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Abstract. Writing an item review for online shopping or sharing the
dining experience of a restaurant has become major Internet activities
of young people. This kind of review system could not only help users
express and exchange experience but also prompt business to improve
service quality. Instead of taking time to type in the review, we would
like to make the review process more automated. In this work, we study
an edge labelling language model for personalized review generation, e.g.,
the problem of generating text (e.g., a review) on the edges of the net-
work (e.g., online shopping). It is related to both network structure and
rich text semantic information. Previously, link prediction models have
been applied to recommender system and event prediction. However,
they could not migrate to text generation on the edges of networks since
most of them are numerical prediction or tag labelling tasks. To bridge
the gap between link prediction and natural language generation, in this
paper, we propose a model called Net2Text, which can simultaneously
learn the structural information in the network and build a language
model over text on the edges. The performance of Net2Text is demon-
strated in our experiments, showing that our model performs better than
other baselines, and is able to produce reasonable reviews between users
and items.

Keywords: Link Prediction · Language Model · Graph Mining ·
Data Mining

1 Introduction

Under the wave of mobile Internet development, we witness and engage more
and more online review system. For example, before we purchase a product on
Amazon we always check reviews from other buyers to determine if buy it or
not. Meanwhile, we write our own using experience for the products purchased
as well. In addition to online shopping, we also focus on movie reviews and
restaurant reviews. Review system influences various aspects of our life.

Sometimes, writing a review is a trivial work for customers, and most cus-
tomers share thoughts on fixed aspects (e.g., quality, service). In this work,
we would like to help customers generate accurate reviews automatically given
historical reviews between users and items. Descriptive text can encode rich
semantic information and structural relationship between user-item network.
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To KFC: I love the hamburgers here. The service is great and the price is appropriate for 
me. The shop is not far so I come here everyday...

To Chinese Restaurant: The food in this Chinese restaurant is really spicy! I love them but 
the price is a little expensive. Servants are quite enthusiastic⋯

To Tea House: I waited for 10mins until I got my tea drink. The staff said Sunday 
afternoon is always busy. It’s a kind of noisy here⋯

Alice to Pizza Hut: Fruit pizza is 
my favorite. The service is 
always friendly and the food is 
fantastic. The prices are 
reasonable, about 30 for 2 
people to eat. I would recommend 
to friends to check it out...

From Bob: Best slice of pizza, in terms of price and quality, here on the strip.I am so glad 
that Debbie was there to take us to the Pizzeria because otherwise, ⋯

From Tom: The service was superb! I had the chicken fried steak. It was really good...

From Jerry: This pizzeria gets three stars based on the food. The pizza received the bulk 
of the points because of its flavor and the crusts. I love the smile and the customer 
service they give...

Alice

Pizza Hut

Reviews for other  
businesses given by 
Alice

Reviews from other  
users received  
by Pizza Hut

Fig. 1: Our personalized review generation task. Top blocks are reviews that Alice
gave to other restaurants, and bottom blocks are reviews that Pizza Hut received
from other customers. Our goal is to help Alice generate review automatically
for Pizza Hut (see the text in the green box). We provide detail explanation in
Section 1.

Figure 1 describes our task of personalized review generation. Top blocks
are reviews that Alice gave to other restaurants, and bottom blocks are reviews
that Pizza Hut received from other customers. After analyzing the reviews given
by Alice, we can conclude that he concerns more about price, position and ser-
vice (emphasized in red bold). Pizza Hut has received some reviews from other
customers and some of them mentioned the attributes that Alice cares about.
Since most of reviews to Pizza Hut are positive, our generated review for Alice is
friendly and reasonable. Consequently, it will help users to alleviate the burden
of typing by generating accurate reviews automatically.

Essentially, it is a kind of edge labelling task for network, which can be recog-
nized as a link prediction problem. In previous researches, link prediction models
are mainly applied to recommender system. For example, in social networks, we
usually predict the evolution of networks like recommending new friends [1] by
calculating similarities based on user activities. In online e-commerce websites,
instead of just recommending new links, link prediction models also predict
events like buying an item (Figure 2a). In this area, collaborative filtering (CF)
is a successful recommendation paradigm that employs transaction information
to enrich user and item features for recommendation [12]. However, these mod-
els could not migrate to text generation on the edges since most of them are
numerical prediction or tag labelling tasks.

From the aspect of language modeling, although we have a lot of sophisticated
language models nowadays, it is not a trivial task to employ it into network
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Fig. 2: Previous models on link prediction task and multimodel language gener-
ation task.

structure. Common language generation models, including n-gram models [7] and
deep learning models (e.g., LSTM [25]), always generate text without considering
additional features of network structures. Text produced by these models cannot
reflect the specialization between vertices. Karpathy et al. proposed an image
caption model (Figure 2b) and it is a kind of language model that considers image
features [13]. This model cannot be applied in network structure but inspired us
to build a multimodel language model over a network structure.

To our best of knowledge, there are no previous models on personalized review
generation. Therefore, in this paper, we propose a model, Net2Text, based on
network structure with text on the edges. Our model innovatively solves the task
of generating personalized text on network edges automatically and makes up
the gap in the study of edge labelling language model.

Our method proposed in this paper has following three-fold contributions:

1. It is the first work to propose automated personalized review generation
task, which is an extensive work of image caption to network structure. It
builds a bridge between network structure and text generation.

2. Our Net2Text is a novel model on edge labelling for personalized comment
generation by learning the structural information in the network and lan-
guage modeling in the text.

3. We demonstrate the performance of our model in experiments on real datasets.
By comparing Net2Text to other baselines, we show that our model performs
better under machine translation metrics. We also present some generated
reviews to prove the readability and personality.

2 Problem Definition

In this section, we first introduce related concepts and notations, then define our
problem.

In our task, we have two types of vertices in network. One is the user (Alice),
the other is the item or business (Pizza Hut). Therefore, we denote a network,
G = (V1,V2, E), where V1 = {1, · · · , n1} and V2 = {1, · · · , n2} are two partitions
of this network, and E = {(li, ri, si)}mi=1 denotes the edges of the network. m is
the total number of edges in G. For the i-th edge, li ∈ V1 and ri ∈ V2 are two
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Table 1: Important Notations.
Symbol Definition

G = (V1,V2, E) A network with text on edges.
V1 = {1, · · · , n1},V2 = {1, · · · , n2} Two sets of vertices, n1 and n2 are vertex number

of each set.
E = {(li, ri, si)}mi=1 The set of m links in network G.

li, ri Two connected vertices of i-th link in E .
si = (s1i , · · · , sTi

i ) Sequence of i-th edge text. ∀t ∈ [1..Ti], sti corre-
spondes to a word of text si at position t. Ti is
the number of words on the i-th sequence.

xi = (s0i , · · · , sTi
i ) Text sequence on i-th edge si with an additional

pre tag START.
X = {x1, · · · ,xm} Input vectors for all instances.
F = {f1, · · · , fm} Link features for all instances.

fi = [Φ(li), Φ(ri)] ∈ R2×d i-th link features combined by vector representa-
tion of vertex li ∈ V1 and vertex ri ∈ V2. d is the
dimension of each vertex vector.

Y = {y1, · · · ,ym} Output vectors for all instances.
yi = (s1i , · · · , sTi+1

i ) i-th edge text sequence si with an additional post
tag END.

Φ ∈ R(n1+n2)×d Representation vectors for all the vertices in net-
work G.

L and U The training set and testing set.

connected vertices. si = (s1i , · · · , s
Ti
i ) denotes the text sequence on i-th edge.

∀t ∈ [1..Ti], sti correspondes to a word in sequence si at position t. Ti is the
number of words of the sequence on the i-th edge.

Now we formally define our problem as follow:
Definition 1. Given a network G = (V1,V2, E) with text on its edges, for each
edge (l, r, s) ∈ E, our goal is to learn an edge labelling language model g(l, r) ≈ s,
that can map all the edges in the network into personalized reviews. For a new
edge (lnew, rnew), we could generate a personalized review snew = g(lnew, rnew).

Since we take network structure information into consideration in our task,
for i-th edge (li, ri, si) we begin with learning vector representation Φ(li) ∈ Rd

of vertex li ∈ V1 and Φ(ri) ∈ Rd of vertex ri ∈ V2, and then we denote a vector
fi = [Φ(li), Φ(ri)] ∈ R2×d by concatenating representation of two vertices as
features of i-th edge. d is the embedding dimensions of each vertex.

Now we create a new edge set E ′ = (X ,F ,Y), where X = {x1, · · · ,xm}
represents input vectors, F = {f1, · · · , fm} represents edge features and Y =
{y1, · · · ,ym} represents output vectors.

For the sequence si, we add a special tag START as s0i to the beginning, which
forms our input vector xi = (s0i , · · · , s

Ti
i ) for i-th edge. We add another special

tag END as sTi+1
i to the end, which forms our output vector yi = (s1i , · · · , s

Ti+1
i ).

Our instances in E ′ are then divided into a training set L ⊂ {E ′
1, · · · , E ′

m}
and test set U ⊂ {E ′

1, · · · , E ′
m}, where L

∪
U = E ′ and L

∩
U = ∅. For ∀i ∈ L,
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Fig. 3: Architecture of Net2Text. We first learn vertex representations from re-
view network. For unconnected user 3 and item 2, we combine their embeddings
into an edge feature, together with each word in the review sequence, as the
input to the nGRU.

xi, fi and yi are fully observed, while ∀i ∈ U , we only observe x0
i , which is tag

START, and feature fi for i-th edge. Since we use previous output as new input
in text generation process, we denote yo

i as previously generated word sequence.
Here, yo

i = (y0i , · · · , y
t−1
i ) changes as the step goes to t-th position.

Our task on the i-th instance is to predict yi = (yji )
Ti

j=1 based on yo
i and fi

until tag END appears or designated text length arrives.
We use YU = {yi|∀i ∈ U} to denote all the target text on unconnected

vertices for prediction. In addition, we define Yo
U = {yo

i |∀i ∈ U} to denote all
the generated outputs during the test phase. FU = {fi|∀i ∈ U} is the collection
of edge features in test set U . The overall goal of Net2Text model is to estimate
a probability distribution:

Pr(YU |FU ,Yo
U ) ∝

∏
i∈U

Pr(yi|yo
i , fi) (1)

Table 1 explains details of our important notations.

3 Proposed Method

3.1 Overview

In this section we will explain details of our method.
In general, our model integrates the process of vertex embedding and text

generation. We first learn representations of vertices with random-walk-based
method, then train a language generation model over existing text on the edges
by incorporating vertical features. Figure 3 describes the architecture of our
model Net2Text.
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Algorithm 1: Learning vector representations.
Input: vertices set V, edge set E , windows size w

embedding size d, number of walks per vertex b

Output: matrix of vector representations Φ ∈ RN×d

1 Initialize Φ
2 for i = 1 to b do
3 Reorder the vertices set V
4 foreach vi ∈ V do
5 Wvi = RandomWalk(V, E , vi)
6 SkipGram(Φ,Wvi , w)
7 end
8 end

3.2 Learning representation of vertices

To learn latent representations of vertices in a network, we use local information
obtained from truncated random walks by treating walks as the equivalent of
sentences [21]. We merge vertices from V1 and V2 into V = {1, · · · , N} where
N = n1 + n2, then we define Φ ∈ RN×d as vector representations of all the
vertices.

We initialize the mapping function Φ by uniformly sampling a random walk.
We choose a random vertex vi as the root of the walk, then sample uniformly
from the neighbors of previous vertices visited. Therefore, the objective function
of this optimization problem is:

min
Φ

−logPr({vi−w, · · · , vi−1, vi+1, · · · , vi+w}|Φ(vi)) (2)

where w is the context windows size for each vertex in the walk.
In each iteration, we start a new random walk at each vertex and update the

objective function Φ. For each vertex vi in the inner loop, we generate a random
walk Wvi , which starts from vertex in one side to the vertex in the other side
back and forth in the network. We then use the generated walk to update our
representations Φ and our objective function Equation 3.2 with SkipGram [18]
loop. For each vertex vj ∈ Wvi we map it to current representation vector
Φ(vj) ∈ Rd, and maximize the probability of its neighbors {uk} with context
window size w in the walk.

3.3 Text generation on edges

Next step after learning vertex representations is to incorporate them into our
edge labelling language model.

Formally, for each edge (li, ri, si) in the network G, we first construct edge
features fi = [Φ(li), Φ(ri))] by combining vector representations of vertex li
and vertex ri, then convert text si on the edge into a sequence of words xi =
(x0

i , · · · , x
Ti
i ).
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Recurrent Neural Network (RNN) [16] is one of frequently used deep neu-
ral language model. It defines a probability distribution of the next word given
the current word and previous context sequence generated. Simple RNN unit
in vanilla version could not capture long dependency due to the gradient explo-
sion/vanishing problem, therefore, we replace it with Gated Recurrent Unit [8].
Since current GRU model just tries to generate text that has correct spelling
and grammar while ignoring our network structural information, we define a
new unit called nGRU. nGRU makes an improvement to the original GRU, that
it can condition text generation on vector representations Φ of all the vertices
learned from previous process to build our edge labelling language model for our
personalized review generation task.

The t-th nGRU unit has two gates: an update gate zt and a reset gate rt,
and two states: a candidate state h̃t and a hidden state ht. For each step t, we
compute input vector ut which is a linear transformation of edge features f t

i

and current t-th word xt
i, and outputs the next word ot. Update rules for our

recurrent units are below:

ut = Wuff
t
i +Wuxembed(xt

i) + bu (3)
zt = σ(Wzuut +Wzhht−1) (4)
rt = σ(Wruut +Wrhht−1) (5)

h̃t = tanh(Whuut +Whh(rt ⊙ ht−1)) (6)
ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (7)

ot = softmax(Wohht + bo) (8)

Here, function embed() turns a word into a low dimension embedding vector.
It can be assigned with fixed global word vector or trained by the model itself.
W(·) are weight matrix and b(·) are bias vectors. σ is the logistic function and
the operator ⊙ means element-wise product between two vectors. We initialize
h0 as a vector of all zeros.

Until now, we build the basic architecture of our model as shown in Figure 3,
in next part we will introduce the procedure of our algorithm.

3.4 Net2Text Algorithm

We conclude a procedure of our method as shown in Algorithm 2. The algorithm
has following steps:

1. Data Preparing. First, we use random-walk-based algorithm to extract
the representations of all the vertices Φ, and generate a new edge set E ′ =
(X ,F ,Y) via the problem definition mentioned in Section 2.

2. Model Training. We extend text vectors X to a new combined vectors X ′

by concatenating edge features to each word over the whole sequence. With
this operation, we can take local network features into consideration while
modeling languages. Finally we train a language model g on dataset X ′.
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Algorithm 2: Net2Text Algorithm
Input: Network G = (V, E), training set L, test set U

windows size w, embedding size d, walks per vertex b, max sentence
length pmax

Output: YU = {yi|∀i ∈ U}, each yi is a generated link text in test set U .
Data Preparing:

- Generate vector representations:
Φ = Learning vector representations(V, E , w, d, b)

- Create new link dataset: E ′ = (X ,F ,Y)
Training Phase:

- Construct extended dataset X ′ = (x′
1, · · · ,x′

m):
for i = 1 to m do

Extend i-th link x′
i = ([x0

i , fi], · · · , [xT
i , fi]) by concatenating link

features to each timestep over the whole text.
end
- Let g = Net2Text(X ′) be our model trained on X ′

Test:
foreach i ∈ U do

- Use START as our first token: y0
i =(START)

- Initialize our test parameters: len = 1, xi = ([y0
i , fi])

repeat
- Predict next character with our trained model: token = g(xi)
- Append newly generated character to existed text:
yi.append(token)

- Update input vector with the new token: xi.append([token, fi])
- Move to next character: len = len+ 1

until token = END or len >pmax

end

3. Text Prediction. In the testing phase, we first set tag START as the
initial word to our model. For each generation step, we update input vectors
as in the training phase, and repeat predicting new word until the tag END
appears or maximum length of text reaches.

4 Experiments

In order to validate the performance of our model, we applied Net2Text to several
real world review datasets in our experiments.

4.1 DataSets

• Amazon1 is the world leading e-ecommerce platform, and customers often
write down their reviews for their purchases. Amazon datasets [11] we used
1 https://www.amazon.com/
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Table 2: Experiment Datasets.
Dataset Average words/review Number of reviews

Amazon - Clothing & Jewelry 57 263890
Amazon - Health Care 72 301284

Amazon - Sports 67 263212
Amazon - Video Games 81 151018

Yelp 98 517729

in this experiment contains product reviews, including 142.8 million reviews
spanning May 1996 - July 2014. We choose 4 categories of items, and each of
which has been reduced to extract the 5-core, such that each of the remaining
users and items has 5 reviews each.
• Yelp2 is one of the biggest online restaurant reservation service provider. It
has a huge amount of data, including customer profile, resturant information,
customer review and so on. They open-sourced their dataset on the official web-
site3. We reduced the dataset to the 30-core, such that each of the remaining
customers and businesses has 30 reviews each.

All the datasets are splitted into training sets and test sets. Statistical details
on our datasets are presented in Table 2.

4.2 Experiment Setup

We have some basic configurations in our experiments. The vector representa-
tion dimension for user and item vertices is set to 256. For language modelling
part, we use nGRU units with 512 dimension hidden nodes. We choose cross-
entropy [24] as our loss function. In Section 4.4 we compare performance of
different dimensions for nGRU units and vector representation. For comparison
algorithms we have the same configurations as ours. All the experiments were
conducted under a Linux workstation with a Nvidia GTX 1080 GPU (8G graphic
memory).

4.3 Algorithms for Comparison

To our best of knowledge, there are no comparable models since we are the
first to propose text generation on network edges. In addition to various ver-
sions of Net2Text, we evaluated the performance against the following baseline
algorithms (Summarized in Table 3):
• wordRNN [26]: This method does not consider the local network structure
between user and item but only concentrates on review content. It only builds
word level generation language model for all the reviews and generates review
based on the first few words. We use the same language model structure as
Net2Text but remove edge features.
2 https://www.yelp.com/
3 https://www.yelp.com/dataset/challenge
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Table 3: Algorithms for comparison.
Method Content Network Publication
wordRNN ✓ ⊘ [26]

random-walk-based ⊘ ✓ [21, 10]
Net2Text ✓ ✓ This paper

Table 4: Experiments results under different datasets and algorithms.
Dataset BLEU

wordRNN random-walk-based Net2Text
Amazon - Clothing & Jewelry 0.192 0.173 0.345

Amazon - Health Care 0.185 0.165 0.332
Amazon - Sports 0.181 0.168 0.357

Amazon - Video Games 0.184 0.153 0.323
Yelp 0.19 0.17 0.382

• Random-walk-based algorithm [21, 10]: We compare to a baseline with the idea
of edge similarity. It chooses a review from the training set that expresses the
most similar edge features. In other words, it only considers network structure
information and neglects text content.
• Net2Text: This is our proposed method mentioned in Section 3, which gener-
ates personalized review for users conditioned on both historical review content
and network relationships between users and items.

4.4 Evaluation

BLEU (Bilingual Evaluation Understudy) score [19] is a commonly used metric
in the area of language generation. We apply it to measure the quality of our
generated reviews.

We compared our model Net2Text with the other two baseline algorithms.
As the results showed in Table 4, our method Net2Text considers not only re-
view semantic information, but also local network structure features, and has
significant improvement than baseline algorithms. As a contrast, the baseline
random-walk-based algorithm has the worst performance under BLEU score.
One explanation is that random-walk-based algorithm only selects a similar ex-
isting review without concerning its content, it may be totally different from
what the review really is, which leads to a low BLEU score. Instead, wordRNN
tries to generate reviews based on first few words from real reviews, and it helps
establish a similar context (quality, service) and predicts in the right direction.
Therefore, wordRNN performs better than random-walk-based algorithm under
BLEU score. We will show some cases in Section 4.6.

4.5 Model Selection

In this section, we will conduct some analysis on model parameters. We mainly
consider three aspects of parameter influence. First two are embedding method
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Table 5: Experiments results under different embedding methods.
Dataset BLEU

Deepwalk node2vec
Amazon - Clothing & Jewelry 0.202 0.345

Amazon - Health Care 0.211 0.332
Amazon - Sports 0.302 0.357

Amazon - Video Games 0.296 0.323
Yelp 0.247 0.382

Table 6: Experiments results under different vertex embedding dimension.
Dataset BLEU

Dim. 64 Dim. 128 Dim. 256 Dim. 512
Amazon - Clothing & Jewelry 0.205 0.168 0.229 0.345

Amazon - Health Care 0.194 0.221 0.214 0.332
Amazon - Sports 0.252 0.212 0.241 0.357

Amazon - Video Games 0.187 0.199 0.291 0.323
Yelp 0.239 0.253 0.343 0.382

and embedding dimension for the network. Another one is hidden dimension of
nGRU units. All of them have effects on performance according to our experi-
ments.

Influence of embedding method Our model use random-walk-based algo-
rithms as our vertex embedding method, therefore, we compare experiments per-
formance between Deepwalk [21] and node2vec [10]. Table 5 tells us node2vec
leads to a better performance. Since node2vec defines a flexible notion of a node’s
network neighborhood and design a biased random walk procedure, which effi-
ciently explores diverse neighborhoods, and this kind of flexibility in exploring
neighborhoods is the key to learning richer representations [10]. We choose the
flexible parameters that applicable in our experiments.

Influence of vertex embedding dimensions In accordance with [21], net-
work embedding dimensional representations are distributed, meaning each user
or item is expressed by a subset of the dimensions and each dimension con-
tributes to a subset of social concepts expressed by the space. We used the
default experiment setup, and changed the variable embedding size d in vector
representations learning phase. Table 6 shows that the dimension 512 performs
the best, which means larger dimension could express complex social concepts
and that could help make personalized review more accurate.

Influence of nGRU parameters In our experiment we chose nGRU as the
base language modeling method. To improve the performance of Net2Text, we
adjust hidden dimension of nGRU units. Table 7 shows that 512 hidden dimen-
sion has significant improvement than other small dimension.
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Table 7: Experiments results under different nGRU dimension.
Dataset BLEU

Dim. 128 Dim. 256 Dim. 512
Amazon - Clothing & Jewelry 0.225 0.243 0.345

Amazon - Health Care 0.282 0.304 0.332
Amazon - Sports 0.221 0.289 0.357

Amazon - Video Games 0.224 0.25 0.323
Yelp 0.282 0.319 0.382

4.6 Case Study

Our goal is that the predicted reviews can reflect suggestions and feelings existed
in the real reviews as much as possible, since it could alleviate the burden of user’s
typing modification.

To gain a better understanding of our method, we explain more details on
some example reviews we generated. Table 8 lists cases of our results selected
from each of five datasets compared to original reviews.

Case 1 is a perfect generated review example. The customer mentions good
feedback about the looking and the feeling of purchased product slippers (a
really comfortable slippers and Looks great). In our generated review, we predict
precisely the same keywords (very comfortable and They look good) as the original
one.

In case 2, the customer originally gave a long review to the item. Although
long sentence generation is more challenging, we still have the ability to cap-
ture the important information for this purchase relationship. For example, we
produce the name of this product (vitamins), and mention the product quality
(works for me and good quality product) and the price (far cheaper and Great
price) as well.

Case 3 is the case from sports shopping in Amazon. We generate the word
easy as the same from source review. The customer also wrote the joy feeling to
have this item, and we generate it in a different expression (happy to have it v.s.
good purchase).

Review in cases 4 looks like a general comment to video games. We emphasize
graphical performance that summarize description in source review.

After comparing the generated review with the original review in case 5, we
find that this customer went to a Japanese food resturant and he/she praised
the food (great sushi, enjoy the panko a lot and love family style ramen). This
customer also complained about the waiting time (Always a wait and always
looking for a spot).

According to above cases, our model could not only capture real facts about
items/restaurants but also express original meanings for users. This work will
greatly help users alleviate the trouble of typing text by filling the review content
automatically.
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Table 8: Comparison of generated reviews with ground-truth reviews.
Case 1: Amazon - Clothing & Jewelry
Source Crocs are a really comfortable slippers. Looks great and you can make your

activities with comfort and good looking.
Generated I really love them! They are perfect and very comfortable. They look good

and I will recommend this item.
Case 2: Health Care
Source I take vitamins three times a day. This product fits the bill perfectly when

I travel. I like it so much! I bought two of them. I first went to a chain
pharmacy and discount store but their offerings were too expensive and
were too small. This product was far cheaper and works for me .

Generated I love these vitamins. Easy small pills to take and a good quality product.
Great price on Amazon! Will order again.

Case 3: Amazon - Sports
Source It is very easy to use good equipment. It came with in a short time. Realy

happy to have it.
Generated It’s great and easy and it is not too big to install. It will work. I have a

good purchase.
Case 4: Amazon - Video Games
Source This game is awesome! Beautiful landscapes and adventures! It puts you

right in the fantasy world. Very addictive!
Generated

Great graphics! I would love playing the series and it was very well! Great
price and I recommend this.

Case 5: Yelp
Source Always great sushi no matter if you are doing AYCE or individual orders.

Always a wait for this place.
Generated I enjoy the panko a lot. I always love family style ramen but always looking

for a spot.

5 Related Work

As we mentioned in Section 1, our task is a variant to common link prediction
problems.

Most link prediction models study the task of recommender system. For
example, in social networks (e.g. Facebook, Twitter, Instagram, etc.) we can
recommend new friends based on current relationships [1]. In some domain spe-
cific social networks like academic social network, link prediction can help find
domain experts or co-authors [20, 28]. Large online shopping platforms could
form a behaviour network based on user behaviours as well, and link prediction
models can recommend personalized items for individual customers [14]. In the
advertisement recommendation area, Wang et al. propose a framework SHINE to
predict possibly existing sentiment links in the presence of heterogeneous infor-
mation, which could generate sentiment tags between users and advertisers [27].
Link prediction also predicts the missing links on an incomplete observed net-
works [15]. For dynamic networks such as P2P lending networks, it can infer the
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future newly added links and evolution process [31] as well. In other domains like
bioinformatics area, there exists networks such as gene expression networks. We
can use link prediction to predict new protein-protein interactions [2], which has
great significance to human life health and disease treatment. All the problems
mentioned above are numerical prediction or tag labelling tasks on links, and
they cannot be applied to our problem.

Statistical language modeling (SLM) is an important research topic all the
time in natural language processing field. It is commonly used in speech recog-
nition [9], machine translation [4], handwriting recognition [30] and other appli-
cations. N-gram model [7] was the earliest technique for language modeling. It
models the probability of a word appears next given a sequence of context words.
Later, models based on decision tree [22] and maximum entropy techniques [6]
appeared. They build models with consideration of other features such as part
of speech tags. Bengio et al. [5] first applied neural networks to language model
domain in 2003. He proposed a Feed-forward Neural Network (FNN) which can
predict the next word given the fixed size of the previous sequence of words and
learn the word representation in the vocabulary at the same time. This model
greatly improves the performance of speech recognition [23]. However, previous
models still have the shortcoming that long range dependencies cannot be cap-
tured due to the fixed context constrain. Mikolov et al. proposed a Recurrent
Neural Network (RNN) which allows context information passing all through [16,
17]. To address the issue of gradient vanishing, a variant of RNN called Long-
Short Term Memory (LSTM) [25] is presented later. In recent years, generating
natural language text for image (Image Caption) has been researched in depth.
Karpathy et al. proposed an image caption model and it builds a multimodel
RNN that considers image features [13]. Anderson et al. propose a combined
bottom-up and top-down attention mechanism that can enable deeper image
understanding for image caption and visual question anwsering [3]. However,
image caption models cannot be migrated to network because they have dif-
ferent structures. Yao et al. also study the problem of generating fake reviews
for specific restaurant automatically [29]. Their reviews cannot reflect the per-
sonalization because they do not concern about the network structure even the
customers.

6 Conclusion

In this paper, we propose a novel application of language modelling on network
structure, which is generating text on each edge of a network. It is a challeng-
ing work because text on edges encodes not only the relationship between two
network entities but also rich semantic information. We build an edge labelling
language model Net2Text that considers both network structure information
and text on edges, to generate personalized reviews for users. The performance
of Net2Text is demonstrated in experiments on real world datasets, showing
that our model performs better than other baselines, and is able to generate
reasonable reviews for customers.
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