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ABSTRACT
Traffic prediction has become an important and active re-
search topic in the last decade. Existing solutions mainly fo-
cus on exploiting the past and current traffic data, collected
from various kinds of sensors, such as loop detectors, GPS
devices, etc. In real-world road systems, only a small frac-
tion of the road segments are deployed with sensors. For all
the other road segments without sensors or historical traffic
data, previous methods may no longer work. In this paper,
we propose to use location-based social media, which cap-
tures a much larger area of the road systems than deployed
sensors, to predict the traffic conditions. A simple but effec-
tive method called CTP is proposed to incorporate location-
based social media semantics into the learning process. CTP
also exploits complex dependencies among different regions
to improve the prediction performances through collective
inference. Empirical studies using traffic data and tweets
collected in Los Angeles area demonstrate the effectiveness
of CTP.
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1. INTRODUCTION
With ever-increasing urban population and the slow de-

velopment of transport infrastructure, traffic congestion has
become a major issue in many cities. Excessive traffic con-
gestion can cause serious problems for road users, such as
travel delays, resource wasting, and pollution. In 2011, traf-
fic congestion costs urban Americans 5.5 billion hours of
travel delay, 2.9 billion gallons of extra fuel, for a total con-
gestion cost of 121 billion dollars [7]. To alleviate these is-
sues, there is a great need for building models to accurately
predict traffic conditions in the near future.

Traffic prediction problem has been extensively studied
[2,3,9]. Previous research mainly focus on exploiting histor-
ical traffic data, which are collected from sensors deployed
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Figure 1: An illustration of using location-based so-
cial media to predict traffic conditions.

on the roads [9]. It is usually assumed that all the historical
traffic data are given beforehand, or all road segments to
be predicted are deployed with sensors. However, in many
real-world tasks, only a small fraction of the regions, such
as the major highways, are deployed with sensors. While
for all the other regions, historical and current traffic condi-
tions are usually unknown, due to the lack of road sensors.
Location-based social media (LBSM), such as Twitter and
Foursquare, has become popular in the last decade. LBSM
can provide abundant information about the road users in
real-time, covering a wide range of geographic areas. For
example, many car drivers can tweet through the dictation
systems in smart phones (such as Siri) or through the mod-
ern car consoles. Passengers in the cars can also tweet using
mobile devices, especially when being stuck in traffic. In
LBSM, these messages are often associated with location
tags, indicating the geolocations of the users. The contents
of these messages may also be related to current traffic con-
ditions, accidents or future events. In the left part of Fig. 1,
we show an example of a user writing a tweet“Traffic jam on
Storrow Drive, Boston, Massachusetts” tagged with his/her
geolocation. By mining the semantic and spatial informa-
tion from LBSM, we can effectively infer the future traffic
conditions on a wide range of regions, including the road
segments without sensors.

In this paper, we propose to use LBSM data to facilitate
the traffic prediction process with partially observed traf-
fic history. The problem of traffic prediction has not been
studied in this context so far. Unlike prior works on traffic
prediction [9] and social media sensing [1, 10], we assume
that some geographical regions in the road system are not
deployed with sensors, where the historical traffic data is
not observed. The major research challenges of this paper
are summarized as follows: (a) Lack of Historical Traffic
Data in Partial Regions: One fundamental problem of
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Figure 2: Comparison of the different settings for traffic prediction. Each node of the road network represents
a region, and the edges represent the spatial connections between different regions.

traffic prediction problem lies in the fact that many regions
of the road network are not deployed with sensors. Most
existing traffic prediction methods, as shown in Figure 2(c),
mainly rely on historical traffic data to make predictions on
future traffic conditions. For regions without sensors, these
methods cannot be applied to predict future traffic. (b)
Sparsity of LBSM Information at Fine Granulari-
ties: One problem of traffic prediction using LBSM is the
sparsity of information with the required granularity of spa-
tiotemporal resolution. Existing traffic prediction methods
using social media mainly target on large spatial granularity,
such as states of a country [10], or large temporal granular-
ity, such as days or hours [1]. This is because usually only a
small amount of LBSM content is generated in a small region
during a small time window, as shown in Tab. 1. However,
for traffic prediction tasks, we often need to target on small
temporal granularity (60 minutes or less), as well as on small
spatial granularity (a few square miles). At such granular-
ity, we usually can only collect a small number of LBSM
content. The features extracted from such less content are
highly sparse, which may result in weak performance.

To alleviate the aforementioned issues, we introduce CTP
(Collective Traffic Prediction) framework, as illustrated in
Fig. 2(a), to predict the future traffic condition on a set of
regions collectively by exploiting their spatial and tempo-
ral relationships. Unlike the conventional traffic prediction
methods, CTP uses both LBSM data and partially observed
traffic data in prediction. Fig. 1 shows the idea of using
LBSM data to help predicting traffic conditions for different
road segments and time. Furthermore, CTP also exploits
three types of dependencies among spatiotemporal regions:
(1) intra-region temporal dependency ; (2) inter-region tem-
poral dependency. (3) inter-region spatial dependency. By
exploiting these dependencies, CTP can effectively predict
traffic conditions for a set of inter-related regions collectively.

2. PROBLEM FORMULATION
In this section, we first introduce the notations that will

be used throughout this paper. then we define the problem.

2.1 LBSM-augmented Traffic Network
Suppose we are given a LBSM-augmented traffic network,

which can be represent as G(R, E ,X ,V). R and E are the set
of regions and the set of edges in the network respectively.

We define R = {r1, . . . , rn}, each ri ∈ R represents a geo-
graphical region on the map. E ⊂ R×R denotes the set of
spatial connections among these regions through the traffic
network. To tackle the problem of the lack of traffic his-
tory for partial regions, we extract information from LBSM
data to improve our predictions. For each regions ri ∈ R,

we have a set of feature vectors Xi = {x(1)
i , . . . ,x

(m)
i }, in

which the superscripts with parentheses are called temporal
indices and the subscripts are called spatial indices. Specif-

ically, x
(j)
i ∈ Rd denotes the LBSM feature vector collected

in the region ri in the time window j, where j ∈ {1, · · · ,m}.
The details of how the LBSM feature vectors are extracted
will be discussed in Sec. 4.2. Let X = {X1, . . . ,Xn} rep-
resent the set of LBSM-augmented features on all regions.
For each region ri ∈ R, we also have a set of target vari-

ables Vi = {v(1)i , . . . , v
(m)
i } ∈ Rm indicating the traffic con-

ditions, where v
(j)
i ∈ R denotes the average speed of all

vehicles traveling in the region ri within the time window j.
V = {V1, . . . ,Vn} represents sets of targets in all regions.

Table 1: Average # of tweets in each region under
different spatiotemporal resolutions in our dataset.

Temporal Resolution Spatial Resolution Ave. #Tweets
12 hours 1 × 1 47,113
1 hour 1 × 1 3,926
1 hour 2 × 2 1,306
1 hour 3 × 3 554
1 hour 4 × 4 389
1 hour 30 × 30 15

2.2 Traffic Prediction with Fully Observed Traf-
fic History

Most existing traffic prediction methods mainly rely on
historical traffic data to make predictions on future traf-

fic conditions. Suppose V(t) = {v(t)1 , · · · , v(t)n } and X (t) =

{x(t)
1 , · · · ,x(t)

n } denote the set of all traffic conditions and
the set of LBSM feature vectors for all regions in time win-
dow t respectively. Hence, the prediction task is to pre-
dict V(t) given the traffic history (V(t−l1), . . . ,V(t−1)), where
l1 ∈ N+ is called traffic time lag that specifies how many
time slices of historical traffic data are used in the predic-
tion. Suppose we set l1 = 2, auto regression [8] learning a



regression model that predicts each v
(t)
g independently as

v(t)g = α+ β1v
(t−1)
g + β2v

(t−2)
g (1)

As stated before, this model is limited since it requires fully
observed historical traffic data.

2.3 Traffic Prediction with Partially Observed
Traffic History

In real-world traffic prediction, the traffic history can only
be observed in partial regions. Our goal is to predict future
traffic conditions of different regions (under fine granular-
ity) in the road network based upon the partially observed
historical traffic data. U ⊂ {1, · · ·n} is the set of spatial
indices for unobserved regions, O = {1, · · ·n} − U is the
set of spatial indices for observed regions. RU ⊂ R rep-
resents the set of regions, where the traffic history data
are unobserved, RO = R − RU represents the set of re-
gions where the traffic history data are observed. Suppose

V(t)
O = {v(t)i |i ∈ O} to denote the set of all traffic conditions

of observed regions in time window t. Hence, the prediction
task is to predict V(t) given the partially observed traffic

history {V(t−l1)
O , . . . ,V(t−1)

O }. LBSM-aided approaches also

consider the historical LBSM features {X (t−l2), . . . ,X (t−1)}
to predict the traffic conditions V(t), where l2 ∈ N+ is called
the LBSM time lag. Note that the historical LBSM contents
originate in unobserved regions RU are available. Previous
empirical studies [1,6] typically suggest optimal values for l1
ranging from 2 to 6 and l2 = 2. In this paper, we simply use
l1 = 2 and l2 = 2. Thus, the inference problem in LBSM-

aided traffic prediction is to estimate v
(t)
g using v

(t−2)
g , v

(t−1)
g ,

x
(t−2)
g and x

(t−1)
g when g ∈ O, but using x

(t−2)
g and x

(t−1)
g

only when g ∈ U . Previous approaches [1] require i.i.d. as-

sumptions, in which each v
(t)
g that has observed history is

estimated independently as follows

v(t)g = α+ β1v
(t−1)
g + β2v

(t−2)
g + γ1x

(t−1)
g m + γ2x

(t−2)
g m

(2)

where m = Rd is the transformation vector. As to the
situation of g ∈ U , no historical traffic data is available, so

v
(t)
g can only be estimated independently as follows

v(t)g = α+ γ1x
(t−1)
g m + γ2x

(t−2)
g m (3)

The only dependency that is considered in Eq. 2 is the

dependency between the prediction target v
(t)
g and its his-

torical traffic conditions v
(t−1)
g and v

(t−2)
g . However, in the

real-world traffic networks, there are other types of depen-
dencies exist between regions, which cannot be ignored. We
consider other types of dependencies in Sec. 3.

We also note that the model proposed in [1] can only per-
form predictions under temporal resolution of 12 hours and
spatial resolution of 1× 1 (consider the target area as a sin-
gle region). However, much finer spatiotemporal resolution
is desired in real world traffic prediction application. As the
spatiotemporal resolution goes finer, the amount of informa-
tion can be extracted from LBSM data becomes sparser and
sparser. From Tab. 1, we can see that under the resolution
setting in [1], about 47,113 tweets can be collected in each
time window. But when the spatial resolution increases to
30 × 30, only about 15 tweets can be collected for each re-
gion in each time window. It is challenging to build effective
prediction models with such sparse LBSM information.

3. THE PROPOSED METHOD
To make better predictions given the sparsity of LBSM in-

formation, in Sec. 3.1-3.3, we explicitly consider three types
of dependencies in the traffic networks, which address chal-
lenge (b) in Sec. 1. In Sec. 3.4, we describe how CTP si-
multaneously predict traffic conditions of multiple regions,
which tackles challenge (a) in Sec. 1.

3.1 Intra-Region Temporal Dependency
The first type of dependency we consider is called intra-

region temporal dependency, in which we discover the de-
pendencies between the traffic conditions of the same region
across different time slices. In traffic prediction, historical
data are always considered as the primary factor since the
traffic conditions across the timeline are not independent for
any given location. For example, in the road networks, the
probability of traffic congestion in region ri in time window
t should be high if we know that ri was congested in t− 1,
and ri is unlikely to be congested in t if we know ri was not
congested in t − 1. So given a region rg in a road network,
by considering the intra-region temporal dependency alone,
we will have the following prediction model

v(t)g = α+

l1∑
k=1

βkv
(t−k)
g (4)

where v
(t−k)
g is the traffic history feature of v

(t)
g .

3.2 Inter-Region Temporal Dependency
Another type of dependency we consider is called inter-

region temporal dependency, in which we discover the depen-
dencies between the traffic conditions of the spatial related
regions across different time windows. In other words, the
traffic condition of any given region in time window t is cor-
related with the traffic conditions of its neighbors at the
previous time windows {t− l1, . . . , t− 1}. For example, the
probability of traffic congestion in region ri in time window
t should be high if we know that most of its neighboring
regions were congested in the previous time window t − 1.
And ri is unlikely to be congested in time window t if we
know most of ri’s neighboring regions are not congested in
time window t− 1.

We define overall traffic condition of neighboring regions
of ri in time window t− l as follows

N (v
(t)
i , l) =

∑
(ri,rj)∈E,rj∈RO

v
(t−l)
j

|{rj |(ri, rj) ∈ E , rj ∈ RO}|
(5)

where E is the set of edges we discussed in Sec. 2, and |{·}|
denotes the number of elements in the set.

Hence, by considering inter-region temporal dependency
alone, we have

v(t)g = α+

l1∑
k=1

βkN (v(t)g , k) (6)

where N (v
(t)
g , k) is the inter-region temporal feature of v

(t)
g .

3.3 Inter-Region Spatial Dependency
The third type of dependency we consider is called inter-

region spatial dependency, in which we discover the depen-
dencies between the traffic conditions of spatially related
regions within the same time window. For example, in the



traffic networks, the probability of traffic congestion in re-
gion ri within the time window t should be high if we know
that most of its neighboring regions are congested in the
same time window t , and ri is unlikely to be congested
within t if we know most of its neighboring regions are not
congested in t. Formally, we define the overall traffic condi-
tion of neighboring regions of ri in the same time window t
as follows

Ñ (v
(t)
i ) =

∑
(ri,rj)∈E v

(t)
j

|{rj |(ri, rj) ∈ E}|
(7)

Note that Ñ (·) averages all neighboring traffic conditions
predicted by our iterative algorithm, even some regions are
unobserved. This is because that CTP makes initial predic-
tions of the traffic conditions in unobserved regions using
LBSM features only, then update these predictions itera-
tively by considering the overall traffic condition of neigh-
boring regions within the same time window. More details
of our proposed framework will be discussed in Sec. 3.4.
Hence, by considering inter-region spatial dependency alone,
we have

v(t)g = α+ βÑ (v(t)g ) (8)

where Ñ (v
(t)
g ) is the inter-region spatial feature of v

(t)
g . For

collective traffic prediction, we aim at inferring the traffic
conditions of correlated regions simultaneously. Thus, when
three types of dependencies are considered together with the
LBSM feature vectors, for g ∈ O we have

v(t)g = α+

l1∑
k=1

βkv
(t−k)
g +

l1∑
k=1

γkN (v(t)g , k)

+ ηÑ (v(t)g ) +

l2∑
k=1

εkx
(t−k)
g mgk (9)

As to the case that g ∈ U , we have

v(t)g = α+

l1∑
k=1

γkN (v(t)g , k)+ηÑ (v(t)g )+

l2∑
k=1

εkx
(t−k)
g mgk

(10)

Other than considering the two more types of dependencies,
our method is also different from [1] by learning separate

transformation vectors mk for each x
(t−k)
g .

3.4 Iterative Framework
With the dependencies described above, we now present

the CTP algorithm, which is inspired by ICA (Iterative Clas-
sification Algorithm) [5]. CTP algorithm is also summarized
in Tab. 2. It contains the following key steps:

Training: The traffic history features, inter-region tem-
poral features and inter-region spatial features are extracted
from the traffic dataset and appended to the LBSM features
to form the extended training set. Note that the inter-region
spatial features are extracted using N (·) instead of Ñ (·).
This is because part of regions in traffic network is unob-
served, so the traffic history in these regions is still unknown.
N (·) retrieves the overall neighboring traffic condition from
observed regions. After the extended training set is built,
we can apply the base learner on the data to obtain a local
model f .

Input:

{X(1), . . . ,X(t−1)}: set of attribute vectors

{V(1)
O

, . . . ,V(t−1)
O

}: set of traffic conditions of observed regions

RO : set of observed regions
RU : set of unobserved regions
E: set of edges connecting all neighboring regions

Max It: maximum # of iteration
A: a base learner for the local model

Training:
- Learn the local model:

1. Extended training set D =

{
(x̄

(j)
i

, v
(j)
i

)

}
for all 2 ≤ j ≤ t − 1 and i ∈ {k|rk ∈ RO} where

x̄
(j)
i

=

(
x
(j−2)
i

,x
(j−1)
i

, v
(j−2)
i

, v
(j−1)
i

,N(v
(j)
i

, 2),N(v
(j)
i

, 1),N(v
(j)
i

, 0)

)
2. Let f = A(D) be the local model

Bootstrap:
- Estimate the label sets:

1. Produce an estimated value v̂
(t)
i

for v
(t)
i

as follow:

for ri ∈ RO :

v̂
(t)
i

= f

(
(x

(t−2)
i

,x
(t−1)
i

, v
(t−2)
i

, v
(t−1)
i

,N(v
(t)
i

, 2),N(v
(t)
i

, 1), 0)

)
for ri ∈ RU :

v̂
(t)
i

= f

(
(x

(t−2)
i

,x
(t−1)
i

, 0, 0,N(v
(t)
i

, 2),N(v
(t)
i

, 1), 0)

)
Iterative Inference:
- Repeat until convergence or #iteration> Max It

1. Construct the extended testing instance:
for ri ∈ RO :

x̄
(t)
i

=

(
x
(t−2)
i

,x
(t−1)
i

, v
(t−2)
i

, v
(t−1)
i

,N(v
(t)
i

, 2),N(v
(t)
i

, 1), Ñ(v
(t)
i

)

)
for ri ∈ RU

x̄
(t)
i

=

(
x
(t−2)
i

,x
(t−1)
i

, 0, 0,N(v
(t)
i

, 2),N(v
(t)
i

, 1), Ñ(v
(t)
i

)

)
2. Update the estimated values v̂

(t)
i

for v
(t)
i

on each testing instance:

v̂
(t)
i

= f(x̄
(t)
i

)

Output:

V̂(t) = {v̂(t)
i
|ri ∈ RO and ri ∈ RU}

Table 2: The CTP algorithm

Bootstrap: Two problems are raised before CTP infers
the future traffic conditions. The first one is that how to ini-
tialize the inter-region spatial features while all traffic con-
ditions in the future time window t are still unknown. CTP
uses bootstrap to tackles this problem, in which it initial-
izes all the inter-region spatial features as zeros [4]. The
second problem is that how to initialize the traffic history

features for unobserved regions, i.e. v
(t−1)
i where i ∈ U .

CTP also initializes these unknown traffic history features
as zeros (i.e. the universal average value of traffic condition
in the de-trended dataset). Then the local model f can be
applied to make the initial predictions on all regions in the
future time window t.

Iterative Inference: In this step, we first update the
inter-region spatial features based upon the initial predic-
tions, then we apply f on the extended feature vectors with
updated inter-region spatial features, which updates the pre-
dictions. Again, we can use these updated predictions to
further update the inter-region spatial features. This itera-
tive procedure continues until the predictions converge or a
maximum number of iteration has been reached.

4. EXPERIMENTS

4.1 Data Collection
We collected the traffic data set from traffic detectors in

the Greater Los Angeles area between October 19, 2014 and
November 28, 2014 using the California Performance Mea-
surement System(PeMS1). This collection results in a total
number of 31,102,272 entries of traffic records. We also col-
lected tweets from the same area during the same time range

1http://pems.dot.ca.gov



using the Twitter streaming API2 with a geolocation filter
defining the bounding box of the Greater Los Angeles area.
For each tweet, we store all meta-data and post content.
This collection results in a total number of 2,648,446 tweets.

4.2 Data Preparation
In the PeMS traffic dataset, each data entry has the for-

mat (t, lat, long, v), which keeps track of the average speed
v of all vehicles passing by the detector located at coordi-
nates (lat, long) within the 1-hour time window t. Different
from [1], which was designed for a lower spatial resolution by
treating the target area as a single region, our experiments
aim at a much finer spatial granularity. We evenly divide the
target area into r× r grids, where r is the spatial resolution
parameter. Then we transform the dataset into the format

(t, rg, v
(t)
g ), which keeps track of the average speed v

(t)
g of

all vehicles traveling in region (grid) rg in time window t.
To exclude the periodic fluctuations in the traffic data, we

follow the approach in [1] to de-trend each v
(t)
g .

As to the Twitter dataset, for each time window t and
region g, we put the contents of all tweets originate in t and
from g together and cast them into the space of stemmed
words (stop-words removed), which generates a non-negative

sparse vector x
(t)
g . These vectors are used as the LBSM

semantic features. Stacking all such vectors in time window
t together, we obtain a semantic feature matrix F(t) ∈ Rn×d,
where n is the number of regions in the graph, and d is the
number of stemmed words.

4.3 Compared Methods
We compare the proposed CTP with following methods:

• Tweets Semantics Only (TwSeO) [1]: TwSeO uses

the semantic feature matrices F(t−1) and F(t−2) to pre-
dict the average speed of each region in time window
t. The model used by TwSeO is shown in Eq. 3. The
original method proposed in [1] requires both tweet
semantic data and historical traffic data. However, in
our experiments, the historical data is not available in
some regions. Thus, we compare CTP with TwSeO
method which can be considered as a degenerated ver-
sion of the method proposed in [1].

• Traffic Data Only (TDO) [8]: Due to the lack of
historical traffic data, TDO always take the universal
average speed of the entire traffic network, which is 0 in
our de-trended traffic dataset, as the prediction for the
unobserved regions. As to the observed regions, TDO
uses the auto-regression model [8] shown in Eq. 1.

• Traffic Data Only with Complete Traffic His-
tory(TDO-floor) [8]: TDO-floor predicts future traf-
fic condition by using the auto regression model pro-
posed in [8] with fully observed historical traffic data.
TDO-floor serves as a lower-bound baseline since it as-
sumes all historical traffic data in the road network is
observed.

The maximum number of iteration in the inference proce-
dure of CTP are all set as 20.

2https://dev.twitter.com/streaming/overview

4.4 Experimental Settings
We partition the data into two parts, with the beginning

(u − 1)/u (u = 3, . . . , 7) as the training set and the re-
maining as the test set. Moreover, k-fold cross-validation
is used to randomly sample 1/k regions as unobserved, i.e.
regions without historical traffic data. Note that all mod-
els are required to make predictions on all regions in test
set, including the unobserved ones. Various spatial resolu-
tions (r × r, where r = 5, 10, . . . , 30) and different fractions
of unobserved regions(1/k, where k = 2, 3, 4, 5) are tested
respectively.

4.5 Evaluation Metrics
Root Mean Square Error (RMSE) and Mean Absolute Er-

ror (MAE) are used to evaluate the performance of com-
pared methods, the definitions are as follows

RMSE =

√√√√ 1

m− l

m∑
t=l+1

n∑
g=1

(v̂
(t)
g − v(t)g )2

MAE =
1

m− l

m∑
t=l+1

n∑
g=1

|v̂(t)g − v(t)g |

, where l = max(l1, l2) and v̂
(t)
g is the estimated value of v

(t)
g .

4.6 Results
We first study the effectiveness of our proposed CTP

method on traffic prediction. Fig. 3 shows the comparison
of CTP and other methods in terms of RMSE and MAE,
where we set r = 5 and k = 2. The results under other
spatial resolutions and ratio of unobserved regions are sim-
ilar and will be discussed in Sec. 4.7. We can observe that
the TDO-floor method outperforms other three methods in
terms of both metrics for all training/test ratios. This is be-
cause TDO-floor uses the complete traffic history data while
other compared methods only have traffic history of 50%
regions. Among all three methods using only partially ob-
served traffic history, our proposed CTP method performs
the best in terms of both metrics. This improvement can
be explained by the fact that CTP leverages the semantic
features extracted from LBSM data as well as exploits the
spatiotemporal dependencies between regions. Due to the
novel experimental setting used in this work, the method
proposed in [1] no longer works as it relies on complete traf-
fic history. A degenerated version of their method, TwSeO,
which only uses LBSM semantic features is compared here.
We can observe that TwSeO is outperformed by all com-
pared methods, which indicates that using tweets semantics
alone can not achieve satisfying performance at fine spa-
tiotemporal granularity. This observation shows the limita-
tion of [1] under the assumption that historical traffic data
of some regions is not available.

4.7 Parameter Study
We now study the effect of the spatial resolution param-

eter in our experimental setting. Fig. 4 compares the per-
formance of all four methods at different spatial resolutions.
Each figure in Fig. 4 shows the results under different ratios
of test data and we set k = 2 for all of them. Specifically, we
set the spatial resolution parameter r to {5, 10, . . . , 30} and
show the RMSE of each method (MAE scores are similar and
we omit them due to the page limitation). The higher spatial



(a) Root Mean Square Error (b) Mean Absolute Error

Figure 3: Comparison of different methods

resolution (larger r) produces smaller region, which results
in sparser LBSM data in each region. We observe that CTP
achieves the best performance consistently under different
spatial resolutions compared to other methods using only
partially observed traffic history. Even under large r, where
the LBSM information is extremely sparse (about 15 tweets
per region in a time window), CTP can reduce the prediction
errors compared to TDO. Meanwhile, TwSeO is consistently
outperformed by TDO and the gap between them becomes
larger when r increases. This observation demonstrates the
effectiveness of exploiting the spatiotemporal dependencies.

(a) Test Ratio = 1/7 (u = 7) (b) Test Ratio = 1/6 (u = 6)

(c) Test Ratio = 1/5 (u = 5) (d) Test Ratio = 1/4 (u = 4)

Figure 4: Different spatial resolutions

We also study the effect of parameter k, which indicates
the ratio of unobserved regions in our experiments. To do
this, we set k equals to {2, 3, 4, 5} respectively, which is
equivalent to set 50%, 33.3%, 25%, and 20% of all regions
in the target area as unobserved (with no historical traffic
data). The results in Fig. 5 show that CTP achieves better
performance compared to TwSeO and TDO consistently un-
der different values of k. We note that the performances of
TwSeO and TDO-floor do not change under different values
of k. This is because TwSeO only use the LBSM semantic
feature matrices F(t−1) and F(t−2) that are not affected by
k, and TDO-floor uses the complete traffic history regardless
of the value of k.

5. CONCLUSION
In this paper, we studied the problem of collective traf-

fic prediction with LBSM information. Our work is dif-
ferent from the conventional traffic prediction methods in
several aspects. The proposed CTP method extracts and

(a) u = 3, r = 5 (b) u = 6, r = 5

(c) u = 3, r = 20 (d) u = 6, r = 20

Figure 5: Different ratios of unobserved regions

exploits the semantic and spatial information in LBSM. Be-
sides, CTP also makes use of the complex dependencies exist
in the road traffic networks to tickle the sparsity problem in
LBSM data. With these novelties, CTP can even make pre-
dictions in the regions without historical traffic data under
much finer temporal and spatial granularity. Experimen-
tal results on traffic data and Twitter data collected from
the Los Angeles area of California demonstrate that CTP
improves the performance of traffic prediction.
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