child-Sum Tree-LSTM is a good choice for dependency trees [17]. However,
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N-ary Tree-LSTMs are suited for constituency trees which are not suitable for
AST in our task. Therefore, we will choose Child-Sum Tree-LSTM in our work.
We denote Cj as the children of j-th node in a AST. The hidden state ht

j ∈ Rd×1

and memory cell ctj ∈ Rd×1 for j-th node are updated as follows:

h̃t
j =

∑
k∈C(j)

ht
k, (15)

itj = σ(W(it)embed(xtj) + U(it)h̃t
j + b(it)), (16)

f tjk = σ(W(ft)embed(xtj) + U(ft)ht
k + b(ft)), (17)

ot
j = σ(W(ot)embed(xtj) + U(ot)h̃t

j + b(ot)), (18)

c̃tj = tanh (W(c̃t)embed(xtj) + U(c̃t)h̃t
j + b(c̃t)), (19)

ctj = itj � c̃tj +
∑

k∈C(j)

f tjk � ctk, (20)

ht
j = ot

j � tanh (cj), (21)

where k ∈ Cj in Eq. 17, h̃t
j ∈ Rd×1 is the sum of children hidden state, c̃tj ∈ Rd×1

denotes the state for updating the memory cell ctj . itj ,o
t
j , f

t
jk ∈ Rd×1 are input

gate, output gate and forget gate, respectively. W(·),U(·) ∈ Rd×d are weight
matrix and b(·) ∈ Rd×1 is a bias vector. σ is the logistic function and the
operator � means element-wise product between two vectors.

3.2 Decoder

From the encoder process, we obtain two embedded vectors, sequential repre-
sentation vector hs

n and tree representation vector ht
q. Afterward, we initialize

decoder hidden state d0 with the concatenation of hs
n and ht

q along the sequence
length dimension:

d0 = hs
n ⊕ ht

q, (22)

where ⊕ means concatenation operation. This decoder initialization considers
not only source code sequential summary but also AST structure summary,
which could improve predictor performance than the original seq2seq model.
The rest decoder process remains the same.

3.3 Dual-attention mechanism

After introducing our dual-encoder, we need to improve the attention mechanism
to adopt hierarchical hidden outputs from tree encoder. The main difference
between our dual-attention and original attention mentioned in Section 2.2 is
the construction of context vector wt for tree encoder. Concretely, as Fig. 3
shows, at j-th step, αs

ij in attention seq2seq still represents sequential attention
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Fig. 4. For each AST, we extract node tokens and put them into a token array, then
assign parent index for each token.

weights, and hierarchical attention weights αt
ij are calculated by treating them

the same as sequential outputs:

αt
ij =

exp(score(ht
i,dj))∑q

k=1 exp(score(ht
k,dj))

, (23)

As in [2], we parameterize the score function score() as a feed-forward neural
network which is jointly trained with all the other components of the proposed
architecture. Then we compute j-th context vector wj as the weighted average
of the sequential hidden states and tree hidden states:

wj = ws
j ⊕wt

j (24)

=

n∑
i=1

αs
ijh

s
i ⊕

q∑
i=1

αt
ijh

t
i, (25)

4 Experiments

In this section, we conduct experiments on the task of annotating source code.
We first describe our dataset and data preparation steps, then we introduce
our training configurations in detail, after that we present experimental results
of our model and other baseline algorithms, finally, we show some persuasive
generation examples to prove the practicality and readability of our model.

4.1 Dataset

For evaluating our model Code2Text effectively, we choose a high-quality Python-
to-English dataset from [12].

Data description Python-to-English dataset contains the source code and
annotations of Django Project (a Python web application framework). All lines
of code are annotated with corresponding annotations by an engineer. The whole
corpus contains 18,805 pairs of Python statements and corresponding English
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class StreamingBuffer(object): # derive the class StreamingBuffer from the object base class.
  def __init__(self): #   define the method __init__ with an argument self.
    self.vals = [] #     self.vals is an empty list.
  def write(self, val): #   define the method write with 2 arguments: self and val.
    self.vals.append(val) #     append val to self.vals.
  def read(self): #   define the method read with an argument self.
    ret = b''.join(self.vals) #     join elements of self.vals into a bytes string, substitute the result for ret.
    self.vals = []    #     self.vals is an empty list.
    return ret #     return ret.
  def flush(self): #   define the method flush with an argument self.
    return #     return nothing.
  def close(self): #   define the method close with an argument self.
    return #     return nothing.

�1

Fig. 5. An example of a code snippet with its annotation. The left part is a snippet of
Python class, and the right part is its corresponding natural language annotation.

annotations, and we split it into a training set and a test set. The training set
contains 16,000 statements, and we use it to train our Code2Text model. The
rest 2,805 statements in the test set are used to evaluate the model performance.
Fig. 5 is an example code snippet from the training dataset.

Data preparation Since our model exploits hierarchical information of source
code, we should first generate code ASTs by applying Python AST Parser1 to
each line of source code in the dataset. Fortunately, Python interpreter itself
provides a built-in module called ast to help parse source code to its AST. Our
model could work on other programming languages such as Java, C++, etc. as
well if we apply their own open-source libraries for AST parsing2 3.

For consistency, we need to apply the same preparatory operations to all the
source code as follows:

1. For each line of source code, we parse it to an abstract syntax tree with a
built-in ast module in the Python interpreter.

2. For each AST, we extract node tokens and put them into a tokens array.
3. Then, we index all the nodes and assign the parent’s index for every token

in the list. We assign index 0 to the root of the tree. The purpose of this step
is to reconstruct the tree structure in our training and evaluation phase.

Fig. 4 shows an example of how we generate the tokens array and parent index
list.

Finally, we extend our dataset by adding a new AST tokens array and an
index list for each line of source code. We feed source code sequence into the
sequential encoder and feed AST tokens sequence along with the parent index
list to the tree encoder.

The goal of our preprocessing steps is decoding an AST into a nodes array(for
node embedding) and a parent index array(for reconstruction). The order from

1 https://docs.python.org/3/library/ast.html
2 https://github.com/javaparser/javaparser
3 https://github.com/foonathan/cppast



Code2Text 11

the breadth-first search is not important here because the parent index of each
node would help us reconstruct the AST tree. During the training process, we
would like to accumulate structure information from leaves to root, so we use the
parent index list to reconstruct an AST tree and compute root information with
the help of parent index array by recursively applying tree-LSTM (As Fig. 2(b)
shows).

4.2 Setup

In this part, we introduce our experiment setup, including compared methods
and evaluation metric.

Our training objective is the cross-entropy, which maximizes the log proba-
bility assigned to the target words in the decoder process.

In the test phase, we have the same inputs in the encoder process for gener-
ating hs

n and ht
q. In the decoder process, we predict with the START tag and

compute the distribution over the first word yp1 . We pick the argmax in the dis-
tribution and set its embedding vector as the next input y1, and repeat this
process until the END tag is generated. The whole generated sentence yp will
be our annotation result.

Table 1. Types of models, based on the kinds of features used.

Method Rules Seq. Info. Tree Info. Atte.

PBMT
√

- - -
Seq2seq -

√
- -

Seq2seq w/ attention -
√

-
√

Code2Text w/o seq. info. - -
√ √

Code2Text w/o attention -
√ √

-
Code2Text -

√ √ √

Compared methods To validate the improvement of our model, in this paper
we compare Code2Text to following state-of-the-art algorithms (summarized in
Table 1):

– PBMT [6,7,12]: PBMT is a statistical machine translation framework which
uses the phrase-to-phrase relationships between source and target language
pairs. Oda et al. apply PBMT to pseudocode generation task [12].

– Seq2seq [16]: Seq2seq model is commonly used in NMT tasks. It consists
of encoder process and decoder process, while the encoder process encodes
source code sequential information and decoder process learns a language
model to predict annotations base on the summary of sequential information.

– Seq2seq w/ attention [9, 19]: This version of seq2seq model incorporates at-
tention mechanism which could improve the generation performance.

– Code2Text (w/o sequential encoder): This is one weak version of our method
with only tree encoder and hierarchical attention mechanism.
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– Code2Text (w/o attention): This weak version of our method combines se-
quential encoder and tree encoder with no attention mechanism.

– Code2Text: This is our method proposed in Section 3, which tries to improve
the performance of automatic annotation generation.

Oda et al. [12] also proposed a model with AST information included, however,
we have no comparability since we preprocess in different ways.

For all sequential encoders and decoders in both seq2seq models and our
model, we use the one-layer LSTM network. The number of epoches is set to 30.
All experiments were conducted under a Linux GPU server with a GTX 1080
device.

Metrics In addition to the direct judgment from real cases, we choose BLEU
(Bilingual Evaluation Understudy) score [13] to measure the quality of generated
annotations for all the methods. BLEU is widely used in machine translation
tasks for evaluating the generated translations. It calculates the similarity of
generated translations and human-created reference translations. It is defined
as the product of “n-gram precision” and a “brevity penalty” where n-gram
precision measures the precision of length n word sequences and the brevity
penalty is a penalty for short hypotheses. BLEU outputs a specific real value
with range [0, 1] and it becomes 1 when generated hypotheses completely equal
to the references. We multiply the BLEU score by 100 in our experiments for
display convenience.

4.3 Performance

Our model vs other models From Table 2 we can conclude that our model
Code2Text outperforms than other compared methods. For PBMT, we only com-
pare BLEU-4 score due to the lack of the other three metrics in [12]. Code2Text
has an obvious improvement than PBMT by around 1.6 times and outperforms
better than attention seq2seq model since we incorporate hierarchical informa-
tion in source code.

Table 2. Comparison w.r.t BLEU scores. Only BLEU-4 score reported for PBMT due
to BLEU-1 to BLEU-3 are not available in source paper.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4

PBMT - - - 25.71
Seq2seq w/ atte. 54.11 46.89 42.02 38.11
Code2Text 65.72 55.08 48.23 42.78

Effects of attention mechanism Table 3 tells us how attention mechanism
improves model performance. Whether in seq2seq or in our Code2Text, mod-
els with attention mechanism both perform better than who without attention
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Table 3. Comparison of BLEU Scores w/o Attention.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4

Seq2seq 34.29 28.46 24.61 21.56
+ attention 54.11 46.89 42.02 38.11
Code2Text 36.24 22.96 16.21 11.59
+ attention 65.72 55.08 48.23 42.78

Table 4. Effects of tree encoder under BLEU metric.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4

Seq2seq + att. 54.11 46.89 42.02 38.11
Code2Text w/o seq. 58.70 47.24 40.14 34.64
Code2Text 65.72 55.08 48.23 42.78

mechanism. Meanwhile, the reason that Code2Text without attention mecha-
nism has a lower BLEU score than seq2seq model is dual-encoder compresses
more information than the sequential encoder, which makes it harder to capture
important information if we do not have an alignment mechanism.

Effects of tree encoder To evaluate the effects of tree encoder in our pro-
posed model, Table 4 reveals that attention seq2seq model and our Code2Text
model with only tree encoder has similar performance. Since this weak version
of Code2Text neglects sequential encoder, it may not capture order information,
which may result in worse performance under BLEU-3 and BLEU-4 than atten-
tion seq2seq model. However, our full version of Code2Text achieves the best
score.

4.4 Case study

We present four cases in Fig. 6. Each case has three corresponding annotations
apart from the ground truth. For all the four cases, annotations generated by
Code2text without attention mechanism have the least similarity to the ground
truth, which meets the BLEU score evaluation results. The reason may be that
LSTM performs worse due to the combination of source code tokens and AST
tokens. The attention mechanism will help align the annotation words with the
source tokens and AST tokens. For the first case and third case, although atten-
tion seq2seq model could generate reasonable annotations as well, our Code2Text
captures the hidden keyword (integer, function) from source code AST and pro-
vides more accurate annotations. The fourth case reveals that Code2Text could
generate complex expression, which is friendly to beginners.

We visualize our attention matrix αs
ij and αt

ij of the first and third cases in
Fig. 7. For the left figure, our model captures the relationship between keyword
integer and node tokens in AST (int, n). Since Python is a Weakly-Typed Lan-
guage, the base type of a variable (such as integer, string, etc.) will be inferenced
by the interpreter. Therefore, this type information could only exist in AST, that
is why our model can generate keyword integer. In the same way, right figure
exploits another two relationships. Keyword function corresponds with func and
argument corresponds with (expr*, args).
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Python code status_code = 405

Ground truth status_code is an integer 405.

Code2text status_code is an integer 405. ✓
Code2text w/o attention substitute name for self.name.

Seq2seq w/ attention substitute 405 for status_code.

Python code if exit_code < 0 :pass

Ground truth if exit_code is lesser than integer 0,

Code2text if exit_code is smaller than integer 0, ✓
Code2text w/o attention equal to terminal_char , append the result to output

Seq2seq w/ attention if exit_code is false,

Python code return force_text (error)

Ground truth call the function force_text with an argument error, 
return the result.

Code2text call the function force_text with an argument error, 
return the result. ✓

Code2text w/o attention call the function mark_safe with an argument data , 
return the result .

Seq2seq w/ attention call the force_text with an argument error, return the 
result.

Python code for i , line in enumerate (lines) :pass

Ground truth for every i and line in enumerated iterable lines ,

Code2text for every i and line in enumerated iterable lines , ✓

Code2text w/o attention define the method __init__ with 3 arguments : self , 
unpacked list args and unpacked

Seq2seq w/ attention for every i and line in enumerated iterable lines , ✓

�1

Fig. 6. Cases of our Code2Text model. Our model could generate readable natural
language annotations for various statements.

5 Related Work

In the early years, various rule-based models were explored by researchers. Srid-
hara et al. [14,15] focused on automatic comment generation for Java program-
ming language. Their two works both concentrated on designing mapping rules
between source code and code comment by hand and generating comments for
Java methods by filling out pre-defined sentence templates. Moreno et al. [11]
studied comment for Java Classes as well. Their model extracted the class and
method stereotypes and used them, in conjunction with heuristics, to select key
information to be included in the summaries. Then it generated code snippet
summaries using existing lexicalization tools. However, there is a major limita-
tion for the rule-based approach that it lacks portability and flexibility. When
new rules that are never seen appear in the source code or we start a new project
with another programming language, we have to manually update our rules table
and sentence templates.

Later, most researchers tended to data-based approaches in recent years.
Wong et al. [18] crawled code-description mappings from online Q&A websites
at first, then output code comment by matching similar code segments. Therefore
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root

Return
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value Call

expr expr*

func Name

Str

id force_text

args expr

Num

str

id error

root
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expr*

targets expr

Name

str

id status_code

expr
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n 400

status_code = 400 return force_text(error)

integer

argument

function
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Fig. 7. Two sample alignments above refer to our first and third cases. The x-axis
corresponds to the generated annotation, and the y-axis corresponds to the tokens
from AST and source code. Each pixel shows the weight αt

ij of the annotation of the
j-th source word for the i-th target word (see Eq. 3.3), in grayscale (0: black, 1: white).

this model does not have a generalization. Haiduc et al. [3] created summaries for
source code entities using text retrieval (TR) techniques adapted from automated
text summarization [5].

Recently, some deep neural networks are introduced in the annotation gen-
eration task. In the task of pseudocode generation, Oda et al. [12] combines the
rule-based approach and data-based approach. Their model updated the rules
table automatically and generated pseudocode through n-gram language model.
However, its n-gram language model lacks explicit representation of long-range
dependency which may affect generation performance. In 2017, Zheng et al. [19]
applied attention sequence to sequence neural machine translation model on
code summary generation which motivates our work. Allamanis et al. [1] treated
source code as natural language texts as well, and learned a convolutional neural
network to summarize the words in source code into briefer phrases or sentences.
These models for code summary generation task do not consider the hidden hi-
erarchical information inside the source code.

6 Conclusion

In this paper, we studied the problem of structure-aware annotation generation.
We proposed a novel model, Code2Text, to translate source code to annotations
by incorporating tree encoder and hierarchical attention mechanism. Experiment
results showed that our model outperforms among state-of-the-art methods, and
example cases prove the practicality and readability. Our model could be also
extended to other programming languages easily with the specific parser.
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