EPNET: Learning to Exit with Flexible Multi-Branch Network

Xin Dai
Worcester Polytechnic Institute
Worcester, MA

Xiangnan Kong
Worcester Polytechnic Institute
Worcester, MA

Tian Guo
Worcester Polytechnic Institute
Worcester, MA

xdai5@wpi.edu xkong@wpi.edu tian@wpi.edu
ABSTRACT
Dynamic inference is an emerging technique that reduces the com- Inference Computational Cost
putational cost of deep neural network under resource-constrained Performance High X Low
scenarios, such as inference on mobile devices. One way to achieve e NREREE - @ [l sman o
dynamic inference is to leverage multi-branch neural networks that z Images= 2| &1 21 &1 21215 2| Images= 2|2/
apply different computation on input data by following different — | prediction-- - prediction branch
branches. Conventional research on multi-branch neural networks ?? 3 | branches ==.i .IEEHEE EEEHEI.
mainly targeted at improving the accuracy of each branch, and E MmEmE BRRCHOC toonnae
use manually designed rules to decide which input follows which g Imagesg_% E;’é?: ":;:;T% é Imagesgé%é E ééz;
branch of the network. Furthermore, these networks often provide | PalalalslSlals = diction] A S|5E 1S
a small number of exits, limiting their ability to adapt to external = It | D EEEEE"
changes. In this paper, we investigate the problem of designing a Eﬁﬁﬁﬁlllll=
flexible multi-branch network and early-exiting policies that can ea;;,"':D ,,,,,, T
adapt to the resource consumption to individual inference request = 3
without impacting the inference accuracy. We propose a lightweight Image 3 | 6-/; ¥ S 8
branch structure that also provides fine-grained flexibility for early- ‘ 4 >s
exiting and leverage Markov decision process (MDP) to automati- (\LLa\Pell) (221) B o)

number in image 7 h -

cally learn the early-exiting policies. Our proposed model, EPNET,
was effective in reducing inference cost without impacting accu-
racy by choosing the most suitable branch exit. We also observe
that EPNET achieved 3% higher accuracy with an inference budget,
compared to state-of-the-art approaches.

CCS CONCEPTS

« Information systems — Data mining; - Computing method-
ologies — Neural networks;

KEYWORDS
Dynamic neural network; efficient neural network; early exiting

ACM Reference Format:

Xin Dai, Xiangnan Kong, and Tian Guo. 2020. EPNET: Learning to Exit with
Flexible Multi-Branch Network. In Proceedings of the 29th ACM International
Conference on Information and Knowledge Management (CIKM 20), October
19-23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3340531.3411973

1 INTRODUCTION

Deep convolutional neural networks (CNNs) have achieved good
accuracy on computer vision tasks such as image classification [8,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM °20, October 19-23, 2020, Virtual Event, Ireland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6859-9/20/10...$15.00
https://doi.org/10.1145/3340531.3411973

Figure 1: The problem of dynamic inference for image classification
tasks. Our goal is to design a CNN that can adapt its execution to the
inference request difficulty, to achieve high inference accuracy and low
computational cost.

11, 14]. However, the accuracy improvement is often accompanied
with higher demand for computational and memory cost. To utilize
these resource-intensive models in deployment scenarios such as
mobile devices, where desired resources are constrained, prior work
proposed techniques such as model pruning [5, 15], low-rank factor-
ization [18, 19], knowledge distillation [3, 9], efficient CNN [12, 24],
and hard attention model [1, 17].

Dynamic inference is an emerging technique that aims to reduce
the resource consumption, e.g., computational cost, of deep neural
network during inference. A prominent approach of dynamic infer-
ence centers around the use of multi-branch networks [10, 16, 20],
i.e., networks that consists of more than one output layer, for han-
dling the natural difficulty variations exhibited in real-world sam-
ples. Ideally, the multi-branch network spends just enough com-
putation for each sample, instead of applying the same amount of
computation, as illustrated in Figure 1. For example, easier sam-
ples can use earlier prediction branches while the harder ones go
through the normal forward propagation. We refer to the scenarios
of using branch classifiers as early-exiting. One of the key challenges
in achieving efficient dynamic inference is being able to adapt the
resource consumption to individual inference request without im-
pacting the inference accuracy. Existing work on dynamic inference
with multi-branch network [10, 16, 20] used handcrafted policies for
deciding the exiting branch per inference, as shown in Figure 2. As
these policies require domain experts in setting the threshold, the
performance is subject to external factors such as resource fluctu-
ation or sample difficulty. Further, prior networks only provide a

https://doi.org/10.1145/3340531.3411973
https://doi.org/10.1145/3340531.3411973

Multi-branch Network

! Require
Conv 0 Classifier 1 Previous, = i manually
Work / [0.2,0.5,03] ——> Max probability 0.5 designed
Logits < R¥! Rules and
o8l = threshold y
—_Con 2
.
R AN
v i [0.2,0.5,0.3] : .
Conv n | l i |
1 1 1
| i W, b, by PN af
! 1 No need for
Classifier n S:)C;P E 5 - /[Y—> Stop E human
Contimue N 3 3 T | interference
Logits 7 1 [02,0.5,0.3] A~ ~ ac[0,0) —>=—_a>0 :
Our | 2 2 N i Can find
idea . Continue | better policy
I

Figure 2: Early-exiting policies for multi-branch networks. A learning-based policy has two key advantages over the rule-based policies: (i) does not

require human interference; (ii) can lead to better policies.

few adapting options, with a smaller number of branch exits. This
limits the network’s ability to adapt to smaller changes, i.e., less
flexible.

In this work, we investigate the problem of designing a flexi-
ble multi-branch network and early-exiting policies that can be
learned in conjunction from the training dataset. Designing a flexi-
ble multi-branch network requires attending to the tension between
the number of branches and the additional parameters and compu-
tational cost. In particular, we need an efficient network structure
that sufficiently represents the search space of the early-exiting
policies, while being mindful about the additional cost associated
with the early-exiting controllers. Additionally, when designing the
controllers, we need to explicitly consider the trade-off between
the classification accuracy and resource efficiency.

In designing our multi-branch network EPNET, we make the
following main contributions.

o We formulate the trade-off between the classification accu-
racy and efficiency as the computational-sensitive classifi-
cation problem. Specifically, we use a benefit score which
is a weighted sum of accuracy and efficiency to guide the
learning of early-exiting controllers. We provide a tunable
hyperparameter called cost sensitivity which can be set to
represent the available resources.

e We design a novel multi-branch network structure that pro-
vides fine-grained flexibility for early-exiting with negligible
resource increase. Concretely, we use a lightweight branch
design with low computational and parameters cost and
therefore are able to attach the exit after every convolutional
layer.

o We formulate the early-exiting problem as a Markov decision
process (MDP) and use a policy gradient without sampling
method to efficiently train good performant policies.

e We compare the performance of our EPNET to state-of-
the-art rule-based early-exiting policies using three differ-
ent datasets. The evaluation results show that our multi-
branch network, guided by the early-exiting controller, out-
performed baseline policies and was able to adapt to chang-
ing resource requirement.

2 DYNAMIC INFERENCE

Dynamic inference, adapting the resource required for performing
an inference request, provides opportunities to efficiently leverage
deep neural networks in real-world scenarios. In this work, we
focus on one such adaption that is based on the sample difficulty. In
Figure 1, we illustrate our targeted problem space and four different
inference scenarios. Our goal is to reconcile the conflicting goals
of inference accuracy and resource consumption with a flexible
multi-branch network design and automatic early-exiting policies.

The typical structure of multi-branch neural network consists of
two parts: main branch network f;,, and additional branches f;. The
main branch f;, can be a normal convolutional neural network, e.g.,
AlexNet [14], ResNet [8] or DenseNet [11]. Given a convolutional
layer conv; in fy,, the additional branches f} is a neural network
taking the activation of conv; as input and ending with a classifier
layer. The form of f; could be CNN [20] or even more complex
structure [10].

Early-exiting policies, as illustrated in Figure 2, define which
part of the multi-branch neural network will be used for the infer-
ence computation. It means that the multi-branch neural network
may automatically stop the forward propagation computation in
the main branch f; at a convolutional layer conv;, and return the
prediction of the branch f. In the previous studies [10, 16, 20],
the early-exiting policy is rule-based, e.g., if the uncertainty of the
logit yield by f! is below than a given threshold, the model directly
early exits at the £ [20]. In short, using multi-branch networks
with early-exiting policies is a form of dynamic inference that can
adapt to inference difficulty, therefore lead to lower computational
cost. There are other types of dynamic inference defined based

label

stop / continue
label

stop / continue

|

label

stop / continue

label

stop / continue

- label

stop / continue
label

Q
>
]

stop / continue

label

stop / continue

(a) Overall network architecture

3D feature map, shape =[Width, Height, Channel]

Global Average Pooling (GAP)

1D feature vector, dim = Channel

. Label Concat
TERE
""""""""""
Label Stop / Continue

(b) The i-th branch exit with a classifier and a controller.

Figure 3: An example of our proposed EPNET, a multi-branch network with learnable early-exiting policies. The overall structure consists of
three parts: main branch f;,, branch classifiers f,, and early-exiting controllers f..

on conventional CNNs [2, 22] which we will further discuss in
Section 6.

3 PROBLEM FORMULATION

In this work, we target the dynamic inference problem of image
classification. Given a set of samples D={I;}, where I; € R*¥*Y*¢
denotes a image, and a user-defined resource sensitivity value S,
our goal is to design a multi-branch model M that balances the
classification accuracy and resource cost trade-offs.

To learn My that is parameterized by 0, we design an optimiza-
tion metric called benefit score B as:

B(D, My,) = Acc(D,My) — f x C(D,My), 1)

where Acc(D, My) is the average accuracy of My on D, and
C(D,Mp) is the average computational cost of My on D. The
parameters 6 is obtained by maximizing the benefit score S, and
will be used to decide how to perform the classification task. In our
formulation, if the resource is ample, we can set f§ to be 0 which
turns to a traditional classification problem. We can set f3 to a larger
value when the resource is more constrained.

4 MULTI-BRANCH MODELS DESIGN

We first describe the overall architecture and design of our proposed
multi-branch models EPNET. We then detail our formulation of the
early-exiting problem in Section 4.2, followed by how to effectively
train the early-exiting controllers in Section 4.2.

4.1 Model Structure Overview

Our proposed EPNET consists of three components: the main branch
network fp,, branch classifiers f,, and early-exiting controllers f;.

Figure 3 illustrates an example structure for image classification on
CIFAR-10.

4.1.1 Main Branch Network. The main branch network f,
(the leftmost component in Figure 3(a)) takes the image as the
input and can produce classification result independently with
the final classifier layer. To enable as many exits as possible, we
attach additional branch classifiers f; (described below) at every
convolutional layer except the last one. Larger number of branch
classifiers provides the early-exiting controllers f. more flexibility
to adapt to dynamic inference environments such as varying sample
difficulties and fluctuating system resources.

Additionally, the ideal property of fy, is the monotonically in-
creasing accuracy with the number of the layers, i.e., the branch
classifiers attached to the latter layers should have higher accuracy
than earlier layers. In this work, we chose the ResNet [8] as the
main branch network architecture. Other potential implementa-
tions of f;, include networks with short-cut connections such as
DenseNet [11].

In short, the main branch network should be designed around
two key principles: (i) enabling as many exits as possible; (ii) main-
taining monotonically accuracy increase with exits.

4.1.2 Branch Classifiers. As shown in Figure 3(b), we need a
branch classifier f} for each exit i. In our current implementation,
f} is attached to the i-th convolutional layer of fy,. For a main
branch network with a total of N convolutional layers, we need a
set of branch classifiers f, represented as {f},i € {1,2,..,N — 1}}.

One of the key design challenges for branch classifiers is to
balance its resource requirement and classification accuracy. Con-
sidering the following example. In order for an exit i to be a valid
exit, the total computational cost of exiting through f} should not

exceed that of exiting through fi*!. This indicates an upper bound
of computational budget, e.g., the difference between the two con-
secutive convolutional layers, when designing the branch classifiers.
This computational budget has to be shared with the early-exiting
controllers, further restricting our design space.

Similarly, the memory consumption of branch classifiers, i.e.,
number of parameter, is also a big problem. In classic CNN structure,
the 3D feature map outputed by last convolutional layer is flattened
and fed to a fully connected layer, where the most of the parameters
belong to. This suggests that simply attaching a classifier layer to
every convolutional layer may lead the memory consumption to
increase by multiple times.

Instead, we design the f with the structure of GAP-FC-SoftMax.
Here the GAP is a global average pooling layer and FC is a fully
connected layer. We chose to use the GAP layer because it signifi-
cantly reduce the resource requirement of the branch classifiers.The
input of f! is the 3D activated feature map generated by the i-th
convolutional layer.

In short, the branch classifiers should: (i) comply to the resource
consumption pattern of the main branch network layers; and (ii)
without impacting the accuracy.

4.1.3 Early-exiting Controllers. Lastly, our EPNET requires a set
of early-exiting controllers f. = {fci,i € {1,2,..,N — 1}} that
regulates the usage of each exit i.

We design £/ as a two-part network, i.e,. fl’n and fcia ;> to preserve
the information of features outputted by both the GAP layer and
the logits outputted by f;. This allows our controllers to perform at
least as well as previously proposed rule-based policy [10, 16, 20].
Both of the fi, and f;q4; are in the form of stacked blocks FC-BN-
ReLU, except for the last activation of f,; which should be Sigmoid
function. Here BN is a batch normalization layer.

Specifically, fl.in takes the 3D activated feature map generated by
the i-th convolutional layer as input and outputs a 1D vector v. This
1D vector v and the logits outputted by f; are concatenated and
used as the input to fc’ o Who then output a scalar signal p € [0, 1].
From the Bernoulli distribution paramiterized by p, we sample a
stopping signal s € {0,1}. If s = 0, the forward propagation in
main branch fy, will continue until another controller f! at j-th
convolutional layer outputs s = 1, or reaches the final classifier
in fi,. If s = 1, the forward propagation is immediately stopped
and the model output the label predicted by the current branch
classifier f;.

4.2 Learning the Early-exiting Policy

We formulate the early-exiting problem as a Markov decision pro-
cess (MDP) problem M = (S, A, T, R), where the environment is
E = (fm, fa. D). We describe the state set S, Action set A, Trans-
formation table T and Reward R in detail below. The early-exiting
policy 7 can be learned through maximizing the expected reward
E;(R), once fp, and f, are trained.

States set S. We define a state s; as (m;, y;) where m; is the out-
putted vector at the GAP layer after the i-th convolutional layer of
fm, and y; is the logits outputed by fi. Additionally, S contains a
distinguish state s, called absorbing state. The MDP stops when
any states transition to s,p. In our case, s, represents the state

when the controller decides to stop and exit from exit i. Lastly, we
define the start sate sop = I where I denotes an image from D.

Action set A. The MDP only has two actions: "stop at current
exit" or "continue to forward propagation”. Here we denote it as
A = {0,1}, where 0 is "stop" and 1 is "continue". Ones the agent
takes action a = 1, the state transfer to s,;. So given a image x,
the trajectory set 7~ of agent can be denotes as 7 = {(x,0",1)|n €
{0,1, ..., N —1}}, where 0" means a succession of 0 of length n, and
N is the total number of branch exits.

Transformation table T. T = {P(s,a,s’)|s,s’ € S,a € A}, where
P(s, a,s”) is the probability that state s transfer to s’ by taking action
a. In this study, the T is deterministic so that all P(s,a,s’) = 1 if
(s, a) = s’, otherwise P(s,a,s’) = 0.

Reward R. Given a Image x from D and a cost sensitivity f. If the
agent stop at the i-th exit, the trajectory is 7 = (x, 071, 1). The
reward R(7) is the Bene fit({x}, fi, f) defined in Eq 1. Here f; is the
sub-network from the input layer of the main network f, to the
output layer of i-th branch classifier f}.

4.3 Training Consideration of the Controllers

The main branch f;; and additional branch classifiers f, can be
trained by simply summing their cross entropy loss together [20].
Here We mainly describe two approaches to train the controllers f.
We compare their ability to find early-exiting policy in Section 5.5.

The first option is to leverage REINFORCE algorithm [23] to
train the early-exiting controllers as following.

VoEx(R) ~ %iiV@log (n (ajf|s{;9))Rf @)

j=1i=1
fisi) ai =1,8; # Sap
m(ailsi;0) = {1 = fi(si) ai =0,8; #sgp ®3)
1 Si = Sab

Here m is the number of episode, and n denotes the length of
a trajectory, i.e., the number of exits. s, a, R are the states, actions,
rewards defined in the previous section.

But the classic REINFORCE rule is based on sampling and Markov
Chain Monte Carlo approach (MCMC), which could be inefficient
in our task. For example, if the dynamic model has 9 additional
branches, the trajectory 7 = (x, 0%, 1) may have very low chance
to be sampled. This is because it requires all the controllers to
output continue. The low sampling efficiency can cause well known
drawback of REINFORCE, the high variance of policy gradient.

The second option, which we used for training the controllers
in this work, is to directly compute the exact gradient of E;, (R) as
following.

n

n
VoEx(R) =) Vo | (v (a]ls):0)) ® (@
j=1 =1

The gradient computation is feasible because of two important
properties of our MDP. First, The environment E = (fm, fa, D) is
a given and the only randomness comes from the policy 7 itself.
Second, given an image and a multi-branch network of N branches,
the size of trajectories set is 7~ = {(x,0%,1)|i € {0,1,...,N — 1}}

Easy case Medium case Hard case

(]

Label = Max - Min
=9-1 =8-0
8 8

Label =5 Label = Max - Min

Figure 4: Example of samples in our Max-Min MNIST dataset. This
dataset contains samples of three difficulty levels. The ratios for easy,
medium, and hard levels are 2:1:1.

with size N. In our current design N is bounded by the number of
convolutional layers which varies from tens to a couple hundreds
given current popular CNNs. As such, N is small enough that we
don’t need sampling.

5 EXPERIMENT

We evaluate our proposed EPNET with three datasets and compare
to two types of baselines. We summarize and highlight our key
results below.

« Accuracy and resource comparisons to baselines. In Sec-
tion 5.3, we show that EPNET outperformed all baselines including
ResNet, and both rule-based and manually-tuned early-exiting poli-
cies applied to multi-branch models [10, 16, 20].

« Adaptivity of EPNET. In Section 5.4, we demonstrate EPNET’s
ability to effectively choose the appropriate branch exit based on
both the classification difficulty of samples and the computational
cost sensitivity of the resource-constrained platform.

5.1 Data Sets

We used the following three widely used datasets for image classi-
fication task to evaluate the performance of our EPNET.

« Max-Min MNIST dataset. We created this dataset of three dif-
ficulty levels, based on the original MNIST, to evaluate the effec-
tiveness of early-exiting policy. Figure 4 illustrates corresponding
image examples. We constructed the easy samples by embedding
the original MNIST digits into a 50 X 50 black background and
reusing the original labels. The medium-level samples had two dig-
its embedded in the 50 X 50 black background, with the labels being
the absolute difference between the two digits. Finally, the hard-
level samples had twice as many digits as the medium-level ones
and were assigned the labels in the same way. For each sample, the
locations of digits were generated from the 2D uniform distribution.
We used the ratios of 2:1:1 for easy, medium and hard levels for both
training and test sets, respectively. The total numbers of training
and test images were 60000 and 10000 respectively, the same as the
original MNIST dataset.

« Multi-scale Fashion MNIST. We created this dataset based on
the original Fashion MNIST. Figure 5 illustrates corresponding
image examples, which could be categorized to four types. We
constructed the Type 1 by embedding the original Fashion MNIST
objects into a 50 X 50 black background and reusing the original
labels, the objects are scaled to the 0.6 times of its original size.

Label = Coat

Label = Sandal Label = T-shirt Label = T-shirt

Figure 5: Example of samples in Multi-scale Fashion MNIST dataset.
This dataset contains four different types of samples, with equal proportion.

For the Type 2 and 3, the objects are scaled to the 1.5 times of its
original size. The Type 4 contains two objects, one is large, another
is small, and its label is decided by the small objects. In the Type 1,
3, 4, the locations of object were generated from the 2D uniform
distribution. For Type 2, the object is fixed at the center. We used
the ratios of 1:1:1:1 for each type, respectively. The total numbers
of training and test images were 60000 and 10000 respectively, the
same as the original Fashion MNIST dataset.

« CIFAR-10. We used the original CIFAR-10 dataset which consists
of 50k training and 10k test images of 32 X 32 pixels, respectively.
For training we adopted the data augmentation technique used in
the [8]. Specifically, each image was zero-padded with 4 pixels on
each side, then randomly cropped to produce 32 X 32 resolution.
Further, training images were flipped horizontally with 0.5 proba-
bility and the pixel values were normalized by subtracting channel
means and dividing by channel standard deviations.

5.2 Baseline Methods

We compared to two types of baselines: (i) a state-of-the-art image
classification model; and (ii) early-exiting policies.

» ResNet [8]. We not only compared with ResNet, but also use
ResNet as the main branch network f;, of proposed EPNET. We
made the following changes to the original ResNet structure to
account for the image size difference between our chosen datasets
and the ImageNet dataset of which ResNet was designed for. These
changes are: (i) we removed the first conv layer and the first pool-
ing layer; (ii) the first conv layer in the first residual block was
performed by stride of 2.

« BranchyNet [20]. We chose a representative entropy-based early-
exiting policy as described in BranchyNet [20]. At a high level,
BranchyNet works by comparing the entropy of logits of an exiting
branch to a predefined threshold and halting the forward propa-
gation in main branch if the logits entropy is lower. We used the
recommended entropy thresholds of 0.2 and 0.3 for the baselines
and denoted them as BranchyNet-0.2 and BranchyNet-0.3, respec-
tively. We also compared the BranchyNet with dynamic thresholds,
denoted as BranchyNet-oracle, which was constructed as following:
(i) the thresholds are manually tuned; (ii) by using the results of
our EPNET as a guidance for searching the thresholds.

- Softmax-gated policy. This baseline leverages the maximum
value of the softmax probability and compares the probability to a
given threshold for early-exiting [10, 16]. We denoted the baseline
as Softmax-gate-y where y is the threshold. Given the logits of a
branch classifier, if the maximum value of the softmax probability

is larger than 1 — y, the model halt the forward propagation. On
each dataset, we pick two thresholds. By the smaller y the network
can achieve the high accuracy close to our EPNET. By the larger y
the network can maintain low computational cost close to EPNET.
Similar with BranchyNet, we also compare with Softmax-gate with
dynamic thresholds, denoted as Softmax-gate-oracle.

For fair comparisons, our EPNET uses the same structure as its
ResNet for its main branch network fj,. Further, EPNET shares the
same structure and parameters of f;;; and f, with the BranchyNet
and Softmax-gated policy.

5.3 End-to-end Evaluation

5.3.1 Evaluation Methodology. We evaluated the effectiveness
of EPNET on all three datasets with following two metrics.

The first metric we chose is the benefit score that was defined
in the Equation (1). This metric allows us to compare our EPNET
to baselines in a unified way. In each task, we firstly set the cost
sensitivity to x 0.01, where ! is the order of magnitude of
the average comutational cost (FLOPS) of a single convolutional
layer in the EPNET used. Then we increase the cost sensitivity each
time by adding f x 0.01 to the previous cost sensitivity. So we
can observe how the methods’ performances change against the
decreasing available resources. Under each setting of cost sensitivity,
we retrain the controllers and keep the rest part of EPNET fixed.

We also used a metric, referred to as budget-constrained accuracy,
for understanding the effectiveness of early-exiting [10, 16]. To
calculate the budget-constrained accuracy, we first define a com-
putational budget and then use it as a barrier for determining the
accuracy. For example, in the case of CIFAR-10, we used our EP-
NET’s total computational cost (FLOPS) over the test dataset as
the computational budget, and evaluated all baseline models. For
baseline models that did not finish all test images within the budget,
we assigned labels in an uniformly random way to the remaining
test images. We use acc? to denote the resulting budget-constrained
accuracy.

5.3.2 Performances on Max-Min MNIST dataset. We first de-
scribe the network structure and parameter settings we used in
EPNET for training on the Max-Min MNIST dataset, followed by
the performance comparison to its respective baselines.

Network structure setting. For the main branch network f,, we
used a ResNet with 12 convolutional layers. The first four layers
each has 32 filters, followed by another four layers with 64 fil-
ters. The last two convolutional layers are of 128 filters. We down-
sampled by using a stride of 2 for convolution when the number
of filters changed between layers. To construct the early exits, we
used a single-layer classifier f! that takes the input of the i-th
convolutional layer of f,. This resulted in a total of 12 potential
exits. On i-th exit, The classifier f! is a single fully-connected layer.
The controller ! consists of two fully-connected networks f;, and
feat, where the fi, has 10, 10, 10 units in each layer, and the f¢4¢
has 10, 10, 1 units in each layer.

Parameter setting. We adopted the Kaiming initialization [7] and
BN [13] without dropout when training the main and branch clas-
sifiers fi, and f,, respectively. We used a mini-batch size of 64 and
momentum of 0.9. We set the initial learning rate to be 0.1. We

trained the classifiers for a total of 60 epochs. Once the classifiers
were trained, we fixed the classifiers and train the controllers f.
The mini batch size is 64, and the initial learning rate is 0.01. We
trained the controllers for a total of 60 epochs as well.

Result and discussion. Figure 6(a) compares the benefit score
achieved by different baselines and our EPNET. We make the fol-
lowing three key observations. First, the EPNET greatly outperforms
all baselines, and the gap of performance grows as the cost sensitiv-
ity grows. At beginning the cost sensitivity is small (2 x 1077), the
EPNET outperforms the best baseline Softmax-gate-oracle by 3.11.
When cost sensitivity reaches 1 x 1075, the gap between the scores
of EPNET and Softmax-gate-oracle increases to 10.17. Second, the
ability to learn the early-exiting policy from dataset is the reason
of the superiority of EPNET. The performances of oracle baselines
with dynamic thresholds and the branchyNet-0.2 / 0.3 are very
close, indicating the thresholds 0.2 and 0.3 recommended in [20]
are suitable for this dataset, while tuning the thresholds can’t bring
obvious benefit. In contrast, the gaps between the EPNET and the
oracle baselines are much larger than the differences among the
early-exiting baselines. This results may indicate the EPNET learns
much better representation of the confidence of the classification
than the rule-based methods. Third, The ResNet’s benefit score is
worst because it only focuses on accuracy while has the highest
computational cost.

Table 1 shows the comparison on budgeted batch classification.
The accuracy of EPNET is 95.51%, which is higher than the best
baseline Softmax-gate-0.2 by 7.35%. The BranchyNet-0.2 and 0.3
can’t finish within the budget. We have to rise the threshold to 0.95,
then the BranchyNet’s computational cost meets the limitation of
budget. But its accuracy is only 84.13% which is 11% lower than
EPNET. The ResNet with same structure of the EPNET’s main branch
network, can only achieve 46.86% under the limited budget, which
is 48.65% lower than the EPNET. Compared with ResNet without
budget limitation, the EPNET’s accuracy is only 0.18% lower than
it, while saves about 50% of computation. Even when the budget
limitation is removed for the baselines except for ResNet, their
accuracies are all lower than EPNET by at least 1%.

5.3.3 Performances on Multi-scale Fashion MNIST. Next we study
the effectiveness of the EPNET on Multi-scale Fashion MNIST
dataset.

Network structure setting. We used the same network structure
as described in Section 5.3.2 for the Max-Min MNIST dataset.

Parameter setting. We adopted the Kaiming initialization [7] and
BN [13] without dropout when training the classifiers (i.e,. fi and
fa) and the controllers f, respectively. For the classifiers, we used
a mini-batch size of 128 and momentum of 0.9. We set the initial
learning rate to be 0.1 and divide the learning rate by 10 every 100
epochs. We trained the classifiers for a total of 300 epochs. Once
the classifiers were trained, we fixed the classifiers and trained the
controllers f;. The mini batch size is 128, and the initial learning
rate is 0.01. After 50 epochs the learning rate was reduced to 0.001,
then we trained the controllers for another 50 epochs.

Result and discussion. Figure 6(b) shows the performances of
each model according to the benefit score. Similar with Max-Min
MNIST dataset, we make the following two key observations. First,

Benefit score

=
Eal

dbch+

Proposed N, A
- BranchyNet 0.2 \\ SIS
- BranchyNet 0.3 < ~.
., ~
ResNet \E\ v
- Softmax-gate 0.2)
- Softmax-gate 0.01 \.\
BranchyNet-oracle N
softmax-gate-oracle R

o
~

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cost sensitivity (percent/flops) ¥

(a) Max-Min MNIST

80

<
3

Benefit score
o

@
3

40

80
. %:\ - o 60
N N o
~ ~. KT~ 5]
. ~. NS¢ 2]
~ . ~.
N . X 4 40
-5~ Proposed = N b}
=<+ BranchyNet 0.2 N, v =} <+ BranchyNet 0.2 N, Ny
—- BranchyNet 0.3 \.\ Q o] = BranchyNet 0.3 E\
4} ResNet E\ M =A- Softmax-gate 0.1 .
=A- Softmax-gate 0.2 . =7 softmax-gate 0.01 E\
7. Softmax-gate 0.01 N, 4 ResNet \El\
BranchyNet-oracle o 0 BranchyNet-oracle .
softmax-gate-oracle ‘" softmax-gate-oracle o

o

.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Cost sensitivity (percent/flops) *1°”

(b) Multi-scale Fashion MNIST

1 2 3 4 5
Cost sensitivity (percent/flops) *1°”

(c) CIFAR-10

Figure 6: The benefit score comparison on all three datasets. We observe that our proposed EPNET outperformed two types of baselines.

Table 1: Results of budgeted classification. The budget of each task is
the total computational cost of proposed method on the whole dataset.
The results are reported as test accuracy constrained by budget (acc?)
(rank), test accuracy (acc*), and whether the classification finished before
the budget ran out.

Dataset Model acch(%) acc(%) Completion
Proposed 95.51 (1) 95.51 v
BrachyNet-0.2 67.65(5) 93.71 X
. BrachyNet-0.3 70.82 (4) 93.03 X

Max-Min
MNIST BrachyNet-0.95 84.13(3) 84.13 v
softmax-gated-0.2 87.76 (2) 87.76 4
softmax-gated-0.01 61.53 (6) 94.59 X
ResNet 46.86 (7) 95.69 b
Proposed 88.68 (1) 88.68 v
BrachyNet-0.2 61.09 (5) 88.41 X
. BrachyNet-0.3 68.11(4) 87.88 X
. MultiSeale —p o b Net-0.6 85.68(2) 85.68 v
ashion MNIST

softmax-gated-0.2 85.38 (3) 85.38 v
softmax-gated-0.01 49.88 (6) 88.69 X
ResNet 32.14(7) 89.92 b
Proposed 88.61 (1) 88.61 v
BrachyNet-0.2 86.54 (4) 88.35 X
BrachyNet-0.3 87.83(2) 87.83 v
CIFAR-10 softmax-gated-0.1 87.53(3) 87.53 v
softmax-gated-0.01 71.72(5) 88.76 X
ResNet 4782(6) 89.89 b

the EPNET always outperforms all the baselines and the gaps be-
tween EPNET and the baselines are very clear. When the cost sen-
sitivity is 2 X 1077, the benefit score of the EPNET is 85.25, and
the score of best baseline BranchyNet-oracle is 83.48. When the
cost sensitivity reaches 1 X 1079, the benefit score of EPNET is
74.68, and the best baseline, Softmax-gate-oracle is 71.01. Second,
the performances of oracle baselines are almost the same with the
Softmax-gate-0.2, indicating 0.2 is already a good threshold. There-
fore manually tuning the threshold did not make a big difference.
Similar to the discussion of the previous dataset, this observation
reflects that the performance of the rule-based polices are limited
by their confidence/uncertainty measure.

As show in the Table 1, on the budgeted batched classification,
the accuracy of EPNET is 88.68%, which is higher than all the base-
lines by at least 3%. The ResNet with same structure of the EP-
NET’s main branch network, can only achieve 32.14% under the
limited budget, which is 56.54% lower than the EPNET. Both the
branchyNet-0.2 and branchyNet-0.3 can’t finish the whole test set

X

IR

M% X
"k

»
S

S
o
S

>¢ Type1

Type 2
—] Type3

Type 4

Cumulative exiting rate(%)
g
&Y

*Eg{

0 2 4 6
Exit
Figure 7: Cumulative exiting rate on the Multi-scale Fashion MNIST.
The cost sensitivity was 2 x 1077,

before the budget runs out. We have to increase the threshold to
0.6 to fit the budget, and the accuracy of branchyNet-0.2 is 85.68%.
Even the budget limitation is removed, branchyNets’ accuracies are
still lower than EPNET, which may indicate their measurements
of confidence, i.e., the entropy of logits, may be not feasible in this
task.

5.3.4 Performances on CIFAR-10. Lastly we study the effective-
ness of the EPNET on CIFAR-10.

Network structure setting. For the main branch network f,, we
used a ResNet with 10 convolutional layers. The structure is similar
with the previous task but only has two convolutional layers of 128
filters. For the controller of i-th branch, the f;, has 100, 10, 10 units
in each layer, and the f;4; has 100, 100, 50, 1 units in each layer.

Parameter setting. The most of the parameters are same with the
Multi-scale Fashion MNIST. Additionally we used the weight decay
0f 0.0001 to train the classifiers. Also, for training of controllers, we
set the batch size = 64.

Result and discussion: Figure 6(c) shows the performance of
each model according to the benefit score. The gaps between EPNET
and baselines are not as large as on the other datasets. The reason
may be the difficulties of the samples are not as obvious as the
other two datasets. So we test the models under more settings
of cost sensitivity. The key observations are: First, even though
the sores of all models are very close to each other at beginning,
the gap between the scores of EPNET and the baselines with fixed

K100] ¢ by N Smate ey | T 100 3¢ by S HIEHK K A B- R Lo U=+ Bt i PR DR BB Bl B D¢ Eesy
=~ Middle X 71 = Middle - +—t 4 =~ X/ Middle
B | F e % e B |5 e, o’ 8) o
T g 7/ A T g 7 7 ! @ g i

= X —+ I = / / / = i

> i T i 2 ¥ ¥ i 2 i

g 0 ! i i g 0 i i / E=R

BSt i K ! = | | ! = i

% -] i & i ! s i

© 40 ! 1 © 40 i] K o 40 i

2 ¥ [i [g]

= / H 3 = ! ; = !

.L; 20 ./' 4’ /~/ % 01 | I! ﬁ ,‘—g 201 |

E |/ 7z g |/ hef E |

& olth-B e & olth-mmmert & ok

o 2 a 6 8 10 o 2 a 6 8 10 o 2 4 6 8 10
Exit Exit Exit

(a) The cost sensitivity is 2 x 1077

(b) The cost sensitivity is 1 x 107°

(c) The cost sensitivity is 2 x 107°

Figure 8: Cumulative exiting rate of samples with varying difficulties on the Max-Min MNIST dataset.

E“E"B'EE,E‘E:@'—‘&%—X 0GB g " mEE-E o=
s 'S TR AR X R R =X
80 . 80)(, ‘B_E 80)6_/ \‘
e X g X gL) : IS
6= / ’ .
E 0 }(’ € ><: Accuracy over whole data set E 0 / < Accuracy over whole data set = + 3 e)(> Accuracy over whole data set
% N g Exiting rate s : Exiting rate g 4 Exiting rate
o / Accuracy over exited samples o / Accuracy over exited samples o X Accuracy over exited samples
= 40 / o 40 = 40
g |y g g X
20 j——'k k 20 </+\4 20 e \ j’
/ N ,k\ */ \ /T‘?‘ _’_\+ - " ‘K/ \ /
K . N s 3 R T~k ok 7 s N
ol « *\—F"*"’h Nig \ o At e NE o] 4=’ e~y
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8
Exit Exit Exit

(a) Max-Min MNIST

(b) Multi-scale Fashion MNIST

(c) CIFAR-10

Figure 9: The distribution of accuracy and exiting rate. The cost sensitivities for each dataset are 5 x 1077, 2 x 1077, 2 x 107".

thresholds increases quickly. When cost sensitivity reaches 5x 107,
the score gap is up to 10.17. Second, even though the oracle baselines
are granted “unfaire” advantages, i.e., their thresholds are tuned
by hand and the searching is hinted by the results of EPNET, our
EPNET still slightly outperforms them. When the cost sensitivity is
small (5 x 1077), the EPNET outperforms the best baseline Softmax-
gate-oracle by 0.2. Then their gap of benefit score grows to 1.2 as
the the cost sensitivity grows to 5 x 107°,

Table 1 compares the budget-constrained accuracy and contains
the model test accuracy for reference. We observe that among all
tested baseline models, only two were able to complete within the
computational budget. Even so, BranchyNet-0.3 and Softmax-gate-
0.1had 0.78% and 1.08% lower accuracies than our EPNET, respec-
tively. Compared to the ResNet-11 that shared the same main branch
structure, our EPNET achieved 40% higher budget-constrained ac-
curacy. Our results demonstrate the effectiveness of our EPNET in
operating with stringent resource.

5.4 Case Study: EPNET’s Adaptivity to
Classification Difficulty

The desired controller should be able to identify the samples which
are easy to be classified at early stage. This property is well sup-
ported by the experiment on Max-Min MNIST and Multi-scale
Fashion MNIST, which consist of samples of different difficulty
levels in term of classification.

Multi-scale Fashion MNIST. In Figure 7 we show the cumulative
exiting rate over all exits for the Multi-scale Fashion MNIST. The

curves that are closer to top-left corner are more tend to exit at
earlier branch exits. About 90% of Type 1 samples stop before exit-5.
The reason may be the objects in Type 1 are very small, so the
shallower layers are sufficient to model them. The 80%-stop point
of Type 2 and Type 3 samples are exit-6 and exit-8 respectively. It
makes sense because compared with Type 1, the Type 3 samples
have larger objects that require down-sampling to capture the ob-
jects. Compared with Type 2, the locations of object of Type 3 is
random, so it is also more difficult than the Type 2. The Type 4 is
at most bottom-right, because the samples are harder than other
types due to they have two objects and need to tell which one is
larger.

Max-Min MNIST. The similar finding is more obvious on the Max-
Min MNIST. Figure 8(a) shows when the cost sensitivity is 5 x 1077,
the easy samples mainly stop at the second, third and fourth exit.
The medium samples mainly stop at 8-th exit. The hard samples
mainly stop at 10-th and 11-th exit. This result indicates the con-
troller learns to predict the easy samples at shallow stage and leave
the hard samples to the deep stage, thus the computational cost
is saved. Figure 8(a) shows when the cost sensitivity increases to
2.5 x 107°, the controller tends to left-shift the exiting distribution
of all samples, because the model is more sensitive to the compu-
tational cost. As show in the Figure 8(c), when the cost sensitivity
reaches 5 x 10, something interesting happened. The controller
chose to output the hard and medium samples at the first exit, even
before the easy cases! The reason is to correctly classify the hard
samples, we have to use the deep layers, but the computation cost

s o o o o o
@ ® ®» ® » o
g 8 ' & & 3

s

°
]

&
#gfg },#- ﬁﬁﬁﬁ#ﬁ ¥ &zﬁ

g Bl os S0

086 X ¢ McMC
=t Ours

e g

Average benefit score (reward)
Average benefit score (reward)

500 1000 1500 2000 2500 3000

Iteration

(a) Max-Min MNIST

500 1000 1500

Average benefit score (reward)

Iteration

(b) Multi-scale Fashion MNIST

2000 2500 3000 3500

°

2000 4000 6000 8000

Iteration

(c) CIFAR-10

10000 12000

Figure 10: Average benefit score during the training phase. The cost sensitivities for each dataset are 5x 1077, 2x 1077, 2 x 107",

Table 2: Performance comparison of different controller layer configurations.

Configuration Neurons in f;;, Neuronsin f.,; Benefit Score

Accuracy (%) Total network Computation (FLOPS)

Controller Computation (FLOPS)

1 (10, 10, 10] [10, 10, 1] 82.40 88.42
2 (50, 10, 10] [50, 50, 1] 83.17 88.45
3 (100, 10, 10] [100, 100, 50, 1] 83.51 88.61
4 None [100, 100, 50, 1] 82.99 88.37

1.203 x 107 0.107 x 10*
1.054 x 107 0.724 x 10*
1.019 x 107 2.419 x 10*
1.074 x 107 1.700 x 10%

is much larger than the benefit of correct classification, as the cost
sensitivity is large now. So in this case, outputting the hard cases
at beginning is reasonable.

All datasets. For each exit, Figure 9 shows its accuracy on whole
test set (denoted as acc,,), and on the exited samples (denoted as
acce), as well as the exiting rate. On all the datasets, the acc, is
much higher than the acc,, at beginning. This reflects that the
controller f} can effectively find the samples which the classifier
£ can confidently predict, even without knowing the ground truth
of sample difficulty. As the depth increases, the acc,, increases
while the acc, drops to below than acc,,. The reason is the easy
cases have exited at previous branches, leaving the hard cases to
the later branches.

5.5 Training discussion

Now we discuss the training step use different method. As we
have statemented, the early exiting problem can be viewed as a
reinforcement learning task, and could be solved by classic REIN-
FORCE algorithm based on Markov chain Monte Carlo (MCMC) to
estimate the gradients. Here we show the training process using
our EPNET and MCMC in the Figure 10. As we can see, on three
datasets, the training reward of both method increased very quickly
at beginning, then slow down. The EPNET always keeps higher re-
ward at each iteration step comparing with the MCMC REINFORCE
algorithm. Especially on the Multi-scale Fashion dataset, the reward
curve of MCMC REINFORCE algorithm has large fluctuation, even
we already add the baseline to reduce the variance of policy gradi-
ent. On the contrary, our EPNET not only achieves higher reward,
but also has much smaller fluctuation on the reward increasing
curve. We think the reason may be our EPNET use the gradient of
the exact expectation of reward instead of the estimation based on
MCMC.

5.6 Parameter discussion

Lastly, we discuss the impact of the structure of controller on our
EPNET performance. We train and test the EPNET on the CIFAR-10
under four configurations of controller, as show in the Table 2. Each
configuration corresponds to different computational complexities.
As we can see, increasing the depth and width of the controllers
on each branch lead to higher computational cost of the controller
(first three rows). However, the slightly higher computational cost
on controller led to two orders of magnitude reduction in computa-
tional cost on whole network and better accuracy. This is because
more complex controllers are better in learning the early-exiting
policies.

Compared with Config 3, i.e, the best configuration in Table 2,
the Config 4 use the similar structure of f4; but without f;,, which
means the controllers in Config 4 only use the logits to decide to
stop or continue, neglecting the original information in the feature
vector after GAP layer. So its performance is worse than Config
3. Even though Config 4 uses a larger controller than Config 2, its
performance on benefit score, classification accuracy and computa-
tional cost are worse than Config 2. This result support our idea
that combining the pooled feature vector and logits can improve
the controller’s performance.

6 RELATED WORK

Rule-based Early-exiting. Teerapittayanon et al. proposed a multi-
branch network named BranchyNet [20], which added several ad-
ditional branches on CNNs including LeNet, AlexNet and ResNet.
On each branch, the early exiting is controlled by the threshold of
logit entropy. Huang et al. proposed a novel model called MSDNet,
of which the structure is a stack of multiple DenseNet, for address-
ing the impacts of the multi-branch structure on the accuracy of
branch classifier [10]. MSDNet is designed to provide coarse-level
features to earlier branches and reduce the interference between
branches. Li et al. further studied the problem of potential negative

impacts of gradients from multiple branches and proposed methods
to collaboratively improve the training of branches [16]. Both [10]
and [16] used the softmax probability for making early-exiting de-
cisions. Our work propose a learning-based early-exiting approach
for better adapting to inference environment.

Dynamic Inference on CNNs. Figurnov et al. proposed a spatial
adaptive inference architecture called SACT [4] that can skip con-
volution within a residual block. Specifically, SACT calculates a
halting score during every convolution in a residual block and
decides whether to skip the next convolution in the same resid-
ual block. Veit et al. proposed a dynamic inference model called
ConvNet-AIG [21] that aims to only execute the layers related to
the category of input image. Concretely, ConvNet-AIG used a small
network as a gated function to decide whether to execute a residual
block or just jump over it through the shortcut link. Simiarly, Ben-
gio et al. [2] proposed a method to dropout some units of a layer in
neural network. Wang et al. proposed SkipNet [22] that leverages
reinforcement learning to identify the suitable shallow networks
per sample. Our work focuses on the co-design of a multi-branch
network and its early-exiting policy for efficient dynamic inference.

Dynamic Inference on RNNs. Minh et al. proposed a recurrent
attention model (RAM) [17] on visual learning tasks. RAM can learn
to only attend to the important regions without scanning the entire
image, similar to SACT [4]. On the task of time series classification,
Hartvigsen et al. [6] proposed a novel model EARLIEST to jointly
minimize the classification error and the execution time of the
model. BothRAM and EARLIEST and the works mentioned above [2,
22] are trained by REINFORCE algorithm. Our work also leverages
reinforcement learning to obtain the early-exiting policy. As our
MDP has much smaller searching space, our proposed controller
can be trained in an efficient non-sampling fashion.

7 CONCLUSION

In this work, we co-designed the multi-branch networks and the
early-exiting policies in the context of dynamic inference. Our pro-
posed solution, referred to as EPNET, addressed two key challenges,
namely (i) designing the learning objective to balance both accuracy
and efficiency; and (ii) explicitly considering the resource overhead
associated with the early-exiting policies. Concretely, we designed
a lightweight branch structure and cast the early-exiting problem
as a Markov decision process. This enables EPNET to make exit-
ing decisions per convolutional layer through the learned policy.
Comparisons of EPNET on three datasets to two types of baselines
demonstrate its efficacy in classification accuracy, adaptivity to
sample difficulty, and resource budgets.

8 ACKNOWLEDGEMENT

We would like to thank all anonymous reviewers for their insightful
comments, as well as Robert J. Walls for his discussion at the early
stage of this project. This work was supported in part by NSF Grant
CNS-1815619.

REFERENCES

[1] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. 2015. Multiple object
recognition with visual attention. In Proc. 3rd Int. Conf. Learning Representations
(ICLR’15).

[2] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. 2015.
Conditional computation in neural networks for faster models. In Proc. 4th Int.
Conf. Learning Representations (ICLR’16) Workshop.

[3] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. 2016. Net2net: Accelerating
learning via knowledge transfer. In Proc. 4th Int. Conf. Learning Representations
(ICLR’16).

[4] Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang, Jonathan Huang,
Dmitry Vetrov, and Ruslan Salakhutdinov. 2017. Spatially adaptive computation
time for residual networks. In Proc. 2017 IEEE Conf. Computer Vision and Pattern
Recognition (CVPR’17). 1039-1048.

[5] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. In Advances in Neural Information
Processing Systems 28 (NeurIPS’15). 1135-1143.

[6] Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, and Elke Rundensteiner. 2019.
Adaptive-Halting Policy Network for Early Classification. In Proc. 25th ACM
SIGKDD Conf. Knowledge Discovery and Data Mining (KDD’19). 101-110.

[7] Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proc. 2015 IEEE Int. Conf. on Computer Vision (ICCV’15). 1026-1034.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proc. 2016 IEEE Conf. Computer Vision and
Pattern Recognition (CVPR’16). 770-778.

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge

in a neural network. In Advances in Neural Information Processing Systems 28

(NeurIPS’15)Workshop.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and

Kilian Weinberger. 2018. Multi-Scale Dense Networks for Resource Efficient

Image Classification. In Proc. 6th Int. Conf. Learning Representations (ICLR’18).

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017.

Densely connected convolutional networks. In Proc. 2017 IEEE Conf. Computer

Vision and Pattern Recognition (CVPR’17). 4700-4708.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x

fewer parameters and < 0.5 MB model size. arXiv preprint arXiv:1602.07360

(2016).

Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift. In Proc. 32nd Int.

Conf. Machine Learning (ICML’15). 448-456.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet classifica-

tion with deep convolutional neural networks. In Advances in Neural Information

Processing Systems 25 (NeurIPS’12). 1097-1105.

Vadim Lebedev and Victor Lempitsky. 2016. Fast convnets using group-wise

brain damage. In Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition

(CVPR’16). 2554-2564.

Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and Gao Huang. 2019. Improved

Techniques for Training Adaptive Deep Networks. In Proc. 2019 IEEE Int. Conf.

on Computer Vision (ICCV’19). 1891-1900.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. 2014. Recurrent models

of visual attention. In Advances in Neural Information Processing Systems 27

(NeurIPS’14). 2204-2212.

Roberto Rigamonti, Amos Sironi, Vincent Lepetit, and Pascal Fua. 2013. Learning

separable filters. In Proc. 2013 IEEE Conf. Computer Vision and Pattern Recognition

(CVPR’13). 2754-2761.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. 2016. Convolutional

neural networks with low-rank regularization. In Proc. 4th Int. Conf. Learning

Representations (ICLR’16).

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2016.

Branchynet: Fast inference via early exiting from deep neural networks. In Inter-

national Conference on Pattern Recognition (ICPR). IEEE, 2464-2469.

Andreas Veit and Serge Belongie. 2018. Convolutional networks with adaptive

inference graphs. In Proc. 2018 the European Conf. on Computer Vision (ECCV).

3-18.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. 2018.

Skipnet: Learning dynamic routing in convolutional networks. In Proc. 2018 the

European Conf. on Computer Vision (ECCV). 409-424.

Ronald J Williams. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine Learning 8 (1992), 229-256.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. ShuffleNet: An

extremely efficient convolutional neural network for mobile devices. In Proc. 2018

IEEE Conf. Computer Vision and Pattern Recognition (CVPR’18). 6848-6856.

[11

(12]

[13

=
&

[15

[16

(17

(18]

[20]

[21

[22]

[23

S
=)

	Abstract
	1 Introduction
	2 Dynamic Inference
	3 Problem Formulation
	4 Multi-branch Models Design
	4.1 Model Structure Overview
	4.2 Learning the Early-exiting Policy
	4.3 Training Consideration of the Controllers

	5 Experiment
	5.1 Data Sets
	5.2 Baseline Methods
	5.3 End-to-end Evaluation
	5.4 Case Study: EPNet's Adaptivity to Classification Difficulty
	5.5 Training discussion
	5.6 Parameter discussion

	6 Related Work
	7 Conclusion
	8 Acknowledgement
	References

