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Abstract—Publicly available pre-trained word embeddings are
rich sources for turning critical high-dimensional representations
of huge text data repositories into meaningful compact vectors
essential for text mining applications. With many of such pre-
trained embedding sources available, each faces limitations in
the appropriateness of their language use for the downstream
text-mining tasks. Meta-embeddings aim to tackle this ambiguity
challenge by fusing multiple embedding sources into one fea-
ture space. However, current meta-embedding methods assume
vocabularies across sources are similar or even identical; which
unfortunately stands in sharp contrast to the fact that many
sources barely overlap. Further, these methods encode a meta-
embedding for each word by reconstructing its actual embedding
values (word-encoder), while valuable information of relationships
(distances) among words within each source are not directly con-
sidered. In this work, we instead propose a novel relation-encoder
learning approach called Similarity-Preserving Meta-Embedding
(SimME) that directly integrates word-pair relationships from
partially overlapping embedding sources. SimME embeds words
such that their similarities are learned from those observed in
multiple pre-trained sources. To handle relations between words
that are not present in all sources, we introduce maskout, a
new loss term, that steers the learning selectively to the sources
containing said relations. SimME consistently outperforms state-
of-the-art methods by 10% on average and with up to 20% across
several core metrics in 4 popular mining tasks on 23 datasets.

Index Terms—Meta-Embeddings, Text Mining, Word Repre-
sentations, Semantics Preserving

I. INTRODUCTION

Background and Motivation. Text mining has advanced
rapidly in recent years as massive sites of unstructured text
data is becoming common. For tackling space efficiency and
modeling challenges, numerical representations of text, or
word embeddings [1], [2], have become essential for text
mining applications [3]–[5]. Traditional approaches, which use
either one-hot encodings representing each word by a bit or
frequency-based rules such as bag-of-words or tf-idf as repre-
sentations to be fed into the machine learning models, all suffer
from the curse of high dimensionality. Additionally, these
representations do not meet the demand of applications from
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Fig. 1: Learning meta-embeddings from two partially overlapping
embedding sources. Same words appear in all sources (hot and cold),
yet their relative similarity may differ. Also, some may not present
in all sources, leading to partially observed relations in only some
source (heatstroke and flu or food and drink).

search engines, information retrieval, to sentiment analysis to
capture word semantics and word relationships.

Hence, word embedding methods [2], [6] that create com-
pact vector representations of words are popular. These em-
beddings not only reduce the dimensionality of text data but
also aim to capture the inherent relationships among words
via their relative distance in the embedding space. However,
creating a set of embeddings requires a massive text corpus,
substantial computational resources, and often prohibitively
long training times. Given these excessive resource require-
ments, it has become common practice to download publicly-
available pre-trained sets of embeddings [2], [6]–[8] provided
by several organizations [9], [10]. These pre-trained sources
have accelerated advances across a broad array of text mining
tasks from sentiment analysis [4], keyphrase extraction [5], to
digital healthcare [11].

Each available source captures unique semantics depending
on the text upon which they were trained. The choice of source
then strongly impacts task performance [3], [12]. Meanwhile
picking the right source for a task is difficult as it is unclear
which sources encode language usage in a task best. Consider,
in Figure 1, a task using Twitter to support clinical diagnosis
[13]. We have many options to pick embeddings from trained
on tweets or medical text, but none trained on both. Which



source should we choose? Assume our task involves the 6
words {flu, heatstroke, cold, hot, drink, food}, each source
contains different subsets of this 6 word set. Neither source
by itself can fully meet our need for these 6 words, while their
combination would support us perfectly.

Fortunately, meta-embedding has recently been proposed as
a mechanism to integrate multiple embedding sources into
one embedding space [14]–[18] to aim to cover the needed
vocabulary for a task. However, successful meta-embeddings
should retain all word relationships inherent in these sources -
complicating this meta-embedding learning process. Consider
the additional example in Figure 1, where some word relation-
ships are not consistent between sources such as hot and cold:
being similar in Twitter while far apart in the Medical source.
Moreover, some words appear in only one source, while being
out-of-vocabulary (OOV) with respect to the other source such
as flu, heatstroke, drink, and food.

State-of-the-Art. Recent methods learn meta-embeddings
by reconstructing each word’s raw embedding vector from pre-
trained sources [14]–[18]. They focus on retaining encoded
values of words individually, which we now call word-encoder
methods. However, projecting such vectors into a new meta-
embedding space does not necessarily preserve their relative
distance within the original sources. Yet this relative distance
is the key advantage in pre-trained sources since they were
explicitly trained to capture the relations between words as a
distance metric. Thus, meta-embeddings must carefully merge
these informative relations into the united embedding space,
meaning, a successful meta-embedding algorithm should be a
relation-encoder rather than just a word-encoder.

Further, the word-encoder approaches are not effective
for learning meta-embeddings for out-of-vocabulary (OOV)
words. Rather, they simply adopt a single default embedding
for all OOV words in each source. This limits their capacity
since training is wasted on artificial embeddings that encode
no data-driven information. Yet this OOV case is extremely
important in practice because the vocabularies of publicly-
available sources barely overlap, leading to a large number
of these OOV cases as demonstrated in Section 4.

The closest work to ours [18] learns a meta-embedding for
each word by incorporating information of its neighboring
words or local neighborhoods. In contrast, we consider re-
lationships of all words used in the target task. Their method
indirectly preserves the relative distance of the neighbor words
by assigning weights to each neighbor embeddings while ours
directly preserves the pairwise distance among words.

Challenges. Our work targets two challenges in integrating
semantics from partially-overlapping embedding sources.
• Preservation of word similarity. To produce a new meta-

embedding space, directly projecting embeddings into such
a joint space is not guaranteed to preserve the meaningful
relative distance between words. It is difficult to accurately
preserve these word-pair similarities in the new learned space.
Moreover, similarities of a word-pair observed in multiple
sources may contradict one another, mandating a learning
approach to handle conflicts. No work so far directly preserves

this crucial information.
• Out-of-vocabulary (OOV) words. The vocabulary covered

by each pre-trained source is entirely dependent on its training
corpus, leading to many words that do not exist in all sources
(OOV words). For example, flu/heatstroke and drink/food in
Figure 1, each appears in only one source. Meta-embeddings
may become biased since they might be directed to skewed
information from the sources that do not contain the words.
Thus, this incomplete information complicates the effective-
ness of meta-embeddings. Worse yet, the vocabularies of
publicly-available sources barely overlap in practice, creating
large numbers of OOV cases to be considered.

Proposed Method. To handle the aforementioned chal-
lenges, we propose the meta-embedding learning method,
called Similarity-Preserving Meta-Embedding (SimME), that
directly preserves word-pair relationships from multiple pre-
trained embedding sources which have partially-overlapping
vocabularies. SimME consists of two components: (1) A
Relation-Encoder that learns an embedding space that maps
a word-pair to their meta-embeddings. This neural network
produces embeddings that are roughly equidistant in the orig-
inal embedding space and the meta-embedding space. When
one word is present in multiple sources, the Relation Encoder
learns to appropriately balance between multiple distances.
In contrast to Word-Encoder approaches [14], [16], [17], our
Relation-Encoder ensures that the crucial information from
the sources, the relationships between words, is directly main-
tained. (2) Maskout, an objective function for learning meta-
embeddings, which employs an indicator function that allows
the model to adaptively train meta-embeddings based only
on the sources in which word-pair relationships are actually
observed. Maskout successfully avoids uninformative artificial
OOV embeddings [14], [17], instead allowing for fully data-
driven meta-embeddings.

Contributions. Our contributions are as follows:
• We propose a novel training paradigm for meta-

embeddings that successfully captures the relation between
words through the relative distance among their embeddings
across disparate embedding sources.
• We introduce the maskout optimization that allows our

model to selectively learn from the sources containing the
word-pair relations, elegantly handling prevalent OOV cases.
• SimME is evaluated on 23 datasets covering four different

text-mining tasks. For each dataset, we evaluate the quality
of learned meta-embeddings using four unique combinations
from three popular pre-trained sources. SimME consistently
outperforms 7 state-of-the-art baselines in all tasks, achieving
10% improvement on average and up to 20% in many cases.

II. RELATED WORK

Pre-trained word embeddings play a key role in standard
practices across many text-mining tasks. Such embeddings are
trained using one of many proposed methods [2], [6], [9], [19]
and are often made publicly available [2], [7], [20], [21].

However, careful choice of the embedding sources has
classically been crucial since each source contains vastly
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(a) Word-based encoder. For OOV words, these meth-
ods generate the raw-values of unobserved embeddings
[14], [16], [17].
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(b) Relation-based encoder (ours). For word-pairs related to OOV, our method
is able to focus only on real relationships without generating non-existing
embeddings for OOV words.

Fig. 2: Comparison of the learning process for meta-embeddings.

different characteristics and shows variable performance across
tasks [12]. In many cases, it remains unclear which embedding
source is the best choice for a particular task, regardless
of the domain. For example, despite training on a medical
corpus, [22] demonstrate that domain-specific embeddings can
be outperformed by general-purpose pre-trained embeddings
on a clinical task. Similarly, [3] show the quality on diagnosis
tasks varying dramatically across different embedding sources.

Several works with their focus on an individual task show
that using multiple pre-trained embedding sources together
improves their task’s performance over using each separately.
[23] demonstrate on named entity recognition that combining
Brown clustering, CW [19] and HLBL [24] embeddings drives
higher accuracy traded by a significant increase in the number
of training parameters. Similarly, [25] shows an improve-
ment of a part-of-speech tagging system while [26] focus on
dependency-parsing. These works show an incremental benefit
gained by combining multiple publicly available embedding
sources. However, each work studies only a specific task that
cannot generalize to other tasks. Moreover, they only simply
ensemble those embedding sources rather than introducing a
sophisticated method in integrating such embedding sources.

In contrast to depending on any specific tasks, meta-
embedding learns a new integrated space of word embeddings
from existing embedding sources with the aim of using them
across many tasks. Recent works on meta-embedding [14]–
[18] narrowly focus on word-encoder methods that reconstruct
raw embedding vectors from multiple sources. The simplest
approaches are through averaging [16] and concatenation
[14]. More powerful are 1toN and 1toN+ [14], which use a
shallow neural network trained to predict meta-embeddings by
minimizing the difference between the values of their meta-
embeddings and the corresponding raw embeddings in original

sources that are trained by different methods and different
corpus. The linear methods proposed by [15] are similar to
1toN except that they focus on creating a meta-embedding
space from the embedding sources that are trained by the same
algorithms on the same corpus, i.e., they only differ on the
weight initialization.

[18] generate meta-embeddings for each word based on
linear weighted sums of its k-nearest neighboring words,
requiring hand-selection of k-nearest parameters. Recently,
AEME and its variants [17] use an autoencoder to reconstruct
raw embeddings. For OOV words, both 1toN and AEME first
create random embeddings updated throughout training. These
random embeddings do not bring any useful information into
the meta-embeddings. None of these methods directly con-
siders the similarities between word embeddings inherent to
the original embedding sources which were carefully encoded
during training.

III. METHODOLOGY

A. Problem Definition

Given a target vocabulary set V of t unique words denoted
as (w1, . . . , wt), we aim to train a meta-embedding space M
that contains embeddings corresponding to each word in V .

Let P = {p1, p2, . . . , pn} be a set of word-pairs such
that the unique words in P exactly match those in V where
pi denotes a pair of words. Let d be a pre-defined di-
mension of meta-embeddings in M. For each wk ∈ V ,
ek denotes the d-dimensional meta-embedding of wk. Thus,
M = (e1, e2, . . . , et) and its dimension is t × d. Given
S = {S1,S2, . . . ,Sm}, a set of pre-trained embedding sources
where their dimensions may differ, V1,V2, . . . ,Vm are the
vocabularies covered by each source, respectively. For the
jth embedding source where j ∈ {1, 2, . . . ,m}, we measure



TABLE I: Basic Notation.
Notation Description
S A set of pre-trained embedding sources; |S| = m.
m The numbers of pre-trained embedding sources.
Sj jth pre-trained embedding source in S.
Vj Vocabulary covered by Sj .
M Meta-embedding space.
V Vocabulary to train meta-embeddings in M; |V| = t.
t The numbers of words in V .
d Dimension of word embeddings in M.
wk A word k in V .
xk One-hot encoded of wk in V .
ek Embedding of wk in M.
P A set of word-pairs consisting of words in V; |P| = n.
n The numbers of word-pairs in P .
pi ith word-pair in P .
ypi , yjpi Similarity score of pi measured in M and Sj respectively.

similarity score of two words in pi by computing cosine
similarity between their corresponding embeddings in that
source, denoted by yjpi

, if both words in pi appear in Sj .
Our target is to generate t meta-embeddings in M that

preserve the word-pair relationships observed in S. That is,
we learn meta-embeddings such that ypi

, the similarity score
of word-pair pi in the meta-embedding space M measured by
cosine similarity, is as close to y1pi

, y2pi
, . . . , ympi

as possible. In
the case that pi is not present in all sources, similarity from
only the sources that include both words should be preserved.
For example, if word-pair pi appears only in S1 and S3, ypi

should be similar to only y1pi
and y3pi

.

B. Similarity-Preserving Meta-Embedding

We propose Similarity-Preserving Meta-Embedding or
SimME, a novel method for combining pre-trained embedding
sources into one meta-embedding space M. SimME general-
izes across text-related tasks that need word representations for
a set of vocabulary to be used in the task. M produces meta-
embeddings for such vocabulary set that directly preserve the
observed word-pair similarities in a given set of pre-trained
sources. SimME consists of two components: a Relation-
Encoder network, which encodes pairwise word similarity,
and Maskout, a loss function that focuses the training of the
Relation-Encoder on only the sources containing observed
similarity, handling pairwise relationships for OOV words.

1) Training Data: SimME trains meta-embeddings directly
over word-pair relationships. Thus, for a given text-related
task, we first extract a set of word-pairs, P , that serve as
the input to SimME. The time complexity of the model
linearly depends on the number of these input word-pairs,
i.e., |P|. In practice, the number of word-pairs could increase
exponentially if we consider all possible pairwise combina-
tion from a given vocabulary list. This incautious specifying
too many uninformative word-pairs may require significantly
unnecessary compute time.

We suggest to extract word-pairs according to the useful
word relations for a given task. For example on a text
classification, where each instance composes of a document
that needs to be classified, each instance needs relationships
among words in its document. Thus, we should generate all
pairwise combinations of unique words appearing in each

instance. Then the final set P is the composition of word-pairs
merged from all instances. It is worth noting that most word-
pairs are duplicates in many instances and so maintaining only
the unique word-pairs would be more efficient and tractable.

2) Relation-Encoder: First, the Relation-Encoder network
maps one-hot encoded vectors for word-pairs into a latent
space via a trainable space M, as illustrated in Figure 2b.
The size of M is t× d, forming by the size of a pre-defined
target vocabulary set using in a given task, |V| = t, and a
pre-defined dimension of the meta-embeddings, d.

Let pi represent a pair of words (wk, wl). Each word in pi
is represented using t-dimensional one-hot encodings, denoted
by xk and xl. Both encodings are then fed into the Relation-
Encoder as pairs and projected into d-dimensional latent
vectors ek and el, respectively, via an affine transformation
as shown in Equation 1 where b is a bias vector.

ek = Mxk + b (1)
The embedded vectors or meta-embeddings ek and el are
contained in the weight matrix M and are learned throughout
training. Thus, the embeddings of wk and wl exist together in
the same space.

Subsequently, the similarity score between ek and el cor-
responding to word-pair pi is measured in space M using the
cosine similarity. This similarity score is denoted by ypi

.

ypi
=

ek
> · el

‖ek‖ · ‖el‖
(2)

where ‖‖ indicates cardinality and · is the dot product.
SimME preserves word similarities in the original pre-

trained sources into its meta-embeddings. To achieve this, in
each source that contains both wk and wl in word-pair pi, we
compute the cosine similarity between their corresponding em-
beddings in such source, resulting in a collection of similarity
scores for the pair pi corresponding to the number of sources.
This collection is denoted by y1pi

, y2pi
, . . . , ympi

from m pre-
trained sources respectively. All parameters in M are trained
to minimize the mean squared error between the similarity in
the meta-embedding space and such collection of similarity
scores, as shown in Equation 3 where m is the number of
pre-trained sources and n is the number of word-pairs.

J(M) =
1

n

n∑
i=1

m∑
j=1

(
ypi
− yjpi

)2
(3)

3) Maskout: Many words are rarely observed in all pre-
trained sources (OOV words), resulting in various word-pairs
related to them. For example in Figure 1, flu and heatstroke
exist in the Medical Source but not in the Twitter Source. Both
words are OOV words which related to several word-pairs,
e.g., (flu, heatstroke), (hot, heatstroke) and (cold, flu). We refer
to these pairs as nonmutual and propose a novel loss term for
meta-embedding, maskout, to handle these cases during the
training. Maskout directs the training of the Relation-Encoder
to solely preserve the observed similarity scores from only
the sources that contain such nonmutual relation. This is in
contrast to recently-proposed alternatives [14], [17], which
create synthetic vectors for these OOV words in the sources



that the words do not exist and subsequently are used to train
their meta-embeddings.

As illustrated in Figure 2b, in the presence of nonmutual
relationships, the weights of SimME are flexibly updated
solely based on the sources that actually contain the relations
according to the following modification of Equation 3:

J(M) =
1

n

n∑
i=1

m∑
j=1

1pi∈Sj

(
ypi − yjpi

)2
(4)

where pi is a word-pair in P and 1 is an indicator function:

1pi∈Sj =

{
1 if pi ∈ Sj

0 otherwise
(5)

Thus, for nonmutual relations, SimME minimizes the differ-
ence between predicted and observed similarity scores only in
the sources where word-pairs are truly observed. In the case
of mutual relationships, or those where a relationship exists
in all sources, SimME preserves all similarity scores from
all sources with equal weight. In principle, SimME learns to
preserve the consensus of word-pair relationships among their
truly observed information that are encoded in multiple pre-
trained embedding sources.

IV. EXPERIMENTS

We compare the quality of our proposed SimME against al-
ternative methods on four text mining tasks using 23 datasets.
For each experiment, we investigate all combinations of 3
sources in IV-A yielding in 4 different meta-embedding spaces.

A. Pre-Trained Embedding Sources

We use three popular publicly available sources as different
semantic origins to be integrated into meta-embeddings:
• Wikipedia [2] contains 400,000 word embeddings pre-

trained on Wikipedia 2014 and Gigaword 5 using GloVe [2].
All embeddings have 200 dimensions.
• BioMed [7] contains 200-dimensional embeddings for 2.4

million words, trained from over five billion words in PubMed
and PubMed Central using Word2Vec [6].
• Twitter [2] provides 1.2 million 200-dimensional embed-

dings, trained on 27 billion words from tweets using GloVe.

B. Meta-Embedding Spaces

We assess four possible meta-embedding spaces resulting
from integrating different semantics from large resources in
IV-A. All methods are trained to produce these following four
combinations to evaluate the compared performance:
• WIKI-BIO. This meta-embedding space integrates medi-

cal semantics from the BioMed source with general semantics
from the Wikipedia source. The two sources have 124,171
overlapping words, or 4.7% of 2.6 million words found in
their vocabulary union.
• BIO-TWITTER. This meta-embedding space integrates

colloquial semantics from the Twitter source with the medical
semantics from BioMed source. The two original sources
overlap for 1.8% of 3.5 million distinct words.
• WIKI-TWITTER. This meta-embedding space integrates

general semantics from two different styles of language uses in

Wikipedia and Twitter. The two sources increment vocabulary
coverage to 1.4 million unique words, overlapping by 10.4%.
• WIKI-BIO-TWITTER. The final meta-embedding space

integrates three different semantics from general semantics in
Wikipedia to colloquial semantics used in Twitter and also
medical semantics from the BioMed. The vocabulary in these
three sources overlaps for 1.6% while its coverage is driven
to 3.7 million words.

C. Compared Methods

We compare SimME to the following methods:
• Individual Sources. Each embedding source is used

in isolation, forming a baseline to observe the impact of
combining multiple sources. No multi-source information is
encoded in this method.
• Average [16]. Embeddings of the same word from sources

are averaged. This requires equal dimension across sources.
• Concat: Concatenation [14]. Embeddings of the same

word in all sources are concatenated. The embeddings’ dimen-
sion increases proportionally to the number of sources used.
• LLE: Locally Linear Meta-Embedding [18]. The meta-

embedding of each word is constructed by linearly weighted
sum of its k-nearest neighbor embeddings. This cannot fully
capture explicit information of all word-pair relationships, that
need to be used in a task, from sources into the united space.
• AAEME: Averaged Auto-encoded Meta-Embedding [17].

This method uses an encoder to encode raw embeddings of
each word separately from each source. All these encoded
outputs are then averaged to create a meta-embedding of
such word. This meta-embedding is then trained to decode
or reconstruct back to its raw embeddings in original sources.
• CAEME: Concatenated Auto-encoded Meta-Embedding

[17]. Similar to AAEME, the encoded outputs are now con-
catenated. This concatenation is treated as a meta-embedding,
trained to decode its raw embeddings across sources.
• DAEME: Decoupled Auto-encoded Meta-Embedding

[17]. Similar to CAEME, the encoded outputs are concatenated
but each part of the concatenation is separately trained to
decode its raw embedding in the corresponding source.

Original sources treat OOV words by assigning to them the
special unknown-token embedding, which also influences to
the average and concatenation methods, i.e., if a word does not
appear in any source, the unknown-token embedding would
be used to represent such word and fed to either averaging
or concatenating operations in each of the two methods. LLE
naturally overcomes the issue of OOV words since every word
is reformed separately from its own neighboring words. The
other state-of-the-art methods randomly generate embeddings
for OOV words in the original sources whenever those words
are not present. These artificial embeddings of OOV words are
used to train the meta-embeddings while they themselves are
simultaneous trained along with the meta-embeddings. This
creates ingenuine information in OOV embeddings that would
be integrated into their meta-embeddings.



TABLE II: Semantics similarity prediction results: correlation (rank) – higher indicates better embedding space in capturing
word similarity as close as human judgement. Average rank shows performance overview across all datasets. Bold: best scores.

Methods
Datasets Card SimVerb WS RW SimLex WN-lap

2%
WN-lap

4%
WN-lap

6%
WN-lap

8%
WN-lap

10%
Ave.
Rank

WIKI-BIO
Wiki 0.10 (7) 0.20 (7) 0.51 (6) 0.33 (5) 0.34 (7) 0.49 (4) 0.49 (4) 0.49 (2) 0.48 (3) 0.48 (2) 4.7
Biomed 0.12 (2) 0.15 (8) 0.48 (8) 0.24 (7) 0.29 (8) 0.18 (8) 0.19 (8) 0.21 (8) 0.22 (8) 0.22 (8) 7.3
Average 0.10 (5) 0.20 (6) 0.55 (4) 0.33 (6) 0.34 (6) 0.51 (3) 0.49 (3) 0.48 (4) 0.47 (4) 0.46 (4) 4.5
Concat 0.10 (4) 0.21 (5) 0.54 (5) 0.34 (4) 0.35 (4) 0.51 (2) 0.49 (2) 0.49 (3) 0.49 (2) 0.47 (3) 3.4
LLE 0.03 (9) 0.23 (2) 0.50 (7) 0.21 (9) 0.35 (5) 0.09 (9) 0.08 (9) 0.08 (9) 0.08 (9) 0.08 (9) 7.7
AAEME 0.09 (8) 0.11 (9) 0.33 (9) 0.22 (8) 0.20 (9) 0.28 (7) 0.28 (7) 0.29 (7) 0.29 (7) 0.29 (7) 7.8
CAEME 0.10 (3) 0.22 (3) 0.57 (2) 0.37 (1) 0.36 (1) 0.47 (5) 0.46 (6) 0.45 (6) 0.44 (6) 0.43 (6) 3.9
DAEME 0.10 (6) 0.21 (4) 0.57 (3) 0.36 (2) 0.35 (3) 0.47 (6) 0.46 (5) 0.46 (5) 0.45 (5) 0.45 (5) 4.4
SimME 0.14 (1) 0.24 (1) 0.58 (1) 0.34 (3) 0.36 (2) 0.57 (1) 0.56 (1) 0.56 (1) 0.55 (1) 0.55 (1) 1.3

BIO-TWITTER
Biomed 0.12 (2) 0.15 (5) 0.48 (7) 0.24 (3) 0.29 (1) 0.45 (5) 0.45 (5) 0.45 (5) 0.45 (4) 0.46 (4) 4.1
Twitter 0.05 (8) 0.06 (8) 0.48 (6) 0.15 (8) 0.13 (8) 0.31 (8) 0.32 (8) 0.32 (8) 0.31 (8) 0.31 (8) 7.8
Average 0.04 (9) -0.03 (9) 0.44 (8) 0.09 (9) 0.04 (9) 0.37 (7) 0.38 (7) 0.37 (7) 0.37 (7) 0.36 (7) 7.9
Concat 0.07 (6) 0.09 (6) 0.54 (4) 0.20 (5) 0.18 (6) 0.40 (6) 0.40 (6) 0.40 (6) 0.39 (6) 0.39 (6) 5.7
LLE 0.07 (7) 0.19 (1) 0.54 (5) 0.15 (6) 0.26 (4) 0.04 (9) 0.03 (9) 0.04 (9) 0.03 (9) 0.03 (9) 6.8
AAEME 0.07 (5) 0.08 (7) 0.34 (9) 0.15 (7) 0.15 (7) 0.51 (3) 0.53 (3) 0.52 (3) 0.51 (3) 0.50 (3) 5.0
CAEME 0.09 (3) 0.16 (3) 0.58 (2) 0.25 (2) 0.27 (2) 0.55 (2) 0.53 (2) 0.53 (2) 0.51 (2) 0.51 (2) 2.2
DAEME 0.09 (4) 0.15 (4) 0.57 (3) 0.23 (4) 0.27 (3) 0.49 (4) 0.48 (4) 0.46 (4) 0.45 (5) 0.45 (5) 4.0
SimME 0.14 (1) 0.18 (2) 0.61 (1) 0.27 (1) 0.26 (5) 0.56 (1) 0.55 (1) 0.54 (1) 0.53 (1) 0.53 (1) 1.5

WIKI-TWITTER
Wiki 0.10 (2) 0.20 (2) 0.51 (6) 0.33 (1) 0.34 (2) 0.56 (2) 0.56 (2) 0.56 (2) 0.55 (2) 0.54 (2) 2.3
Twitter 0.05 (8) 0.06 (9) 0.48 (9) 0.15 (9) 0.13 (9) 0.04 (8) 0.06 (8) 0.08 (8) 0.08 (8) 0.11 (8) 8.4
Average 0.09 (5) 0.13 (8) 0.51 (7) 0.30 (4) 0.26 (5) 0.41 (7) 0.40 (7) 0.39 (7) 0.37 (7) 0.38 (7) 6.4
Concat 0.09 (4) 0.14 (7) 0.53 (5) 0.29 (5) 0.25 (7) 0.41 (6) 0.40 (6) 0.39 (6) 0.38 (6) 0.38 (6) 5.8
LLE 0.03 (9) 0.25 (1) 0.54 (3) 0.20 (8) 0.34 (1) -0.02 (9) -0.01 (9) 0.00 (9) -0.01 (9) -0.01 (9) 6.7
AAEME 0.08 (7) 0.19 (3) 0.57 (1) 0.30 (3) 0.31 (3) 0.54 (3) 0.54 (3) 0.53 (3) 0.53 (3) 0.52 (3) 3.2
CAEME 0.09 (3) 0.16 (5) 0.54 (4) 0.28 (6) 0.28 (4) 0.52 (4) 0.51 (4) 0.50 (4) 0.48 (4) 0.47 (4) 4.2
DAEME 0.09 (6) 0.15 (6) 0.54 (2) 0.28 (7) 0.25 (6) 0.50 (5) 0.49 (5) 0.47 (5) 0.45 (5) 0.44 (5) 5.2
SimME 0.15 (1) 0.17 (4) 0.50 (8) 0.31 (2) 0.25 (8) 0.59 (1) 0.60 (1) 0.60 (1) 0.58 (1) 0.58 (1) 2.8

WIKI-BIO-TWITTER
Wiki 0.10 (5) 0.20 (3) 0.51 (8) 0.33 (4) 0.34 (2) 0.56 (2) 0.55 (2) 0.55 (2) 0.55 (2) 0.54 (2) 3.2
Biomed 0.12 (2) 0.15 (7) 0.48 (10) 0.24 (8) 0.29 (7) 0.34 (8) 0.34 (8) 0.35 (8) 0.34 (8) 0.35 (8) 7.4
Twitter 0.05 (9) 0.06 (10) 0.48 (9) 0.15 (10) 0.13 (10) 0.06 (9) 0.06 (9) 0.07 (9) 0.09 (9) 0.09 (9) 9.3
Average 0.09 (7) 0.14 (9) 0.55 (7) 0.30 (7) 0.26 (9) 0.42 (7) 0.40 (7) 0.39 (7) 0.38 (7) 0.37 (7) 7.4
Concat 0.09 (6) 0.15 (8) 0.55 (5) 0.30 (6) 0.26 (8) 0.42 (6) 0.40 (6) 0.40 (6) 0.39 (6) 0.37 (6) 6.3
LLE 0.04 (10) 0.24 (1) 0.55 (6) 0.19 (9) 0.34 (3) -0.01 (10) 0.00 (10) -0.01 (10) -0.01 (10) -0.01 (10) 7.9
AAEME 0.11 (4) 0.22 (2) 0.66 (1) 0.37 (1) 0.35 (1) 0.51 (3) 0.50 (3) 0.50 (3) 0.50 (3) 0.49 (3) 2.4
CAEME 0.11 (3) 0.19 (4) 0.62 (3) 0.35 (2) 0.33 (4) 0.46 (4) 0.45 (4) 0.44 (4) 0.44 (4) 0.43 (4) 3.6
DAEME 0.09 (7) 0.15 (5) 0.62 (2) 0.31 (4) 0.30 (5) 0.44 (4) 0.42 (4) 0.42 (4) 0.42 (4) 0.41 (4) 4.3
SimME 0.18 (1) 0.19 (5) 0.62 (4) 0.35 (3) 0.30 (5) 0.61 (1) 0.61 (1) 0.61 (1) 0.60 (1) 0.60 (1) 2.3

D. Implementation Details

In each task, SimME is trained to produce 200-dimensional
meta-embeddings for the vocabulary to be used in such task.
The model is randomly initialized and trained for 200 epochs
with a learning rate of 15 using stochastic gradient descent.
Code for our proposed method is implemented in PyTorch and
made publicly available1.

E. Evaluation Tasks and Results

SimME is evaluated on a large series of datasets for four
text mining tasks: semantics similarity prediction, synonym
detection, text classification, and concept categorization.

1) Semantics Similarity Prediction: A common approach
to evaluating the quality of word embeddings is to measure
the degree to which they capture the semantic similarities of
word-pairs as defined by human-rated scores [27]. First, the
similarity of each word-pair in a dataset is measured by cosine

1https://hiddenforreview.com

similarity between their corresponding embeddings. Then we
follow the standard practice [14], [17], using Spearman’s
Correlation Coefficient as a metric to measure how correlated
the similarity between embeddings is to the given ground-truth
similarities. Higher correlation indicates better performance.

We use 5 popular datasets with provided ground-truth
similarities, including Card [28], SimVerb [29], WS [30],
RareWords (RW) [31], and SimLex [32]. We further inves-
tigate the performance of meta-embeddings to more extreme
cases when the datasets contain small overlap words among
the original embedding sources by extracting further datasets
from WordNet [33] where we can control the overlapping
rate. We employ five additional datasets, each with a fixed
overlapping rate of 2%, 4%, 6%, 8%, and 10% which we
refer to as WN-lap 2%, WN-lap 4%, etc. Each word-pair in
these datasets is assigned the ground-truth similarity by the
Wu-Palmer similarity score defined in WordNet [33].

Table II shows the results of all methods on the four
combinations integrated from the three pre-trained sources.



TABLE III: Synonym detection results: AUC (rank). Higher AUC indicates synonymous words are better captured in an
embedding space. Average rank shows performance overview across all datasets. Bold: best scores.

Methods
Datasets WordRep WN-lap 2% WN-lap 4% WN-lap 6% WN-lap 8% WN-lap 10% Ave. Rank

WIKI-BIO
Wiki 0.66 (8) 0.79 (5) 0.78 (5) 0.77 (3) 0.76 (2) 0.76 (2) 4.2
Biomed 0.70 (4) 0.67 (8) 0.67 (8) 0.66 (8) 0.65 (8) 0.65 (8) 7.3
Average 0.68 (5) 0.80 (4) 0.78 (4) 0.77 (5) 0.75 (5) 0.74 (4) 4.5
Concat 0.68 (6) 0.80 (3) 0.79 (3) 0.77 (4) 0.75 (4) 0.74 (3) 3.8
LLE 0.65 (9) 0.54 (9) 0.54 (9) 0.54 (9) 0.54 (9) 0.54 (9) 9.0
AAEME 0.72 (1) 0.74 (7) 0.73 (7) 0.71 (7) 0.70 (7) 0.68 (7) 6.0
CAEME 0.70 (3) 0.83 (2) 0.80 (2) 0.78 (2) 0.75 (3) 0.73 (5) 2.8
DAEME 0.67 (7) 0.75 (6) 0.73 (6) 0.72 (6) 0.70 (6) 0.69 (6) 6.2
SimME 0.71 (2) 0.88 (1) 0.87 (1) 0.87 (1) 0.86 (1) 0.86 (1) 1.2

BIO-TWITTER
Biomed 0.70 (4) 0.83 (4) 0.82 (2) 0.81 (2) 0.80 (2) 0.79 (2) 2.7
Twitter 0.62 (9) 0.61 (8) 0.61 (8) 0.60 (8) 0.60 (8) 0.59 (8) 8.2
Average 0.64 (7) 0.68 (7) 0.66 (7) 0.65 (7) 0.64 (7) 0.63 (7) 7.0
Concat 0.65 (6) 0.69 (6) 0.68 (6) 0.67 (6) 0.66 (6) 0.65 (6) 6.0
LLE 0.63 (8) 0.51 (9) 0.51 (9) 0.52 (9) 0.52 (9) 0.52 (9) 8.8
AAEME 0.72 (1) 0.83 (3) 0.81 (3) 0.79 (3) 0.76 (4) 0.74 (4) 3.0
CAEME 0.70 (3) 0.83 (2) 0.80 (4) 0.78 (4) 0.76 (3) 0.75 (3) 3.2
DAEME 0.69 (5) 0.77 (5) 0.73 (5) 0.70 (5) 0.68 (5) 0.66 (5) 5.0
SimME 0.70 (2) 0.85 (1) 0.85 (1) 0.84 (1) 0.84 (1) 0.84 (1) 1.2

WIKI-TWITTER
Wiki 0.66 (3) 0.86 (2) 0.85 (2) 0.84 (2) 0.83 (2) 0.82 (2) 2.2
Twitter 0.62 (9) 0.49 (9) 0.48 (9) 0.48 (9) 0.46 (9) 0.47 (9) 9.0
Average 0.65 (5) 0.75 (7) 0.72 (7) 0.70 (7) 0.67 (7) 0.65 (7) 6.7
Concat 0.65 (6) 0.75 (6) 0.73 (6) 0.70 (6) 0.67 (6) 0.66 (6) 6.0
LLE 0.63 (7) 0.50 (8) 0.50 (8) 0.50 (8) 0.51 (8) 0.51 (8) 7.8
AAEME 0.68 (1) 0.84 (3) 0.82 (3) 0.81 (3) 0.79 (3) 0.77 (3) 2.7
CAEME 0.66 (4) 0.82 (4) 0.79 (4) 0.77 (4) 0.73 (4) 0.71 (4) 4.0
DAEME 0.63 (8) 0.81 (5) 0.78 (5) 0.75 (5) 0.71 (5) 0.69 (5) 5.5
SimME 0.66 (2) 0.91 (1) 0.90 (1) 0.89 (1) 0.88 (1) 0.87 (1) 1.2

WIKI-BIO-TWITTER
Wiki 0.66 (8) 0.86 (2) 0.85 (2) 0.84 (2) 0.83 (2) 0.83 (2) 3.0
Biomed 0.70 (4) 0.74 (8) 0.73 (6) 0.73 (5) 0.73 (4) 0.72 (4) 5.2
Twitter 0.62 (10) 0.49 (10) 0.48 (10) 0.48 (10) 0.47 (10) 0.46 (10) 10.0
Average 0.67 (6) 0.76 (7) 0.73 (8) 0.71 (8) 0.69 (8) 0.66 (8) 7.5
Concat 0.67 (7) 0.76 (6) 0.73 (7) 0.71 (7) 0.69 (7) 0.67 (7) 6.8
LLE 0.64 (9) 0.50 (9) 0.50 (9) 0.50 (9) 0.51 (9) 0.51 (9) 9.0
AAEME 0.72 (1) 0.82 (3) 0.80 (3) 0.79 (3) 0.77 (3) 0.75 (3) 2.7
CAEME 0.71 (3) 0.78 (4) 0.76 (4) 0.74 (4) 0.72 (5) 0.70 (5) 4.2
DAEME 0.69 (4) 0.77 (4) 0.74 (4) 0.73 (5) 0.71 (5) 0.69 (5) 4.5
SimME 0.71 (2) 0.92 (1) 0.91 (1) 0.91 (1) 0.90 (1) 0.90 (1) 1.2

Across all datasets, SimME consistently achieves the top
average ranking in three out of four meta-embeddings varia-
tions. The high correlation between SimME meta-embeddings
similarities and human ratings across the vast majority of
these datasets concludes that SimME successfully learns meta-
embeddings in which the word-pair relationships are anal-
ogous to human-labeled ground truth similarities. On the
WordNet datasets with small overlapping rate cases, SimME
consistently outperforms the other alternatives. It achieves a
correlation up to over 21% greater than the baselines, while
alternative methods barely improve over the individual-source
baselines. This concludes that SimME clearly improves word
embeddings, especially for the case that a task contains a
vocabulary with a small overlapping rate between sources.

2) Synonym Detection: Synonyms are commonly used
to study relationships between words [27], [34]. Intuitively,
semantic features shared by synonymous words should be
reflected in the embedding space. We employ this task to

evaluate to what degree this is true across all methods. Cosine
similarity is used to measure word-pair relationships and is
subsequently compared to the associated binary labels where
the synonym word-pairs are considered as positive examples.
The Area Under the ROC Curve (AUC) is calculated across all
word-pairs in the evaluation dataset. Intuitively, a high AUC
indicates that the similarity between a pair of words is high
when the words are synonyms and is low otherwise.

We use a dataset from WordRep [35] by labelling the
antonym word-pairs as the negative examples and labelling
the similar word-pairs as the positive examples. We randomly
downsample the positive examples to have the same size as the
negative examples. Similar to the semantic similarity predic-
tion task, we investigate further on the extreme cases when the
datasets contains small overlapping words among the original
embedding sources. Again, we use the small-overlap WordNet
datasets. The synonym word-pairs are informed by synsets in
WordNet and labeled as positive, while the nonsynonym pairs



TABLE IV: Results of text classification (left): %Accuary (rank), and concept categorization (right): %NMI (rank). Higher
scores shows better performance of using an embedding space in each task. Average rank shows performance overview across
all datasets. Bold: best scores.

Text Classification Concept Categorization

Methods
Datasets Airline SubjObj MR400 ProCon400 Ave. Rank Bless ESSLLI SimVerb Ave. Rank

WIKI-BIO
Wiki 82.88 (4) 89.96 (3) 59.20 (1) 86.70 (5) 3.3 0.37 (4) 16.67 (8) 1.99 (3) 5.0
Biomed 81.18 (6) 85.81 (9) 55.80 (5) 85.80 (6) 6.5 0.12 (8) 19.27 (5) 0.88 (9) 7.3
Average 83.40 (2) 90.45 (2) 55.80 (5) 87.10 (4) 3.3 0.42 (3) 19.05 (6) 1.44 (5) 4.7
Concat 83.30 (3) 90.80 (1) 57.10 (3) 88.30 (2) 2.3 0.37 (4) 15.86 (9) 1.19 (8) 7.0
LLE 80.76 (7) 87.91 (6) 54.20 (7) 84.60 (8) 7.0 0.46 (1) 22.17 (1) 2.55 (1) 1.0
AAEME 80.76 (7) 88.06 (5) 49.60 (9) 87.50 (3) 6.0 0.08 (9) 20.05 (2) 2.41 (2) 4.3
CAEME 79.60 (9) 87.66 (7) 56.30 (4) 74.20 (9) 7.3 0.17 (6) 19.28 (4) 1.54 (4) 4.7
DAEME 81.71 (5) 87.61 (8) 50.40 (8) 85.00 (7) 7.0 0.12 (7) 18.01 (7) 1.30 (6) 6.7
SimME 84.78 (1) 88.26 (4) 57.50 (2) 89.10 (1) 2.0 0.42 (2) 19.84 (3) 1.22 (7) 4.0

BIO-TWITTER
Biomed 81.18 (5) 85.81 (9) 55.80 (4) 85.80 (3) 5.3 0.12 (8) 19.27 (5) 0.88 (7) 6.7
Twitter 82.56 (3) 88.86 (2) 56.30 (3) 87.10 (2) 2.5 0.29 (5) 19.32 (4) 0.73 (9) 6.0
Average 80.13 (7) 89.31 (1) 55.40 (5) 84.20 (4) 4.3 0.49 (2) 19.24 (6) 1.24 (5) 4.3
Concat 82.88 (2) 88.86 (2) 56.70 (2) 74.60 (7) 3.3 0.41 (4) 18.31 (8) 0.86 (8) 6.7
LLE 79.39 (9) 87.76 (7) 50.40 (7) 82.50 (5) 7.0 0.53 (1) 20.80 (1) 1.37 (4) 2.0
AAEME 79.92 (8) 88.11 (5) 50.00 (8) 72.10 (8) 7.3 0.17 (6) 20.62 (2) 1.94 (1) 3.0
CAEME 82.14 (4) 87.96 (6) 49.60 (9) 60.40 (9) 7.0 0.11 (9) 18.01 (9) 1.75 (2) 6.7
DAEME 80.34 (6) 87.41 (8) 52.10 (6) 77.10 (6) 6.5 0.13 (7) 18.36 (7) 1.40 (3) 5.7
SimME 83.72 (1) 88.41 (4) 59.20 (1) 88.70 (1) 1.8 0.44 (3) 20.62 (2) 1.13 (6) 3.7

WIKI-TWITTER
Wiki 82.88 (4) 89.96 (2) 59.20 (4) 86.70 (6) 4.0 0.37 (4) 16.67 (8) 1.99 (1) 4.3
Twitter 82.56 (5) 88.86 (4) 56.30 (5) 87.10 (5) 4.8 0.29 (6) 19.32 (4) 0.73 (9) 6.3
Average 82.98 (3) 88.51 (5) 60.00 (1) 85.00 (7) 4.0 0.35 (5) 16.23 (9) 0.75 (8) 7.3
Concat 83.72 (2) 90.00 (1) 60.00 (1) 85.00 (7) 2.8 0.42 (2) 17.01 (7) 1.00 (6) 5.0
LLE 79.60 (8) 87.11 (9) 42.50 (9) 82.50 (9) 8.8 0.42 (1) 18.88 (5) 1.25 (3) 3.0
AAEME 78.96 (9) 87.91 (7) 50.00 (7) 91.25 (1) 6.0 0.13 (9) 19.34 (3) 1.74 (2) 4.7
CAEME 81.50 (6) 87.66 (8) 43.75 (8) 88.75 (4) 6.5 0.15 (8) 20.47 (1) 1.05 (5) 4.7
DAEME 80.13 (7) 88.16 (6) 56.25 (6) 91.25 (1) 5.0 0.22 (7) 17.41 (6) 0.79 (7) 6.7
SimME 83.83 (1) 88.96 (3) 60.00 (1) 91.25 (1) 1.5 0.38 (3) 20.47 (1) 1.11 (4) 2.7

WIKI-BIO-TWITTER
Wiki 82.88 (2) 89.96 (3) 59.20 (3) 86.70 (7) 3.8 0.37 (5) 16.67 (10) 1.99 (1) 5.3
Biomed 81.18 (7) 85.81 (10) 55.80 (6) 85.80 (8) 7.8 0.12 (10) 19.27 (2) 0.88 (9) 7.0
Twitter 82.56 (3) 88.86 (4) 56.30 (5) 87.10 (6) 4.5 0.29 (6) 19.32 (1) 0.73 (10) 5.7
Average 82.35 (5) 91.10 (1) 58.75 (4) 87.50 (5) 3.8 0.40 (4) 17.75 (9) 0.89 (8) 7.0
Concat 82.45 (4) 90.15 (2) 61.25 (2) 82.50 (9) 4.3 0.40 (2) 18.80 (4) 1.00 (6) 4.0
LLE 79.60 (9) 88.16 (6) 53.75 (7) 81.25 (10) 8.0 0.40 (3) 19.16 (3) 1.11 (5) 3.7
AAEME 80.76 (8) 86.21 (9) 51.25 (8) 91.25 (4) 7.3 0.23 (7) 18.01 (5) 0.97 (7) 6.3
CAEME 81.50 (6) 88.01 (7) 50.00 (9) 92.50 (3) 6.3 0.20 (9) 18.01 (5) 1.32 (3) 5.7
DAEME 79.28 (9) 86.86 (7) 43.75 (9) 93.75 (1) 6.5 0.21 (7) 18.01 (5) 1.72 (2) 4.7
SimME 85.41 (1) 88.66 (5) 63.75 (1) 93.75 (1) 2.0 0.78 (1) 18.01 (5) 1.32 (4) 3.3

with negative labels are sampled randomly with the same size
as the positive cases.

Our results in Table III report strong performance that
SimME accomplishes the top average rank across all datasets
in all combinations. This indicates that its learned embed-
ding space is superior to alternatives in terms of projecting
synonyms into the same neighborhoods. SimME consistently
improves the mean AUC in all settings over all alternative
methods by up to 20% and again clearly shows the success
on the extreme cases on datasets with small overlapping rates.
Moreover, unlike other methods, SimME shows that combin-
ing the complete three embedding sources, in comparison to
combining any two sources, results in the strongest perfor-
mance in infusing pairwise semantics into meta-embeddings
by mapping the embeddings of synonym words into the meta-
embedding space.

3) Text Classification: In this task, our goal is to evaluate
the quality of SimME compared to other alternative methods
on one of the most common text mining task. Each dataset
contains balanced examples of binary labels. Except the dif-
ferent embedding methods used for comparison, the rest of the
training pipeline remains the same in all experiments. We split
the data into 0.7:0.1:0.2 for training:validating:testing. We use
Long Short-Term Memory (LSTM) networks with 2 layers of
256 hidden units to train the model and report accuracy on
testing data as the evaluation metric.

Four datasets are used in this task. The first dataset, referred
to as Airline, is from public Kaggle Dataset: Twitter US
Airline Sentiment, originally released by CrowdFlower. We
use all 2,363 positive examples in the dataset and randomly
sample negative examples to obtain the balanced data. Another
dataset is the subjective-objective dataset [36], referred to as
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Fig. 3: t-SNE projection of pre-trained word embeddings and their associated SimME meta-embeddings.
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only the observed embedding source.

Fig. 4: Cosine similarity scores between pairs of words.

SubjObj, containing 10,000 examples with 5,000 subjective
labels drawn from the Rotten Tomatoes pages and 5,000
objective labels drawn from IMDb plot summaries. Another
two datasets, referred to as MR400 and ProCon400, are used to
observe the impact of different embedding methods on smaller
datasets which usually worsen performances on downstream
tasks. MR400 and ProCon400 are randomly downsampled,
with balanced positive and negative labels, from movie reviews
[37] and Pros-Cons reviews [38] respectively.

The left part in Table IV shows results of this task. SimME
again reaches the top average rank across all datasets indi-
cating that the meta-embeddings by SimME are completely
beneficial on the most common task in text mining with the
improved accuracy up to 6%. The performance on MR400
shows interesting results that SimME boosts the accuracy espe-
cially when combining the complete three sources while most
methods suffer from training on small data. Similarly, SimME
improves the performance in all settings on ProCon400.

4) Concept Categorization: Concept Categorization is an-
other popular task for evaluating the quality of word embed-
dings [27]. Given a number of concepts, this task clusters
word embeddings or word relations, depending on the dataset,
into categories. For clustering tasks on word relations, we
compute word-pair relations by commonly use of vector
arithmetic between their embeddings [39], [40], i.e., using the
arithmetic subtraction of their corresponding embeddings for
each pair. We then do clustering on these vectors. Our metric
is Normalized Mutual Information (NMI).

Three standard datasets are used. Bless [41] contains 26,553
word-pairs labelled with 6 different relations including at-
tribute, coordinate, event, hypernym, member, and random.
ESSLLI [42] comes with 44 words grouped into 6 categories
of animates and inanimates. Lastly, SimVerb [29] provides

3,500 word-pairs labelled by 5 classes of antonyms, cohy-
ponyms, hypernyms, synonym, and none.

Results on this concept categorization are shown on the
right part in Table IV. Across three datasets, SimME reaches
the top average rank on two out of four combinations. When
combining two sources, LLE performs very competitive to
SimME. This shows that the local neighbor words separately in
each source have a higher impact on creating meta-embeddings
that project same concepts closed together. However, using
more sources, e.g., WIKI-BIO-TWITTER, their consensus on
global relationship among words is effectively fused using
SimME method that successfully improves the task.

F. Case Study Via Visual Examination

To better understand the relationships between words in the
meta-embedding space trained by SimME, in Figure 3 we
show three word-pairs in their original sources and in the meta-
embedding space learned by SimME. Using t-SNE [43], we
observe that “ferocity” and “wildness”, which are close in both
sources, remain, as expected, close in the meta-embedding
space. Meanwhile “mommy” and “mammy”, which appear
only in the Twitter source, remain extremely close to one
another in the meta-embedding space. Finally, “glace” and
“candied” end up in between the observed relations.

Using cosine similarity, we show in Figure 4a that SimME
successfully retains observed similarities when the sources
agree on the distance between word embeddings. Then, when
the sources disagree on the distance, as shown in Figure
4b, SimME embeds these words into a space where their
similarity falls in between the observed similarities. Finally, for
nonmutual word-pairs, shown in Figure 4c, SimME retains the
similarity observed in the original source in which the word-
pair exists. In this case, the distance itself is rarely identical to



that of the source due to the relationships between these and
other words during the learning process.

V. CONCLUSION

In this work, we propose the SimME meta-embedding
method that transforms words into meaningful compact vectors
– eliminating the curse of high dimensionality for leverag-
ing massive unstructured text data. SimME explicitly pre-
serves word-pair similarity when combining pre-trained em-
bedding sources. To handle the pervasive challenge of out-
of-vocabulary (OOV) words, SimME adopts a novel training
procedure for meta-embeddings, called maskout, that is shown
to result in selective preserving information only from the truly
observed sources. This approach is effective as demonstrated
in our experiments with a vastly superior performance on a
plethora of datasets. By preserving word-pair relationships
from relevant sources, our SimME method improves the
quality of word embeddings in capturing semantic informa-
tion while providing an avenue for the combination of non-
overlapping vocabulary across sources.
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