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Abstract—Dense vector-representations of words, referred to as
word embeddings, capture word relations differently depending
on the type and the size of the corpus they are trained on.
Choosing which word embeddings to use poses a problem when
applying machine learning on clinical text which contains many
specialized words. In this work, we explore the effects of different
embedding sources for clinical text classification using various
cohort sizes on three medical prediction tasks: Clostridium Dif-
ficile infections, MRSA infections, and in-hospital mortality. We
compare three embedding sources: pre-trained embeddings from
large and general corpora, pre-trained embeddings from large
and domain-related corpora, and locally-learned embeddings
trained on the task-specific training data. We experiment with
several cohort sizes ranging from 20 patients to 2,500 patients.
Our results indicate that pre-trained domain-related embeddings
are superior for medium-sized cohorts greater than 150 patients,
while locally-learned embeddings become increasingly competi-
tive as cohort size grows.

Index Terms—Word embeddings, Clinical text classification

I. INTRODUCTION

Clinical notes contain valuable information that quantifies
health statuses of patients. These documents, written by clin-
icians, contain patient-specific information that is only de-
scribed through expert observations. Building machine learn-
ing models that can extract such content when performing pre-
diction tasks allows for automatic processing of vast amounts
of unstructured text to support clinical decision making [4],
[5]. When using machine learning models for text classi-
fication, words first need to be transformed into numerical
representations. Word embeddings have recently become a
popular approach to this challenge as they capture semantic
relationships between words. However, with the rising popular-
ity of publicly-available word embeddings, a natural question
arises: Should we train our own word embeddings or use a
set of publicly-available embeddings?

The success of word embeddings in capturing important
relationships between words is affected by both the size and
the type of the text they are trained on. Utilizing which em-
beddings is commonly considered across downstream textual-

related tasks [10], [11]. Training embeddings on a large
corpus (e.g., Wikipedia) provides vast amounts of information,
allowing for general embeddings that are broadly useful across
many tasks in many domains. However, such generality comes
at the cost of ignoring word meanings that are specific to
domains (e.g., “patient” may typically be an adjective in
Wikipedia text, but a noun in clinical text). Another option
is one of the few publicly-available embedding sources that
are trained on medical text (e.g., medical journal abstracts),
partially solving the problem of generality in large popular
resources. However, writing styles and guidelines can still
differ between regions and facilities. Thus, training word em-
beddings on task-specific data has potential to capture highly-
specialized word meanings. However, a common challenge
in the clinical domain is small cohort sizes, which make it
difficult to train complex machine learning models, such as
those that generate word embeddings. The correct choice of
embedding source remains a challenging problem present in
any machine learning for healthcare task that involves text.

In this study, we explore the effects of embedding sources
and cohort sizes on model performance in three clinical
prediction tasks - in-hospital mortality, Clostridium Difficile
(C. Diff.) infections, and Methicillin-resistant Staphylococcus
aureus (MRSA) infections. Our results indicate that the best
choice for embedding source often depends on the available
cohort size, demonstrating that there is no one-size-fits-all
solution to embedding choice.

II. METHODS
A. Data Extraction

MIMIC-III [3] is a publicly available database containing
de-identified Electronic Heath Records of over 58, 000 patient
admissions between 2001 and 2012 in the intensive care units
(ICU) of Beth Israel Deaconess Medical Center. A major
component of MIMIC-III is the vast number of clinical notes,
recorded by physicians throughout each patient’s stay. We
extract cohorts from MIMIC for the following prediction tasks:



Mortality: In-hospital mortality prediction is a common
baseline task in machine learning for healthcare. From the
Admissions table, we extract patients who perish during their
stay in the ICU, indicated by hospital expire flag = 1. Of 5,854
patients who have this flag set, 5,000 have notes taken prior
to their death.

C. Diff.: Clostridium Difficile infection is a dangerous
in-hospital acquired bacterial infection which can be fatal
in patients with weakened immune systems [8]. Using the
microbiology test 80139, we extract 1,035 patients who have
confirmed cases of C. Diff. during their stays.

MRSA: Methicillin-resistant Staphylococcus aureus, a per-
vasive antibiotic-resistant bacteria, has been a leading cause of
in-hospital infections and is a growing concern [9]. We again
use the Microbiology Events table to extract patients who test
positive for MRSA, using the code 80293. There are 1,240
MRSA patients with note events.

For all three conditions, negative cohorts (with equal sizes
as their corresponding positive cohorts) are randomly sampled
from the patients with no records of each corresponding condi-
tion. Following data extraction, a patient’s notes are combined
into one document. Finally, we remove all punctuation and
convert all letters to lowercase.

B. Word Embeddings

Word embeddings are prevalently used to transform words
into numeric vectors. These vectors preserve relationships
between words by considering the context in which each
word appears. Learning word embeddings is time-consuming,
especially when the source text is large. For this reason,
many pre-trained word embeddings are published to help
researchers bypass the learning process and commonly used as
the baselines for text classification [10], [11]. However, vector
representations can differ dramatically between embedding
sources depending on both the size and content of the training
corpora. Thus, locally-learned embedding is another appealing
choice to use for clinical machine learning.

In this work, we study the choice between these three
embeddings sources:

1) Global embeddings are pre-trained from general corpus
such as Wikipedia, Twitter, or news [6], [7]. Word vectors
from these pre-trained embeddings show high performance in
capturing word meaning and relation since they are trained on
large corpora with a vast amount of training words. However,
the general corpora they are trained on may not preserve
domain-related meanings of words. For example, the vector
representation of “patient” in global embeddings is closer to
the vector for “tolerate”.

2) Domain embeddings are pre-trained from a large domain-
related corpus such as PubMed, PMC texts, or biomedical
literatures. Compared to global embeddings, these are trained
on a more related vocabulary to clinical notes. Thus, domain
embeddings could better capture the medical meaning of
words. For example, the vector representation of “patient” in
domain embeddings is closer to the vector for “sufferer”.

3) Local embeddings are learned based on a specific cohort
of patients which will be classified by a machine learning
algorithm (e.g., mortality prediction). Since local embeddings
are learned directly from the task data, the task-dependent
relations of words are preserved. However, if a cohort size that
used to train is too small, local embeddings might not have
enough data to create a good quality embedding in capturing
this implicit relations.

We use the following sources in our experiments: 1) Global
embeddings: pre-trained embedding learned from Wikipedia
2014 and Gigaword 5 [6]. 2) Domain embeddings: pre-trained
embedding learned from PubMed and PMC texts [1]. 3) Local
embeddings: learned on our local cohort data. The embedding
dimensions are 200 in all three sources.

C. Word2Vec Skip-Gram Model

To train local embeddings, we use the Word2Vec Skip-Gram
model [2] with minimum-count = 15, negative-sampling = 15
and contextual-window-size = 1.

Skip-Gram assumes that words appear in similar context are
likely to have similar meanings. Thus, pairs of context-target
words are created from an input corpus. The model predicts
context words from a given target word, i.e., for a target word
wt and a given number of contextual-window-size c, Skip-
Gram will predict the probability of c words before and c
words after wt. xwt

, a one-hot encoding of wt, is fed into
a 2-layer neural network. The final weight matrix of the 1st

layer is the desired word embedding.
Let w = {w1, w2, ..., wT } be the T training words and d

be the number of hidden units. The size of weight matrices
of 1st layer (W) and 2nd layer (W′) are T × d and d × T
respectively. The tth row of W, which is the d-dimensional
vector representation vwt

of wt, is copied to the hidden layer.
ht = xTwt

W and u = W′T hT
t (1)

where uj ∈ u is the predicted score of word wj being the
context word. A softmax activation function is lastly applied
to obtain the probability distribution in the output layer:

p(wj |wt) = ŷj =
exp(uj)∑T

j′=1 exp(uj′)
(2)

where ŷj is the probability of wj being the context word.
Model is trained using the objective function:

max
1

T

T∑
t=1

t+c∑
j=t−c
j 6=t

log p(wj |wt) (3)

D. Experiments

We empirically address the effects of three embedding
sources (global, domain, local) on different cohort sizes.

1) Experimental Setting: From the cohorts extracted from
MIMIC, 10% of the data is set aside to use as the test
set. This leads to test sets of size 300 for mortality, 200
for C. Diff., and 200 for MRSA. Remaining data is used
to form cohorts ranging from a very small size with only
20 patients to a large size with 2,500 patients. Constrained
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Fig. 1. Patient classification scheme used in our empirical evaluation.

by the total amount of available data, we experiment with
cohort sizes ranging from 20 to 1,000 patients for C. Diff.
and MRSA infections, and from 20 to 2,500 for mortality. We
repeat experiments 10 times for each cohort size in each task
by sampling with replacement. The model performance are
evaluated by comparing accuracy computed on the test set.

2) Patient Classification: Our patient classification method-
ology is outlined in Fig. 1. For each embedding source (global,
domain, and local), we transform words in each patient’s
clinical note to vector representations (a 200-dimensional
dense vector for each word). Word vectors within a note are
then averaged element-wise to form one vector representation
per patient, which is then input to the classifier.

A single-layer neural network with a sigmoid activation
function serves as our classifier. This model generates prob-
abilities of each patient representation being labeled as each
class. We pick the maximum class probabilities to be the pre-
dicted label. The classifier is trained using stochastic gradient
descent with learning rate = 0.01 for 20,000 epochs.

III. RESULTS AND DISCUSSION

Vocabulary coverage by embedding source. Training set
vocabulary sizes and how much of the vocabulary is covered
by each embedding source are presented in Table I for all
cohort sizes. These are average numbers from 10 patient
folds. Although local embedding is learned from the training
data, infrequent words are removed by the minimum-count
parameter, which controls how many times a word must appear
in order for an embedding to be generated. This leads to
different vocabulary appearing in the training set and the local
embeddding. Among the three embedding sources, we observe
that domain embedding has the highest vocabulary coverage
rate in all cohort sizes. It is due to domain embedding being
trained on a large, related corpora. Local embedding with our
parameter setting covers, on average, only one-fifth of the
vocabulary in the training data. The ratio of vocabulary cover-
age by global and domain embeddings interestingly decreases
gradually when the cohort sizes grow. This shows that the

TABLE I
AVERAGE NUMBERS OF UNIQUE WORDS FROM 10 EXPERIMENTS OF EACH

COHORT SIZE ON THREE DATA SETS.

(a) Mortality

20 7 k 5 k (76%) 5 k (82%) 1 k (16%)
50 11 k 7 k (70%) 8 k (77%) 2 k (22%)

150 18 k 11 k (60%) 13 k (69%) 4 k (24%)
250 24 k 13 k (55%) 15 k (64%) 6 k (24%)
500 33 k 16 k (48%) 19 k (57%) 8 k (24%)
750 40 k 18 k (44%) 22 k (54%) 9 k (23%)

1000 47 k 19 k (41%) 24 k (50%) 11 k (22%)
1250 53 k 20 k (38%) 26 k (48%) 12 k (22%)
1500 59 k 21 k (37%) 27 k (46%) 13 k (22%)
1750 64 k 22 k (35%) 28 k (44%) 14 k (21%)
2000 68 k 23 k (34%) 30 k (43%) 14 k (21%)
2250 73 k 24 k (33%) 31 k (42%) 15 k (21%)
2500 77 k 24 k (32%) 31 k (41%) 15 k (20%)

 Vocabulary 
size 

Vocabulary coverage
  global emb.  domain emb.  local emb. 

Cohort 
size

(b) C. Diff. Infection

20 7 k 5 k (77%) 6 k (83%) 1 k (20%)
50 11 k 7 k (70%) 8 k (78%) 3 k (24%)

150 19 k 11 k (60%) 13 k (68%) 5 k (26%)
250 24 k 13 k (55%) 16 k (64%) 6 k (26%)
500 34 k 16 k (47%) 19 k (57%) 9 k (25%)
750 42 k 18 k (43%) 22 k (53%) 10 k (25%)

1000 48 k 20 k (40%) 24 k (50%) 12 k (24%)

  global emb.  domain emb.  local emb. 
 Vocabulary 

size 
Vocabulary coverageCohort 

size

(c) MRSA Infection

20 6 k 5 k (80%) 6 k (93%) 1 k (23%)
50 10 k 7 k (73%) 8 k (86%) 2 k (25%)

150 16 k 10 k (64%) 13 k (81%) 4 k (25%)
250 20 k 12 k (59%) 16 k (77%) 5 k (25%)
500 28 k 15 k (53%) 19 k (69%) 7 k (26%)
750 35 k 17 k (48%) 22 k (64%) 9 k (25%)

1000 39 k 18 k (45%) 24 k (62%) 10 k (25%)

 Vocabulary 
size 

Vocabulary coverage
  global emb.  domain emb.  local emb. 

Cohort 
size

ratio of specialized words in clinical notes that do not appear
in external corpus increases with cohort size.

Classification performance. Classification accuracies are
presented in Fig. 2 and 3. Accuracy consistently improves
as the cohort size increases, since larger cohort sizes provide
more training data that allows more information for modeling.
Overall, the best performing embedding changes by cohort
size. This is because the model utilizes information containing
in each embedding differently when the available number of
words changes.

Small cohort sizes refer to the datasets that contain less
than 20k words (patients ≤ 150 in our experiment). Fig. 2
shows that there is no consistently optimal embedding for
these cohort sizes. For the smallest cohort size of 20 patients,
domain embedding has the lowest performance in all tasks.
In this case, global embedding performs better by transferring
external knowledge to enhance the task performance compared
to domain embedding. However, when cohort size increases to
150 patients, the knowledge transferred from domain embed-
ding becomes more beneficial than global embedding.

Medium cohort sizes refer to the datasets that contain
between 20k and 50k words (150 < patients ≤ 1,000 in
our experiment). We consistently observe that using domain
embedding performs equally or better than the others as shown
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(b) C. Diff. Infection
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Fig. 2. Classification results for small and medium cohorts on three data sets.

in Fig. 2. Although global embedding overall shows a slightly
better performance than local embedding on mortality and
MRSA infection tasks, both embeddings perform similarly on
C. Diff. infection task. It shows that medium cohort sizes are
still not large enough to train a good local embedding. Instead,
cohorts in this range highly benefit from the knowledge
transfer from domain embedding.

Large cohort sizes refer to the datasets that contain greater
than 50k words (patients > 1,000 in our experiment) which is
only investigated for mortality task due to the data availability.
As shown in Fig. 3, domain embedding still performs well
while local embedding becomes more comparable to the
domain embedding as cohort size grows, even with less than
half vocabulary coverage. Additionally, local embedding now
performs, on average, better than global embedding, proving
local embedding benefits from the larger training data greatly.

IV. CONCLUSIONS
In clinical text classification, choosing word embeddings

is selective among available cohort sizes. Pre-trained global
embeddings from general corpora are not a universally good
choice when working with clinical text. According to our
results, we recommend pre-trained global embedding when
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Fig. 3. Classification results for large cohorts on mortality data.

working with a very small cohort size while domain embed-
ding consistently outperforms for medium cohort sizes. For a
large cohort size, while using domain embedding is still a good
choice, learning local embeddings quickly becomes highly
competitive and we speculate that as cohort sizes continue to
grow, performance of local embedding will improve as well.

Embeddings learned from different corpora preserve differ-
ent knowledge and characteristics of words. As a future work,
we plan to integrate multiple embeddings acquiring the best
parts of each individual option.
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