
Gaussian Mixture Graphical Lasso with
Application to Edge Detection in Brain Networks

Abstract—Sparse inverse covariance estimation (i.e., edge de-
tection) is an important research problem in recent years, where
the goal is to discover the direct connections between a set of
nodes in a networked system based upon the observed node
activities. Existing works mainly focus on unimodal distributions,
where it is usually assumed that the observed activities are
generated from a single Gaussian distribution (i.e., one graph).
However, this assumption is too strong for many real-world
applications. In many real-world applications (e.g., brain net-
works), the node activities usually exhibit much more complex
patterns that are difficult to be captured by one single Gaussian
distribution. In this work, we are inspired by Latent Dirichlet
Allocation (LDA) [6] and consider modeling the edge detection
problem as estimating a mixture of multiple Gaussian distribu-
tions, where each corresponds to a separate sub-network. To
address this problem, we propose a novel model called Gaussian
Mixture Graphical Lasso (MGL). It learns the proportions
of signals generated by each mixture component and their
parameters iteratively via an EM framework. To obtain more
interpretable networks, MGL imposes a special regularization,
called Mutual Exclusivity Regularization (MER), to minimize the
overlap between different sub-networks. MER also addresses the
common issues in read-world data sets, i.e., noisy observations
and small sample size. Through the extensive experiments on
synthetic and real brain data sets, the results demonstrate that
MGL can effectively discover multiple connectivity structures
from the observed node activities.

I. INTRODUCTION

Edge detection of brain network [9], [13], [11], [19] aims at
identifying the edges between nodes (i.e., functionally coher-
ent brain regions) of a brain mapping [5], [8] from a temporal
sequence of observed activities (e.g., fMRI scans). Since a
well-constructed connectivity network servers as the prereq-
uisite for many graph mining algorithms on brain disorder
diagnosis and brain functionality analysis [1], it is significant
to design a more effective and accurate edge detection method.
Existing edge detection methods usually rely on the assump-
tion that all nodes’ activities obey a multivariate Gaussian
distribution, and the connections between nodes could be
depicted by their inverse covariance matrix (a.k.a. precision
matrix) [26]. A widely used variation of this line of works is
known as Graphical Lasso (GLasso) [14], which additionally
imposes sparseness on the precision matrix. However, in
many neurology studies such as [20], [7], [3], [12], human
brains usually exhibit dramatically different activity modes
when they perform different tasks. Based on these studies,
we believe that the cognitive structure of the human mind
can be paralleled into several sub-graphs based on different
cognitive control processes and behavior. Cognitive control
means a set of dynamic processes that engage and disengage
different nodes of brain to modulate attention and switch
between tasks. Applying GLasso without considering different
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Fig. 1: The problem of Gaussian mixture sparse inverse
covariance estimation. The brain activities over time may
originate from the mixture of multiple latent cognitive brain
modes (i.e. different connectivity structures among nodes).
Without knowing the mode proportions and assignments in the
observed brain images, our goal is to discover these underlying
sub-networks for different modes.

latent cognitive modes is equivalent to deriving an “average”
network representation. Since the behavior of different brain
modes varies significantly, the derived “average” network may
lose crucial information. Under such context, as illustrated in
Figure 1, it is natural to investigate whether and how one could
extend the edge detection methods applied in brain network
to capture the connectivity structures of multiple underlying
cognitive brain modes.

To incorporate the concept of multiple connectivity structure
into edge detection, we follow the idea of latent Dirichlet
allocation (LDA) [6] to adopt Gaussian mixture model on
this problem. LDA views a document as a mixture of various
topics, and it assumes that the generation of a document
follows some topic-word distributions which can be found by
sampling. Similarly, we could view brain scans as mixtures of
latent modes, where each mode is characterized by a Gaussian
distribution with different covariance ΣM. Each covariance
matrix ΣM corresponds to a specific connectivity among brain
nodes. In the generation of each brain node activity, our model
chooses a mode M based on the mode distribution π (as LDA
chooses a topic), and then it generates a brain node activity
Ai ∼ Multinomial(0,ΣM) (as LDA generates a word based
on the topic chosen). Figure 2 illustrates the relations and
differences between our proposals and LDA, we also compare
with traditional edge detection methods Graphical Lasso [14],
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Fig. 2: Comparison of Latent Dirichlet Allocation(LDA),
Graphical Lasso (GLasso) and our model in this paper. In
each sub-graph, the boxes are ”plates” representing replicates,
which are repeated entities. The outer plate represents docu-
ment in LDA or observation subject in brain network study,
while the inner plate represents the generative process of word
(W ) in a given document or brain node activity (A) in a
given subject, each of which word or scan is associated with
a choice of topic (T ) or mode (M ) and the parameter of the
corresponding word or node activity distribution (φ or Σ). π
is the topic or mode distribution. N denotes the number of
words or scans.

where all brain node activities are assumed being produced by
a single unified zero-mean Σ-covariance multivariate Gaussian
distribution.

In this paper, our goal is to reveal these structure of under-
lying sub-network from the observed activities simultaneously.
To solve above issues, our main challenges are as follows:
• Mixture of multiple connectivity networks: In real-

world cases, the proportions and assignments of each
mode are not observable. Without the prior knowledge of
them, general GLasso only discovers a simple graph for
the whole data sets. While our problem setting requires
estimating the proportions and assignments of multiple
latent cognitive modes as well as the parameters of the
network for each mode, with the same input as GLasso,
which is much more challenging.

• Direct connectivity among the nodes: The finite Gaus-
sian Mixture Model (GMM) [24] seems a straightfor-
ward solution to our problem, which incorporates a
heterogeneous structure into the graphical model. It fits

multivariate normal distributions and treats proportions
and assignments as prior and posterior probabilities (esti-
mators) in the Bayesian setting respectively. However, it
estimates the covariance of each distribution rather than
the inverse covariance, which indicates that the discov-
ered connections could be indirect and make the network
unnecessarily complicated. So GMM is inappropriate to
distinguish the directed relationships between each pair
of nodes.

• Noisy Observations and Small Sample: It is already
a challenging task to discover a single network given
the noisy observations and the small size of the data
sample. GLasso employs simple `1-norm regularization
on to alleviate the sensitiveness to noises, but it is not
sufficient for our case. Based on the cognitive studies on
the human brain [20], [7], each brain sub-network is not
only sparse but also has limited overlapping with other
sub-network, simply adopting `1-norm regularization as
in GLasso may make the derived sub-network highly
intertwined and hard to interpret. So we want to design a
new regularization into the model, which can enforce it
to discover a set of different sub-graphs, no matter small
sample size or noisy data.

To tackle the above challenges, we propose a new model,
namely MGL, to discover such mixture connectivity structures
of the brain network. Similar to GMM, MGL learns the
proportions and assignments of each latent cognitive mode
iteratively via an EM framework, with the emphases on infer-
ring the inverse covariance matrix of each latent distribution.
A novel regularization approach called Mutual Exclusivity
Regularization (MER) is also proposed to differ each inverse
covariance matrix, implying that sub-network of different brain
regions are activated under different cognitive modes. We
introduce our model and algorithm in next two sections. Then
in the fourth part, we show Extensive empirical studies on
both synthetic data and real brain fMRI data demonstrate the
effectiveness of MGL. We also discuss some related works
related to edge detection problem in brain network. Finally,
we conclude our work.

II. PRELIMINARY

A. Notation

Throughout this paper, R denotes the set of all real numbers,
Rn stands for the n-dimensional euclidean space. The set of
all m × n matrices with real entries is denoted as Rm×n.
All matrices are written in boldface. We write X � 0 to
denote that matrix X is positive definite. We write tr(·) to
refer the trace of a matrix, which is defined to be the sum
of the elements on the main diagonal of the matrix. We use
|X| to denote the determinant of a real square matrix X. We
define a special matrix of X as follows:

X̄ =

 0 |X12| · · · |X1N |
|X21| 0 · · · |X2N |
|XN1| |XN2| · · · 0

 (1)



TABLE I: Important Notations.

Symbol Definition

D The number of variables or objects
N The number of samples
K The number of distribution
X The observations of D-variate Gaussian distribution
S The empirical covariance matrix of X
φk The prior probability or mixing coefficient of distribution k
rik The posterior probability of sample i generated from distribution k
Σk The covariance matrix of distribution k
Θk The precision matrix of distribution k
Θ̄k The non-negative copy of Θk with zero diagonal elements
λ1 The Lagrangian multiplier of general lasso regularization
λ2 The Lagrangian multiplier of mutual exclusivity regularization

X̄ is the non-negative copy of X removed all diagonal
elements. In addition, we collect other important notations in
Table(I).

B. Inverse Covariance Estimation

The inverse covariance matrix is defined as Θ = Σ−1,
which can filter the directed links between all relationships.

C. Graphical Lasso

Graphical Lasso (GLasso) or Gaussian Graphical Model
(GGM) is usually formulated as the following optimization
problem,

min
Θ�0
−log|Θ|+ tr(SΘ) + λ||Θ||1 (2)

where S = 1
nX>X is the empirical covariance matrix,

||Θ||1 is the `1-norm regularization that encourages sparse
solutions, and λ is a positive parameter denotes the strength
of regularization. Since Θ̂ is usually a relatively sparse matrix
with non-zero entries corresponding to directly connected pairs
of nodes, we can use it as a concise representation of the
underlying network.

D. The Adaptive Lasso

[33] proposed a special penalty to achieve the desirable
properties, which is called the adaptive Lasso. It requires
different weights for each component in the Lasso penalty.
So putting the adaptive Lasso penalty into Eq. 2, we can get:

min
Θ�0
−log|Θ|+ tr(SΘ) + λ

N∑
i=1

K∑
k=1

ωik|Θ(ik)| (3)

where |Θ(ij)| denotes the ij-th element of Θ. We will propose
a similar idea in our model to deal with the non-overlapping
problem.

E. Gaussian Mixture Model

One of the most popular mixture model is Gaussian Mixture
Model (GMM), where each base distribution in the mixture is

a multivariate Gaussian (MVG) with mean µk and covariance
matrix Σk, the probability of data sample xi is as follows:

p(xi|θ) =

K∑
k=1

φkN (xi|µk,Σk) (4)

where θ is the model parameters, 0 ≤ φk ≤ 1 is the prior
probability of the k-th base distribution chosen to generate a
sample and

∑K
k=1 φk = 1.

III. MGL METHOD

A. Gaussian Mixture Graphical Lasso

Given the number of base distributions K and the number
of node N , we assume the observed sample of each node is a
mixture of the K distributions. Thus, the joint probability of
all observations X = (x>1 , · · · ,x>N ) ∈ RN×D is given by

p(X|Θk,µk, φk) =

N∏
i=1

K∑
k=1

φkN (xi|µk,Σk)

=

N∏
i=1

K∑
k=1

φk
exp
(
− 1

2 (xi − µk)>Σk(xi − µk)
)

(2π)D/2|Σk|1/2

We could assume µk = 0 without losing generality, so the
negative log likelihood (NLL) in terms of {Θk} is given by,

NLL(θ) = −log
( N∏
i=1

K∑
k=1

φkN (xi|0,Σk)
)

= −
N∑
i=1

log
( K∑
k=1

φkN (xi|0,Θ−1k )
) (5)

where θ = {φ1, · · · , φk,Θ1, · · ·Θk} is the model parameters.

B. The Mutual Exclusivity Regularization

Similar to Eq. (3), we also need to impose regularization
on our mixture model to obtain interpretable results, which
means non overlapping edges exist among all estimators of
precision matrices. However, be different with adaptive lasso



or fused lasso, the intuitions are two folds: (1) we want each
Θk to be sparse; (2) we want each Θk to be fairly different
from other Θk′ . Towards this end, we propose to the mutual
exclusivity regularization as follows,

`λ1,λ2({Θk}) = λ1

K∑
k=1

‖Θk‖1 + λ2
∑
i 6=j

tr(Θ̄iΘ̄j) (6)

where Θ̄ =

 |Θ11| · · · |Θ1N |
· · ·

|ΘN1| · · · |ΘNN |

 is the non-negative copy

of Θ. The first term is identical to graphical lasso, which
imposes sparsity controlled by λ1 > 0 on each Θk. The second
term is the summation of the approximate divergence measure
between each pair (Θi,Θj). It is easy to see when there is
no overlapping non-zero entities between each Θk, this term
reaches its minimal value 0. λ2 > 0 is employed to tune the
strength of the second regularization. So it makes sense that
we can use this term to force each estimation of Θk in the
result to have as few over-lapping elements as possible.

Hence, we formally present the objective of our MGL as
follows,

min
{Θk�0}

NLL({Θk}) + `λ1,λ2
({Θk}) (7)

C. The Latent States

Since there are K separate latent distributions, so each data
sample xi could come from one of the K distributions, we
denote the corresponding state as zi ∈ {1, · · · ,K}. Thus, the
NLL function could be rewritten as follows,

NLL(θ) = −
N∑
i=1

log

K∑
k=1

(Q(zik)p
(
xi|Θk φk

)
Q(zik)

)
= −

N∑
i=1

log

K∑
k=1

(p(xi, zik|Θk φk
)

Q(zik)

) (8)

Here Q(zik) is the latent variable and
∑K
k=1 Q(zik) = 1. In

fact, we can treat this item as the posterior probability of the
i-th observation generated by the k-th distribution, which will
be proved in the next section.

According to the expression in the Equation (8), it can not
be directly computed because the expression in log is a sum
term. So we use the Expectation Maximization (EM) algorithm
to optimize the above NLL w.r.t. {Θk}.

D. The E Step

Firstly, according to the Jensen inequality, we known that
when the optimal function is convex:

f(E(x)) > E(f(x)) (9)

Because NLL is convex, and
∑K
k=1

(
p
(
xi,zi|Θk φk

)
Q(zi)

)
can be

treated as the expectation of p
(
xi, zi|Θk φk

)
. So we apply

Jensen inequality here to find a lower bound of it. Based on
this principle, we get the lower bound of NLL such as follows,

NLL(θ) = −
N∑
i=1

log

K∑
k=1

(p(xi, zi|Θk φk
)

Q(zi)

)
(10)

6 −
N∑
i=1

K∑
k=1

Q(zi) log(p
(
xi, zi|Θk φk

)
) (11)

The equal sign is approved only when the following is true,

p(xi, zik)

Q(zik)
= C (12)

where C is a constant. So simply we have,
K∑
k=1

p(xi, zik) = C

K∑
k=1

Q(zik) = C (13)

Q(zik) =
p(xi, zik)∑K
k=1 p(xi, zik)

= rik (14)

The NLL(θ) = −
∑N
i=1

∑K
k=1 Q(zi) log(p

(
xi, zi|Θk φk

)
) is

correct only when the constraint of Q(zik) is true. So we can
get the conclusion that the latent variable we created is the
posterior probability of the i-th observation generated by the
k-th distribution. Then we can compute each rik based on the
initialization or update results of Θk and φk.

E. The M Step

After we obtain the r(t)i in the E step, we could update φk
accordingly:

φ
(t)
k =

1

N

N∑
i=1

r
(t)
ik (15)

However, 1
N

∑N
i=1 r

(t)
ik −φ

(t−1)
k is a feasible descent direction.

So we update φk based on the follows:

φ
(t)
k = φ

(t−1)
k + δk(

1

N

N∑
i=1

r
(t)
ik − φ

(t−1)
k ) (16)

where {δk|k = 0, 1, 2, . . . ; δ ∈ (0, 1)} is a learning rate and
we find δ = 0.1 works well in our experiments.

The remaining problem is to find Θk that maximizes the
expectation we obtain in the E step, which is equivalent to
minimize the following function:

min
{Θk�0}

−
N∑
i=1

K∑
k=1

r
(t)
ik log p(xi|Θk) (17)

⇐⇒ min
{Θk�0}

−
N∑
i=1

K∑
k=1

r
(t)
ik log

(exp(− 1
2x
>
i Θkxi)

(2π)D/2|Θk|−1/2
)

(18)

⇐⇒ min
{Θk�0}

N∑
i=1

K∑
k=1

r
(t)
ik

2
(x>i Θkxi +D log 2π − log |Θk|)

(19)



By dropping terms do not rely on Θk, we obtain:

min
{Θk�0}

N∑
i=1

K∑
k=1

−r(t)ik
(
log|Θk| − x>i Θkxi

)
(20)

Thus, deriving Θk in M-step is equivalent to solve the
following problem,

min
Θ1�0,··· ,ΘK�0

N∑
i=1

K∑
k=1

−r(t)ik (log|Θk| − x>i Θkxi) (21)

Intuitively, above problem is equivalent to K separate con-
ventional graphical lasso sub-problem weighted by r(t)ik , where
each sub-problem has the form of

min
Θk�0

−sk log |Θk|+ r>k X>ΘkX (22)

where rk = (r1k, · · · , rNk)> and sk =
∑N
i=1 rik. If we set

X̃k = (
√
r1k/skx

>
1 , · · · ,

√
rNk/skx

>
N ), the above problem

can be reformed as follows,

min
Θk�0

− log |Θk|+ tr(X̃>k ΘkX̃k) (23)

which takes a similar form to Eq. (2). Then we bring in the
adaptive regularization to obtain the final problem for M step,

min
{Θk�0}

K∑
k=1

(
− log |Θk|+ tr(X̃>k ΘkX̃k)

)
+ `λ1,λ2({Θk})

(24)

This problem is not convex w.r.t. {Θk}, but we could solve
it alternatively for each Θk by regarding other Θk′ 6=k fixed.
Each sub-problem of Θk is exactly in the form of Eq. (23) plus
the adaptive regularization terms. Thus it could be solved by
any existing method for solving Graphical Lasso such as QUIC
without significant modifications. In each iteration of M-step,
the alternating optimization repeats until all estimated Θk

become stable or reaches the maximal number of iterations.
The final solutions to Eq. (24) and updated {φk} obtained

using Eq. (15) are used in the upcoming iteration of E-step
to update the responsibility weights {ri}. This loop of E step
and M step repeats until the loss function converges.

The MGL algorithm is also summarized in Algorithm (1).

F. Initialization

As we know from the Algorithm (1), we need to give
starting values of each estimators. In the process of com-
parative experiments, we found that the initialization of the
parameters will largely affects the performance of our model.
The following scheme we found empirically works well in
our experiments. For each observation i = 1, . . . , N , we
distribute it randomly a class k ∈ {1, . . . ,K}. Then we assign
a weight r̂ik = 0.9 for this observation i and distribution k
and r̂ij = 0.1

K−1 for all other distributions. In the M-step, we
update Θk from the initial values Θ̂

(0)
k computed by GLasso

based on the whole samples. and φk from the initial values
φ̂k = 1

K .

Algorithm 1 Algorithm for MGL

Require: i: X: The observations of D-variate Gaussian dis-
tribution

ii: k: the number of Gaussian distributions
iii: λ1: the Lagrangian multiplier of sparsity con-

straint
iv: λ2: The Lagrangian multiplier of mutual exclu-

sivity constraint
v: itermax: the maximum number of iteration
Output: Θ̂k, φ̂k

1: Initialization: initialize φ(0)k , Θ
(0)
k and r(0)ik

2: repeat
3: E step: Update the latent variable r

(t)
ik with given

φ
(t−1)
k and Θ

(t−1)
k

4: M step: Update φ(t)k , Θ
(t)
k with r(t−1)ik

5: until iter = itermax or convergence

IV. EMPIRICAL STUDY

In this part, we demonstrate the performance of our pro-
posed model through extensive comparative experiments. We
evaluate our proposed model in synthetic datasets at first.
To comprehensively evaluate proposed model, we conduct
experiment to answer the following research questions:
• RQ 1: How does MGL perform compared with state-of-

the-art models in the consideration of the effect of sample
size?

• RQ 2: Does our model still show robustness under noise?
If the MER regularization term has positive influence on
the performance under noise?

• RQ 3: How do hyper-parameters in comparative experi-
ments impact each model performance?

• RQ 4: Is there a problem with mixture brain network
structure in real ADHD-200 datasets?

A. Compared Baselines
To demonstrate the effectiveness of our proposed method,

we test against several variations of the state-of-art method
Graphical Lasso:
• GLasso + Spectral Clustering: GLasso algorithm that

assumes all data samples are drawn from the same Gaus-
sian distribution, then using Spectral Clustering divide the
whole network into several sub-graph.

• k-means + GLasso: This is a pipeline method that first
employs k-means to assign each xi to different groups,
then using GLasso for each group to obtain the final Θk.

• JGL [16]: This is the Joint Graphical Model with fused
lasso, which is proposed in [16]. It is equivalent to our
proposed model without MER term. So it can work as
the comparative method for assessing the performance of
MER.

B. Synthetic Simulations
Due to the lack of ground truth in many real-world data, we

first compare our proposed method against other competitors
on several carefully designed synthetic data sets.



(a) Low Dimension - Sample Size (Scenario 1) (b) Low Dimension - Noise (Scenario 2)

(c) High Dimension - Sample Size (Scenario 3) (d) High Dimension - Noise (Scenario 4)

Fig. 3: Comparison of each model on edge detection. In scenario 1 and 2, we fix p = 8 and k = 2; in scenario 3 and 4, we
fix p = 20 and k = 2. In the first column, sample size N is controlled from 100 to 520 in scenario 1, from 200 to 1000 in
scenario 3; in the second column, noise is indicates by the standard error σ, controlled from 0.1 to 0.8 in scenario 2 and 4.
Each figure shows the results of F1-score. The dark blue line indicates GLasso + Spectral; the light blue indicates k-means
+ GLasso; the orange one shows the result of MGL without Mutual Exclusivity Regularization and the green one shows the
result of MGL.

1) Data Set: In this sub-section, we design some synthetic
data sets purposefully. Firstly, we generate k diagonal matrices
(k is the number of distribution, which is given in advance),
then divide it into several equal-scale blocks. It makes sense
for two reasons: we need to control each sub-graphs Θk with
non-overlapping edges on off-diagonal areas; by making edges
of each sub-graph more concentrated, it is helpful for making
results conductive to visualization. Secondly, we choose differ-
ent off-diagonal blocks on each Θk, giving connectivities for
these chosen blocks with a high density. Following the above
steps, we generate each Θk without overlapping edges on off-
diagonal areas. Based on Θk, we compute each Σk, then select
Nk samples (

∑K
k=1Nk = N ) randomly from each Gaussian

distribution. In the next subsection, in order to evaluate the
stability of our model, we also add noise into the samples.
To exclusive the system randomness, we sample 10 times for
all experiments, calculate the average of each experiments. So
we can evaluate the precision and stability of our model at the
same time.

2) Experimental Settings: We simulate four scenarios by
controlling one parameter and holding on the others. In these
situations, we select sample size N and the standard error of
noise σ as the controlled parameters.

• Scenario 1: We fix p = 8 (the number of variables),
k = 2 (the number of Gaussian distributions), and σ = 0
(the standard error of noise), and then control sample size
N from 100 to 520.

• Scenario 2: We fix p = 8, k = 2, and N = 500, and
then control noise σ from 0.1 to 0.8.

• Scenario 3: We fix p = 20, k = 2, and σ = 0, and then
control sample size N from 200 to 1000.

• Scenario 3: We fix p = 20, k = 2, and N = 1000, and
then control noise σ from 0.1 to 0.8.

3) Evaluation: To evaluate the quality of each sub-graph,
we follow the method of [30] to define the F1-score of edge
detection as follows,

F1 =
2N2

d

NaNd +NgNd
(25)

where Nd is the number of true edges detected by the model,
Ng is the number of true edges and Na is the total number of
edges detected. According to the expression, higher F1-score
indicates better quality of edge detection.

Figure 3 shows the comparison between MGL and other
baseline models. The results in the figure answer the first
three RQ mentioned at the beginning of this section. The



(a) Precision matrix Θ1 (b) Precision matrix Θ2

Fig. 4: True precision matrices of data sets (p = 20 and k =
2) in scenario 3 and 4. In the consideration of elements in
off-diagonal area, white indicates no directed relationship and
black indicates directed relationship between each variable.

first column shows the results when we control sample size
N and hold on the others, which corresponds to RQ1. It is
obvious that k-means and Spectral models are useless when
the ground truth data sets are drawn from mixture Gaussian
distribution. Meanwhile, when the sample size is not large
enough, the precision of JGL is lower than that with MGL. The
second column shows the results when we control noise, which
corresponds to RQ2. We fix the sample size N on 500, so
when σ = 0, JGL is as good as MGL. According to the results,
The louder the noise, the worse JGL performs, which means
sensitive to the noise.So the result demonstrates that MER
regularization can improve the performance of our proposed
model. Compared to the others, MGL shows robustness in this
scenario. To answer RQ3, we can figure out the answer from
both column in this figure. Since our experiments are setting
in low-dimensional and high-dimensional space separately,
we can see from all comparison results that the issue of
hyper-parameters does not affect the performance of MGL. In
contrast, the performance of JGL in high-dimensional space
isn’t as well as that in the low-dimensional space, no matter
in the scenario of sample size or noise. In summary, in the
comparative experiment of synthetic datasets with ground-
truth, our proposed method MGL shows better accuracy and
robustness than that of other comparison methods.

Figure 3 has exhibited the overall performance of all meth-
ods. To better understand the effectiveness of MGL, we also
show the visualization of these scenarios, which can more
intuitively reflect the problem of multiple mixture network
and the performance of each method. Figure 4 shows the true
precision matrices of data sets in scenario 3 and 4. It indicates
that these data sets are drawn from two independent Gaussian
distributions, which is consistent with the defined problem in
the paper. According to the color bar, in the consideration
of elements in off-diagonal area, white indicates no directed
relationship and black indicates directed relationship between
each variable. So it is obvious that the precision matrices of
them have non-overlapping area with each others.

Figure 5 shows the comparison when sample size N = 1000
and no noise exists in the data sets. We filter the precision
matrix into a matrix with only 0 and 1 by a threshold close

(a) JGL: Θ̂1 (b) JGL: Θ̂2

(c) MGL: Θ̂1 (d) MGL: Θ̂2

Fig. 5: Estimated precision matrices of data sets (p = 20 and
k = 2) when N = 1000 and σ = 0 (no noise).

to zero. So according to the figure, as long as the sample
is large enough and no noise exists, these two models can
figure out ground truth mixture distribution, no matter whether
considering the mutual exclusivity term. However, when the
sample size is insufficient or there is noise in the datasets
(Figure 6 and 7), JGL begins to show malfunction, which
indicates that this model is sensitive to sample size N or noise.
According to the second row of them, the mutual exclusivity
regularization can solve this problem to some extent. MGL
can still get results that are very close to the real situation,
which demonstrate that MER improves the performance of
MGL under small sample size. In summary, we believe that
MGL is more accurate and robust to mixture Gaussian data
sets with non-overlapping constraint. The mutual exclusivity
regularization works well on small samples or noisy data sets.

C. Real fMRI Data

In the subsection, we evaluate our proposed method on
fMRI dataset from ADHD-200 project1. ADHD, which is also
called Attention Deficit Hyperactivity Disorder, is a chronic
condition. This condition has been happened on 5% - 10% of
school-age children. Through this paper, we discover the net-
work discovery from a collection of fMRI scans, in which each
sample corresponds to a 4D brain image (a sequence of 3D
images) of a subject. These scans are usually transferred into
time series of voxels in the 3D images space. Consequently in
practice with real fMRI cases, node is a set of voxels in 3D
brain images that are similar to each other in function. Our
real world dataset is distributed by nilearn2. Specifically, there
are 40 subjects in total. Among them, 20 subjects are labeled

1http://fcon 1000.projects.nitrc.org/indi/adhd200
2http://nilearn.github.io/



(a) JGL: Θ̂1 (b) JGL: Θ̂2

(c) MGL: Θ̂1 (d) MGL: Θ̂2

Fig. 6: Estimated precision matrices of data sets (p = 20 and
k = 2) when N = 400 and σ = 0(no noise).

(a) JGL: Θ̂1 (b) JGL: Θ̂2

(c) MGL: Θ̂1 (d) MGL: Θ̂2

Fig. 7: Estimated precision matrices of data sets (p = 20 and
k = 2) when N = 1000 and σ = 0.5.

as ADHD, and the others are labeled as TDC. The fMRI scan
of each subject in the dataset is a series of snapshots of 3D
brain images of size 61×76×61 over ∼176 time steps. In our
experiment, we only choose the subjects which are labeled as
ADHD.

Because real fMRI data lacks ground-truth as a reference
to measure the accuracy and robustness of the model. We

(a) Sub-graphs discovered by k-means

(b) Sub-graphs discovered by JGL

(c) Sub-graphs discovered by MGL

Fig. 8: Comparison of k-means + GLasso, JGL and MGL on
ADHD dataset. The results show how to estimate a mixture
connectivity structure on a group of subjects using different
group sparse inverse covariance estimation models from real
fMRI data set. The closer the color of elements in off-diagonal
is to blue, the bigger probability the directed edges between
corresponding nodes.

are more concerned with the interpretability and rationality
of the results. Specific to our proposed model, we are more
concerned about whether our model can mine different con-
nectivity structures among nodes from the fMRI datasets.
Throughout this subsection, we still make horizontal compar-
isons of the models mentioned in synthetic datasets, in order
to compare the different results of each method on this fMRI
datasets.

In our experiment, we only choose the subjects which are
labeled as ADHD. We focus on the multiple connectivity
structures among the same subjects, in order to provide
evidence on feature selection between different subjects in
further study. Rather than discover the brain network on the
level of voxels, we extracts the signal on regions defined via
a probabilistic atlas, to construct the data sets. So it is more
conventional for visualization of the results. The data sets is
a 1899 × 39 data sets and we consider that they are drawn
from a mixture Gaussian distribution. However, the number k
of it is unknown, which need to be given in advance. Through
repeated experimental observations, we found that k = 4 can
provide the most reasonable results on the data sets.

In the Figure 8, the first row indicates the results of k-
means plus GLasso; the second one indicates JGL and the
third one indicates MGL. According to the results, we can
find that there are almost no differences among four sub-
graphs discovered by k-means plus GLasso. It indicates that
this method is useless for mining sub-graphs in ADHD data
sets. JGL shows four different sub-graphs, however, so many
overlapped areas among them. These results seem not to
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Fig. 9: We turn the results of Fig. 8 into connectome for
visualization. Each precision matrix is displayed on glass brain
on extracted coordinates. These graphs of precision matrices
discovered by MGL in ADHD dataset. The closer the color of
edge is to red, the stronger the directed relationship between
corresponding nodes.

be sparse matrices, which indicates that the corresponding
connectivity structure is not very clear through this method.
Compared to it, sub-graphs discovered by MGL is clearer and
the number of overlapped areas is less. Therefore, although
lacking the ground truth in ADHD data, we can still believe
that the inferred results of MGL is consistent with the defined
problem in this paper, especially in the consideration of mix-
ture Gaussian distribution with non-overlapping areas among
their precision matrices. The Figure 9 shows the corresponding
connectivity structure of the results discovered by MGL. Here
we only choose the axial direction of the cuts to show. The
closer the color is to red, the stronger the directed relationship
between the corresponding nodes. We highlight the stronger
edges by adjusting the threshold of colorbar. According to the
visualization of results, we can see that different sub-graphs
highlight different relationships among all nodes. Different
sub-graphs emphasize the relationships of different nodes,
which means that subjects present different network structures
on the time-line. This phenomenon is more obvious between
the nodes related to DMN (default mode network), which
includes the Parietal, Occipital Lobes, the Cingulum Region
Posterior and the Frontal Cortex. Although the hypothesis
about non-overlapped areas among each connectivity structure
may not exist in real ADHD subjects, we believe that MGL
with MER regularization can more prominently show the
difference between each connectivity structures discovered, so
that we can have a better understanding of the association

between cognitive network and human activities.
According to the analysis above, despite the lack of ground-

truth, we believe that the existing results are still consistent
with the problem defined in this paper. So the result shows that
there is a mixture connectivity structure among nodes in the
fMRI datasets, and our proposed model MGL can effectively
mine this mixture connectivity structure.

V. RELATED WORK

In the section, we introduce some existing related methods
from two perspectives: edge detection and mixture network
discovery.

In the consideration of edge detection, this issue has two
major branches: effective connectivity estimation and func-
tional connectivity estimation. For the first branch, scholars
pay more attention on obtaining a directed network from fMRI
data through structure learning method for Bayesian networks
[18]. In contrast, the second branch focuses on some ap-
proaches such as hierarchical clustering, pairwise correlations
and independent component analysis, which can be found
in [15] for more details. In this paper, we focus on sparse
gaussian graphic models [14], [4], which are a very useful for
discovering connectivity of brain network based on large-scale
dataset by using sparse inverse covariance estimation. The
main ideas of these methods are that they can distinguish direct
links from indirect connections due to their solid probabilistic
foundation. However, in the task of edge detection, these
methods focus on unimodal distributions, where it is usually
assumed that the observed samples are drawn from a single
Gaussian distribution, which is opposed to some recent studies
[20], [3]. The Joint Graphical Model with fused lasso, which is
proposed in [16], is in the framework of multivariate Gaussian
mixture modeling. However, this method has shown to be
sensitive to the noise and small size of the data sample.

Secondly, we consider the Gaussian Mixture Model
(GMM), which is introduced by Pearson in [24]. It models the
distribution of data observations as a weighted sum of parame-
terized Gaussian distribution. In later extended researches, an
obvious issue related to GMM is estimating the parameters
given observations. EM algorithm in [10] has proven to be a
powerful algorithm for the maximum-likelihood estimation of
GMM. In addition, [25], [2] consider the issue of the number
of mixture components in model, which can lead to over-
fitting in practice. Nowadays, GMM has been widely used
in many areas, especially in network discovery [22], [21],
[32]. The majority of the existing studies on mixture modeling
focus on regularizing only the mean parameters with diagonal
covariance matrices [23], [27], [29], though some [31], [17],
[28] have started considering regularization of the covariance
parameters too, all of which, however do not touch on the
key issue of identifying the varying sparse structures of the
precision matrices across the components of a mixture model
in brain network discovery. [16] propose a joint graphical
model called JGL, which is combined with fused lasso, to
deal with cluster-specific networks. This method aims at
discovering both the commonalities and diversities across the



multiple precision matrices through possibly nonconvex fusion
regularization. However, this method does not fully highlight
the non-overlapping areas of the substructures, meanwhile it
is unstable to noise and small data set.

Based on the above discussion, we find out that the existing
models related to GMM or GLasso are not suitable for the
problem we define in this paper.

VI. CONCLUSION

Through this paper, we aims at addressing the question
of interest here: how to discover different connectivity sub-
structures between a set o nodes based upon the observed
node activities in brain network discovery. Existing sparse
Gaussian graphical models always give the same network for
all populations unless the parcellation of the data set has been
finished before. On the other hand, the methods related to
mixture brain network discovery ignore the direct connectivity
among the nodes meanwhile show lack of robustness to noisy
observations and small sample. We propose embedding one of
the current methods of estimating multiple Gaussian graphical
models in the framework of Gaussian mixture modeling, then
design a new regularization term, called mutual exclusivity
regularization, to make sub-graphs un-overlapped with each
other. Meanwhile, we develop the EM algorithm on our model.
Through extensive controlled experiments, we demonstrate
that our proposed model MGL shows more effectiveness
than other baseline models, meanwhile, MGL shows more
robustness than JGL, especially in the consideration of small
samples or noisy data sets. In addition, this conclusion is also
demonstrated in the experiment of real fMRI brain scanning
datasets from ADHD subjects. So we have reason to believe
that, our method can also be applied in other domains when
network connectivity structure is very complex.
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