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ABSTRACT
Node embedding techniques have gained prominence since they
produce continuous and low-dimensional features, which are ef-
fective for various tasks. Most existing approaches learn node em-
beddings by exploring the structure of networks and are mainly
focused on static non-attributed graphs. However, many real-world
applications, such as stock markets and public review websites,
involve bipartite graphs with dynamic and attributed edges, called
attributed interaction graphs. Different from conventional graph
data, attributed interaction graphs involve two kinds of entities
(e.g. investors/stocks and users/businesses) and edges of temporal
interactions with attributes (e.g. transactions and reviews). In this
paper, we study the problem of node embedding in attributed inter-
action graphs. Learning embeddings in interaction graphs is highly
challenging due to the dynamics and heterogeneous attributes of
edges. Different from conventional static graphs, in attributed in-
teraction graphs, each edge can have totally different meanings
when the interaction is at different times or associated with differ-
ent attributes. We propose a deep node embedding method called
IGE (Interaction Graph Embedding). IGE is composed of three neu-
ral networks: an encoding network is proposed to transform at-
tributes into a fixed-length vector to deal with the heterogeneity of
attributes; then encoded attribute vectors interact with nodes mul-
tiplicatively in two coupled prediction networks that investigate
the temporal dependency by treating incident edges of a node as
the analogy of a sentence in word embedding methods. The encod-
ing network can be specifically designed for different datasets as
long as it is differentiable, in which case it can be trained together
with prediction networks by back-propagation. We evaluate our
proposed method and various comparing methods on four real-
world datasets. The experimental results prove the effectiveness
of the learned embeddings by IGE on both node clustering and
classification tasks.
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Figure 1: An example of attributed interaction graphs in
stock market. (a) shows an attributed interaction graph
and (b) shows its edges. Edges are dynamic and attributed.
Investors with different colors have different investment
strategies. (c) shows the embeddings of nodes, which can dis-
tinguish investors with different strategies and stocks with
different trends.
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1 INTRODUCTION
With the power of representing relations among entities, graphs
are natural ways to organize data in many real-world applications.
Examples include social networks and bibliographical networks.
Graph analysis has been attracting much attention in recent years
[5, 6, 10]. Most learning tasks on graphs, such as node classification
or clustering, require a set of features of nodes. Node embedding
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Figure 2: The comparison of node embedding problem
in conventional graph data and in attributed interaction
graphs. (a) Previous node embedding methods take a static
homogeneous graph as input and simulate random walks
starting from different nodes to generate sequences. Then
a word embedding model is trained to get node embed-
dings. (b) Node embedding in attributed interaction graphs
requires learning embeddings of source and target nodes si-
multaneouslywith a dynamic and attributed bipartite graph
as input. IGE, our proposal, uses each node’s sorted incident
edges as tagged sequences. A source node’s sequence only
contains targets nodes, and vice versa.

problem has thus become popular in recent years. Many approaches,
such as DeepWalk [21], LINE [25] and node2vec [8], have been
proposed.

Previous node embedding methods mainly focus on exploring
the structure of static graphs with non-attributed edges. However,
many real-world applications involve data in the form of dynamic
bipartite graphs with attributed edges. Here, we call them attributed
interaction graphs. In attributed interaction graphs, an edge repre-
sents an interaction between two heterogeneous entities (nodes),
and attributes of the edge represent the content of the interaction.
For example, in the stock market, in order to profile different users’
activities, we log each transaction in the form of (investor, stock,
time, buy_or_sell, price, amount) as shown in Figures 1(a) and 1(b).
In crowd-sourced review websites, like Yelp, users leave comments
on business entities. Here, an attributed interaction is a tuple of
(user, business, time, comment), where the comment may contain
photos in addition to a plain text review. Similarly in network secu-
rity, we record interactions between programs and web servers for
analysis. Here each interaction includes a set of attributes, such as
program’s name, target IP, connection type, etc.

In this paper, we study the problem of node embedding in attrib-
uted interaction graphs. The target is to learn the latent embeddings

of nodes by considering the attributes and dynamics of the edges
in the graph. Learning node embeddings in attributed interaction
graphs is highly challenging and different from node embedding
problems in conventional graph data:
• Dynamic edges: Unlike static graphs, each edge in interaction
graphs represents a temporal event. An edge may have different
meanings at different times. Consider that an investor tends to buy
on the upswing while another investor likes bottom fishing, like
investors A and B in Figure 1. They bought the same stocks, but
at different times, which clearly reflects their different investment
strategies.
• Heterogeneous attributes on edges: The attributes of an edge
include different types of attributes: besides traditional categorical
or numerical attributes, texts or images are also involved in some
cases. Attributes interact closely with edges, and a unified model is
needed to cope with these heterogeneous attributes. For example,
in Figure 1, edges under different attributes may have opposite
meanings, like buying and selling a stock. These phenomenons are
hard to capture by only exploring the graph structure.

To learn meaningful embeddings for interaction graphs like
Figure 1(c), we could investigate the temporal dependency of edges
instead of the graph structure. Since nodes and edges can be seen
as entities and interaction events respectively, all edges connecting
with a same node are relevant events of the corresponding entity.
Like the observation in word embeddings that words in the similar
contexts might be similar, an entity’s relevant events are likely to
have some dependency. For instance, in stock dataset, edges of an
investor can be treated as his transaction history. Determined by his
investment strategy, the investor may short-sell a certain stock to
hedge the risk after buying another stock. There may be more than
one stock that can hedge the risk, and their embeddings should be
similar. Stock entities are likely to be similar in similar “contexts”,
i.e., previous and following transactions. From this point of view,
an investor’s sequence of events can be viewed as a “sentence” of
transactions. Similarly, there are also “stock sentences”, though
they are not as meaningful as “investor sentences”.

To tackle the above challenges, we propose a multiplicative neu-
ral model IGE (Interaction Graph Embedding) that takes an attrib-
uted interaction graph as input and produces latent embeddings
of nodes (see Figure 1(c)). Our model is composed of two coupled
prediction networks and an attribute encoding network. Similar
to Skip-gram model [19, 20], given an edge, the objective of our
prediction networks is to maximize classification of the node of an-
other edge sampled from the same “sentence”, i.e., edges that share
the same node. The edge is sampled according to the difference of
timestamps of edges. A temporally closer edge is more likely to be
selected. This solves the challenge of dynamic edges.

From Figure 2 we can see the difference in node embedding
tasks in static graphs and attributed interaction graphs. We also can
note that both our method and DeepWalk/node2vec use the idea
of sequences of nodes, but they are quite different. Previous meth-
ods take a homogeneous graph as input and generate sequences
by random walks, while our method is specialized in interaction
graphs and directly uses the sequences of incident edges as tagged
sequences.

To address the second challenge, we introduce an attributes
encoding network. The encoding network can transform a tuple of



attributes to a vector, and attribute vectors and node embeddings
interact multiplicatively then.

The main contributions of our paper are as follows:
• We study the problem of learning node embeddings in attrib-
uted interaction graphs, and propose a multiplicative neural
model IGE to learn embeddings.

• Our model consists of an attributes encoding network and
two prediction networks. Three networks are trained simul-
taneously by back-propagation. Negative sampling method
[20] is applied in training prediction networks for accelera-
tion.

• We train IGE on four real-world datasets and evaluate the
learned embeddings for both clustering and classification
tasks. The experimental results show that the embeddings
learned by IGE are effective and task-independent.

2 PROBLEM DEFINITION
In this section, we introduce some related concepts and notions,
and then define the problem.

Definition 2.1 (Attributed Interaction Graph). An attributed inter-
action graphG = (X ,Y ,E) is a special form of bipartite multigraph,
where X and Y are two disjoint sets of nodes, and E is the set of
edges. Each edge e ∈ E can be represented as a tuple e = (x ,y, t , a),
where x ∈ X , y ∈ Y , t denotes the timestamp and a = (a1, . . . ,am )

is the tuple of heterogeneous attributes of the edge. ai ∈ Ai is an
instance of the i-th attribute.

To make the description clear, we call nodes in X source nodes
and those in Y target nodes throughout the paper. An interaction,
as the name implies, is a process by which two entities interact
with each other. Though we name them source or target, these two
types of nodes are in an equal position in interaction graphs.

Definition 2.2 (Induced Edge List). Given an attributed inter-
action graph G = (X ,Y ,E) and a source node x ∈ X , we say
sx = (e1, . . . , en ) is an edge list induced by the source node x ,
if every edge in sx is incident to x . Similarly, we can define a target
node y’s induced edge list s ′y .

In stock dataset, X and Y denote the set of investors and the set
of stocks respectively, and edges denote transactions. An investor’s
induced list can be seen as his transaction history, and a stock’s
induced list is comprised of all transactions related to the stock. For
example, in Figure 1(b), Investor B’s list contains the second and
third events in the table, which are his historical transactions in
this interaction graph.

Like building inverted lists, it is easy to get all nodes’ induced
lists by one pass through all edges.

Definition 2.3 (Node Embedding in Attributed Interaction Graphs).
Given an attributed interaction graph G = (X ,Y ,E), the goal of
node embedding is to learn mapping functions ϕ : X → ℜK and
ψ : Y → ℜK ′

. ϕ(x) is the learned K-dimensional representation of
node x ∈ X andψ (y) is the K ′-dimensional representation of node
y ∈ Y .

3 PROPOSED METHOD
In this section we describe our proposed method for node embed-
ding in attributed interaction graphs. We first consider a simplified

problem to demonstrate the basic idea. Next we introduce a mul-
tiplicative neural model to learn node embeddings for interaction
graphs.

Though we discuss on bipartite graphs, our proposal is also
suitable for other types of graphs, e.g., directed graphs, as long as
we can distinguish between source nodes and target nodes of edges.

3.1 A Simplified Model
Let G = (X ,Y ,E) be a given interaction graph where edges are
without attributes. Inspired by the Skip-gram model [19, 20] and
Paragraph Vector [15], we formulate the embedding learning as a
maximum likelihood problem.

Since the graph can be partitioned into several induced lists, we
let the log-likelihood be the sum of log-probability of induced lists:

L(θ ) = α
∑
x ∈X

log P(sx ;θ ) + (1 − α)
∑
y∈Y

log P(s ′y ;θ ), (1)

where sx is an induced list of source node x ∈ X , s ′y is an induced list
of target node y ∈ Y , α ∈ [0, 1] is a hyper-parameter, and θ denotes
all the model parameters. α is used to make a trade-off between
the importance of source nodes induced lists and target nodes
induced lists. For instance, investors’ lists seem more meaningful
than stocks’ lists, then we put more emphasis on investors’ side by
tuning α .

Note that the objective function Eq.1 contains two similar terms,
so we alternatively optimize them during training, and we now
only focus on the first term to describe the model.

Given an edge list sx = (e1, . . . , en ) induced by some source
node x , where ei = (x ,yi , ti ), we formulate the log-probability of
sx as follows:

log P(sx ;θ ) =
∑
i

1
Zi

∑
j,i

e
−|ti −tj |

τ log P(yj |x ,yi ;θ ), (2)

whereZi =
∑
j,i e

−|ti −tj |
τ is a normalizing constant, and τ is a hyper-

parameter. Now the log-probability of sx becomes the weighted
sum of log-probability of pairs of edges. If τ is small, weights will
concentrate on the temporally close pairs. Conversely, the larger
the τ is, the smoother the weights are. In this case, more long-term
effects will be considered.

We use a neural network to represent P(yj |x ,yi ;θ ). The structure
is shown in Figure 3(a). We get the embeddings of x and yi through
embedding lookup tables EX ∈ ℜ |X |×K and EY ∈ ℜ |Y |×K ′

, and
concatenate them as the input of softmax layer. The conditional
probability of yj being the k-th node is given by

P(yj = k |x ,yi ;θ )

=
exp(UX [k, :]T vx +UY [k, :]T vyi + b)∑
l exp(UX [l , :]T vx +UY [l , :]T vyi + b)

,

where vx , vyi are the embeddings of x and yi ,UX ∈ ℜ |Y |×K ,UY ∈

ℜ |Y |×K ′

are weight matrices of softmax classifier, and b ∈ ℜ |Y | is
the bias term.U [l , :] denotes the l-th row of matrixU .

Considering the size of Y , we apply negative sampling method
[20] to training the softmax classifier efficiently and approximately.
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Other candidate sampling methods [9] are also possible. However,
computing Eq.2 explicitly is still expensive. We instead compute

log P(sx ;θ ) =
∑
i

1
|N (i)|

∑
j ∈N (i)

log P(yj |x ,yi ;θ ) (3)

as an approximation, whereN (i) = {i1, . . . , ic } is the “context” ofyi .
c is a pre-chosen hyper-parameter indicating the length of context,
and ik is selected randomly with the probability proportional to

e
−|ti −tik

|

τ . N (i) is a multiset, which means it allows duplicates of
elements.

Notice that the network structure shown in Figure 3(a) is similar
to PV-DM in [15] but there are some differences between the two
models. In PV-DM, context is gained through a sliding window, and
target word is predicted by its surrounding words with the help of
paragraph vector. In our model, nodes are sampled and we use only
one target node yi to predict another target node yj with the help
of the source node x . Further, we have another similar network for
second term in Eq.1 and use α to tune the weights of two networks.

Like what mentioned in [15], the embedding of x acts as a mem-
ory that remembers what is missing from the current context. In the
stock dataset where x denotes an investor, an investor’s embedding
may contain information about his investment style, e.g., active or
passive style, that helps to predict the target stock.

3.2 Embedding Tensors
Now we discuss how to make use of attributes. In stock market,
an investor may have different strategies when buying or selling a
stock. It seems more sensible to have different embeddings under
different situations, i.e., conditional embeddings [13].

For this reason, we instead embed nodes as a tensorT ∈ ℜV×K×D ,
where V is the size of nodes set and D corresponds to the num-
ber of tensor slices. Given a tuple of attributes a = (a1, . . . ,am ),
and an attributes encoder f , we can get an attribute vector d =
f (a) ∈ ℜD . Then we can compute attributed-gated embeddings as
Ed =

∑D
i=1 diT[:, :, i], i.e., a linear combination of slices weighted

by each component di of d. The details about encoder f is discussed
in Section 3.4.

However, fully 3-way tensors are not practical because of enor-
mous size. It is a common way [13, 24, 26] to factor the tensor
by introducing three matricesW f v ∈ ℜF×V ,W f d ∈ ℜF×D and
W f k ∈ ℜF×K , and re-represent Ed by the equation

Ed = (W f v )T · diag(W f dd) ·W f k , (4)

where diag(·) denotes the matrix with its argument on the diagonal.
These matrices are parametrized by a pre-chosen number of factors
F . Eq.4 can be seen as the embeddings conditioned on d, and we let

E = (W f v )TW f k

denote unconditional embeddings.

3.3 IGE: A Multiplicative Neural Model
We now show how to formulate P(yj |x ,yi , ai , aj ;θ ), and substitute
it for P(yj |x ,yi ) term in Eq.2 to finish our IGE model. The structure
is shown in Figure 3(b).

The key idea is still using the embeddings of x and yi to predict
yj , but with the help of attributes ai and aj .

At embedding layer, we have 6matrices to learn:W f v
X ,W

f d
X ,W

f k
X

andW f v
Y ,W

f d
Y ,W

f k
Y . vdiyi , the embedding of yi , is the correspond-

ing row of attributed-gated embeddings EdiY , where di = f (ai ).
Since vx , the embedding of x , is used as a memory and reflects the
overall property, it should be independent of attributes. We use

EX = (W
f v
X )TW

f k
X

as the unconditional matrix of embeddings of X .
At softmax layer, vx makes its on decision since it acts as a

memory, but vdiyi considers the impact of aj . We use the same trick

again: we introduce three matricesU f t
Y ∈ ℜF ′×|Y | ,U

f k
Y ∈ ℜF ′×K ′

andU f d
Y ∈ ℜF ′×D , and use

U
dj
Y = (U

f t
Y )T · diag(U f d

Y dj ) ·U
f k
Y
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Figure 4: The pipeline of IGE. IGE takes an interaction graph as the input and builds all induced lists by one pass through the
data. After initialization of networks, we train the coupled prediction networks alternatively. The encoding network also gets
trained by back-propagation. In Step 1, edges are selected according to Eq. 3, and the expression of log P(·) in Step 2 is Eq. 5. ∆θ
is the direction of decrease and λ is the step size.

as the weight matrix of softmax classifier with respect to yi . Now
the probability can be computed as follows:

P(yj = k |x ,yi , ai , aj ;θ )

=
exp(UX [k, :]T vx +U

dj
Y [k, :]T vdiyi + b)∑

l exp(UX [l , :]T vx +U
dj
Y [l , :]T vdiyi + b)

,
(5)

where UX ∈ ℜ |Y |×K is the weight matrix with respect to x , and
b ∈ ℜ |Y | is the bias term.

Recall that there are two terms in the objective function Eq.1,
so there are two corresponding prediction networks. The network
of second term uses xs and y to predict xt instead. We need to
clarify that the weights at embedding layers are shared across
two networks, and we use unconditional embeddings as the final
embeddings.

3.4 Attributes Encoding Network
For consistency, we use another neural network to represent at-
tributes encoder. The encoding network can be specifically designed
for different datasets as long as it is differentiable, so that it can
be trained together with prediction networks by back-propagation.
For example, if attributes are sentences like reviews in Yelp, a re-
current neural network (RNN) is applicable. Or we could use a
convolutional neural network (CNN) to encode images.

Here we illustrate the encoding network for mixes of categorical
and numerical attributes. The structure is shown in Figure 3(c). Each
categorical attribute in attributes tuple a = (a1, . . . ,am ) has its own
embedding lookup table. Embeddings of all categorical attributes
are averaged or concatenated. Then the merged embeddings and
remaining numerical attributes are concatenated comprising the
input of the next layer. The remaining part of network is a simple

fully connected network. We choose rectified linear unit (ReLU) [7]
as the activation function to ensure sparseness and positiveness.

Though multiplicative units enhance the power of representa-
tions, the product of parameters makes gradient descent learning
difficult [24]. So here we prefer a relatively shallow network to
weaken the effect of this phenomenon.

We train two prediction networks alternatively using Adam
optimizer [11]. During training, all weights in the encoding network
also get trained by back-propagation. We summarize the training
procedure in Figure 4.

4 EXPERIMENTS
In this section we provide an overview of the datasets and methods
that we use in our experiments, and then show the results.

4.1 Datasets
In order to evaluate the effectiveness, we test methods on four real-
world datasets. An overview of the datasets is shown in Table 1.

• DBLP: The first dataset is a bibliographic network extracted
from DBLP database1. Authors and conferences are treated
as nodes, and edges represent publications. We use the corre-
sponding paper’s id as a categorical attribute and the bag-of-
words representation of title as a set of numerical attributes
of an edge. 2125 authors are labeled with one of the four
domains2.

• PPD: This dataset contains investing records in a month
extracted from a P2P lending platform3. Investors and loans

1http://dblp.uni-trier.de
2Data mining, machine learning, database, and information retrieval.
3http://www.ppdai.com



Table 1: Overview of datasets. (Entities in bold indicates the labeled entities.)

DBLP PPD Stock Yelp

Source Entity Author(35851) Investor(9292) Investor(22001) User(724884)
Target Entity Conference(20) Loan(4501) Stock(939) Business(15726)

# Edges 104325 223190 66890 2465173
# Cat. Attrs. 1 0 1 Various

# Num. Attrs. 698 6 3 0

Table 2: Summary of comparing methods.

Structure of graph Temporal dependency Categorical Attributes Numerical Attributes

PV-DM [15] ✓

node2vec [8] ✓

APE [3] ✓

bag-of-words [this paper] ✓ ✓ ✓

IGE w/o attrs. [this paper] ✓

IGE [this paper] ✓ ✓ ✓

are nodes and each edge represents an investment. Loans
are partitioned into 6 groups according to their risk level.

• Stock: This dataset contains transaction records in twoweeks
in Chinese stock market. Nodes in this dataset are investors
and stocks, and each edge represents a transaction. A ex-
ample of this dataset has been shown in Figure 1. We treat
buy_or_sell as a categorical attribute. 500 stocks are par-
titioned into 3 groups based on their Beta, a measure of
systematic risk.

• Yelp: This dataset is a subset of Yelp4 Challenge Dataset.
We only extract top-10 categories5 related businesses. Users
and businesses are nodes in this dataset, and comments are
edges. Instead of bag-of-words representations that we use
in DBLP dataset, we use raw texts as various-length tuples
of categorical attributes. Every business is assigned one or
more categories.

4.2 Comparing Methods
We compare the following methods in the experiments and sum-
marize them in Table 2:

• PV-DM [15]: This method is designed for learning repre-
sentations of variable-length pieces of texts, i.e., sentences,
paragraphs and documents. We test this method because our
method implicitly generates “sentences”, i.e., node induced
lists, but PV-DM is unable to cope with attributes. In our
experiments, “sentences” are sorted by time and we treat
labeled nodes as documents, and nodes of another type as
words.

• node2vec [8]: This method is one of the baseline methods
for learning nodes embeddings in networks. It explores net-
works by a flexible biased random walk procedure.

4https://www.yelp.com
5Restaurants, Shopping, Food, Beauty & Spas, Home Services, Nightlife, Health &
Medical, Bars, Automotive, Local Services

• APE [3]: This method is designed for detecting anomalous
events. Given a set of heterogeneous categorical events, i.e.,
events with different categorical attributes/entities, it tries
to maximize the likelihood of the data by embedding differ-
ent entities into a common latent space and then assessing
the compatibility of entities. An interaction graph can be
represented as a list of edges, which is equivalent to a se-
quence of events, and thus this method is able to learn node
embeddings in interaction graphs.

• bag-of-words: This is a naive method. We first use one-hot
vectors to encode nodes and categorical attributes of edges.
A node representation is given by the concatenation of three
parts: averaged vectors of adjacent nodes, averaged vectors
of categorical attributes of incident edges and averaged re-
maining numerical attributes of incident edges.

• IGE w/o attrs.: This method is the simplified version of IGE
described in Section 3.1, which takes an interaction graph
as input and outputs embeddings of nodes. Note that this
method ignores the attributes of edges.

• IGE: This is our proposal described in Section 3.3, which can
learn node embeddings in interaction graphs.

Unless otherwise stated, we use the following settings of our
proposals throughout the experiments: α = 0.5, the number of
factors F = F ′ = 1024, and the dimension of encoded attribute
vector D = 8. Further, attributes encoding network is without
hidden layers and embedding dimensions K and K ′ are same.

Though we have considered timestampwhen sampling “context”,
we use timestamp again as an additional numerical attribute. We
find that doing such can slightly improve the performance.

4.3 Experimental Results
Since all comparing methods are task-independent, we test the
learned embeddings on both classification and clustering tasks. We
show the averaged result of 10 runs for each experiment.
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Figure 5: Experimental results on clustering.
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Figure 6: Experimental results on classification.
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Figure 7: Parameter sensitivity w.r.t α .
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Figure 8: Parameter sensitivity w.r.t D.

4.3.1 Clustering. We first use K-Means to test embeddings on
the unsupervised task. We use Normalized Mutual Information
(NMI) [23] score to evaluate clustering results. The NMI score is
between 0 and 1. The larger the value, the better the performance.
A labeling will have score 1 if it matches the ground truth perfectly,
and 0 if it is completely random. Since entities in the Yelp dataset
are multi-labeled, we ignore the entities that belong to multiple
categories when calculate NMI score. The experimental results are
shown in Figure 5.

4.3.2 Classification. We also consider the classification task.
We perform 10-fold cross-validation and train logistic regression
models with one-vs-rest scheme. The metric we adopt here is ac-
curacy score. The larger the value, the better the performance. For

consistency, we still use accuracy score for Yelp dataset: if the pre-
dicted category belong to the set of true categories, we treat it
as a successful prediction. The experimental results are shown in
Figure 6.

4.3.3 Analysis. From Figures 5 and 6 we can see, IGE outper-
forms the baseline methods consistently with increasing dimen-
sions. The performance on DBLP and Yelp goes better as the em-
bedding dimension increases, but on the other two datasets, the
performance is relatively stable. We use straight lines to show the
results of bag-of-words since it can only produce fixed-length rep-
resentations. By comparing IGE and IGE w/o attrs., we can find IGE
indeed improves the quality of embeddings by using attributes.



It is also noticeable that node2vec and bag-of-words performwell
in DBLP but poorly in other three datasets. This is because there are
only 20 conferences in DBLP, and they are highly correlated with
labels. Thus by exploring structure, node2vec and bag-of-words
produce sensible embeddings on DBLP dataset.
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Figure 9: Results on clustering using concatenation of em-
beddings.
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Figure 10: Visualization of attribute vectors of Yelp dataset.

4.3.4 Parameter Sensitivity. In this section, we only show the
results on clustering since the results on classification show the
same trends. We let the embedding dimension K be 128 in this
section. We first evaluate the performance with respect to α in
Eq.1. As we can see in Figure 7, α does adjust the importances
of two prediction networks. The best α ’s are all above 0.5 in the
first three datasets. Recall that the source nodes in these datasets
both are humans (authors and investors), so we could say people’s
behavior is more informative for learning embeddings in attributed
interaction graphs.

We also test the effect of D, the dimension of encoded attribute
vector. In the previous experiments, we use low-dimensional at-
tribute vectors because the number of attributes of edges in PPD
and stock datasets is small. Now we exclude PPD and stock datasets.

The results on DBLP and Yelp shown in Figure 8 demonstrate that
increasing the dimension of attribute vector can slightly enhance
the effectiveness of embeddings.

4.3.5 Concatenation of Embeddings. As listed in Table 2, IGE
does not use structure information at all. Here, we concatenate
the embeddings produced by node2vec and IGE, and train a K-
Means model again. Results (Figure 9) show that the concatenation
improves the NMI score. This means node2vec and IGE capture
information from different perspectives and simply concatenating
them brings better result.

4.3.6 Visualization of Encoded Attributes. In this part, we show
the effectiveness of the encoding network. As we described, each
edge can have totally different meanings when the interaction is as-
sociated with different attributes, so an effective encoding network
should be able to distinguish between patterns of attributes.

Edges in Yelp dataset represent comments and are labeled: every
comment is accompanied by a score ranging from 1 to 5, which
reflects the users’ attitude towards the business. To test whether the
encoding network could capture this sentimental information, we
randomly select 300 samples for each score, and then use t-SNE [17]
to map their learned vectors into a 2-dimensional plane. Though it
does not show clear boundaries, from the figure we find that the
left part of plane are populated mainly by low-score reviews, while
high-score reviews are concentrated in the right part. This means
the encoding network does learn some patterns of attributes.

5 RELATEDWORK
Node embeddings have been widely studied in the literature. Clas-
sical methods usually need to construct the affinity graph and solve
eigenvectors, such as multidimensional scaling [4], Laplacian Eigen-
map [1], IsoMap [27], LLE [22]. These methods are not scalable
for large networks. There are some efficient methods learning em-
beddings by exploring the structure of networks. DeepWalk [21]
and node2vec [8] first generate “sentences” of nodes by a random
walk procedure, then feed these sentences to word embedding mod-
els like word2vec [19, 20] to get embeddings of nodes. LINE [25]
make use of structure information in a different way: it defines the
first-order and second-order proximities in networks, and directly
optimizes objective functions that try to preserve the proximities.
However, these methods are only suitable for static graphs without
attributes. Each edge can have totally different meanings when the
interaction is at different time or associated with different attributes.
Ignoring these effects results in a huge information loss.

Like multimodal versions [12, 14, 18] of word embedding models,
TADW [29] incorporates text features of nodes into embedding
learning. TADW or multimodal DeepWalk/node2vec cannot di-
rectly handle attributed interaction graphs either, because the basic
atom is node here, but attributes are on edges. TransE [2], TransH
[28] and TransR [16] are relational data embedding methods that
take triples (head_entity, relation, tail_entity) as inputs. Though an
edge in interaction graphs can be treated as a complicated triple,
the space of relations are exponentially large even infinite due to
heterogeneous attributes of edges, which makes these method in-
applicable to interaction graphs. These methods do not consider
dynamics of edges either.



6 CONCLUSION
In this paper, we generalize embedding techniques to attributed
interaction graphs and propose IGE. Different from previous work,
IGE investigates the temporal dependency of edges instead of the
structure of graphs. IGE contains two coupled multiplicative neu-
ral networks for prediction and an attributes encoding network.
Experimental results on various real-world datasets prove the ef-
fectiveness of the learned embeddings by IGE on both clustering
and classification tasks.

As for future work, we will consider applying the model to
edge embeddings. Besides, our proposal does not use structure
information at all, and we will try to incorporate this into the
model. Our proposal maps two sets of nodes to two different latent
spaces. It is also a potential work to embed nodes in the same space.
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