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Abstract. Sparse inverse covariance estimation, i.e., Graphical Lasso,
can estimate the connections among a set of random variables basing
on their observations. Recent research on Graphical Lasso has been ex-
tended to multi-task settings, where multiple graphs sharing the same
set of variables are estimated collectively to reduce variances. However,
different tasks usually involve different variables. For example, when we
want to estimate gene networks w.r.t different diseases simultaneously,
the related gene sets vary. In this paper, we study the problem of multi-
task Graphical Lasso where the tasks may involve different variable sets.
To share information across tasks, we consider the attributes of variables
and assume that the structures of graphs are not only determined by ob-
servations, but influenced by attributes. We formulate the problem of
learning multiple graphs jointly with observations and attributes, i.e.,
Multi-task Attributed Graphical Lasso (MAGL), and propose an effec-
tive algorithm to solve it. We introduce the LogDet divergence to explore
latent relations between attributes of the variables and linkage structures
among the variables. Multiple precision matrices and a projection matrix
are optimized such that the `1-penalized negative log-likelihood and the
divergence are minimized.

1 Introduction

Gaussian Graphical Models (GGMs) [25] provide a powerful framework for de-
scribing the dependencies among a set of variables and have been attracting much
attention in the fields of finance, social networks and bio-informatics, etc. [16,28].
In these applications, some of the edges between the nodes are usually unknown
and must be inferred from observations of the node activities. It has been shown
that the non-zero elements of the precision matrix, i.e., the inverse of the co-
variance matrix, correspond to the edges in the underlying graph [25]. Thus
structure learning of a GGM is equivalent to estimating its precision matrix,
which can be solved via Graphical Lasso (GLasso) [7].

In some cases, multiple GLasso tasks are involved and each contains several
observations. Observations in different tasks may come from different distribu-
tions, but they are all on the same set of variables. For example, researchers
may want to estimate gene regulatory networks for cancer patients and healthy
subjects separately using their gene expression levels. Since the gene networks in
multiple tasks are highly related, we often estimate multiple precision matrices
collectively. The multi-task Graphical Lasso could borrow strength across tasks
and reduce the variance of the estimates [19]. There have been some recent work
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Fig. 1: An illustration of multi-task attributed Graphical Lasso. The tasks are
to estimate gene regulatory networks for two diseases collectively to reduce the
variance of the estimates. Each gene is accompanied by its expression level on dif-
ferent patients as observations, and pathways it belongs to as attributes. Similar
attributes drive certain pairs of variables to be connected (shown in red).

on the multi-task Graphical Lasso [3,12,24,27], but they assume that the sets of
variables across tasks are identical and the nonzero patterns in precision matrices
are similar across multiple graphs. This is not always the case in the real world
where each task could have its own associated variable set. For instance, our
tasks are to estimate gene regulatory networks for multiple diseases collectively,
but sets of genes involved may not be identical across these diseases. We try to
consider multiple sets of variables in multiple tasks.

It is not clear how to jointly solve tasks with different variable sets, but there
is a key observation that variables are often accompanied by attributes that
might help. For example, each gene is associated with attributes, such as gene
families, pathways and related-diseases. In this paper, we study the problem
of multi-task attributed Graphical Lasso, where the goal is to simultaneously
estimate multiple graphs by exploiting the relationship between attributes and
graph structures as illustrated in Figure 1.

Despite the significance, the multi-task attributed Graphical Lasso is highly
challenging due to:

– Heterogeneity of Variables: Since the sets of variables are not necessarily
identical across tasks, the existing methods based on the assumption that
the similar nonzero patterns in precision matrices are no longer applicable.
It is challenging to share information across tasks with heterogeneous sets
of variables to improve the quality of estimates.

– Relations between Attributes and Graphs: Previous methods do not
utilize the attributes and infer the graphs by only using observations of
variables. But in attributed graphs, connectivities between variables are also
influenced by their attributes. It is challenging to define the relationship
between attributes and graphs. Besides, how to inject attributes into the
multi-task framework is unclear.
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Fig. 2: (a) Graphical Lasso estimates a single precision matrix and the corre-
sponding graph from observations of variables. (b) Multi-task Graphical Lasso
estimates graphs jointly from multiple sets of observations under assumption
that the nonzero patterns in precision matrices should be similar. (c) Multi-task
attributed Graphical Lasso accepts attributes as side information and supports
different sets of variables across tasks. It assumes that the structures of graphs
are related to the attributes of variables.

To address these issues, we present a novel method called MAGL (Multi-task
Attributed Graphical Lasso), which uses the LogDet divergence [18] to build a
connection between structures and attributes. Multiple precision matrices and a
projection matrix are simultaneously optimized so that the `1-penalized negative
log-likelihood is minimized, meanwhile the LogDet divergence between the pre-
cision matrix of graphs and the inverse covariance matrix of projected attributes
in each task is also minimized. Since the information is shared indirectly through
the projection matrix, our formulation supports heterogeneous sets of variables.

We illustrate the differences between our proposal and existing related prob-
lem settings in Figure 2. The main contributions of our paper are as follows: (1)
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We study the problem of multi-task attributed Graphical Lasso, and incorpo-
rate attributes into the framework of multi-task Graphical Lasso by using the
LogDet divergence. (2) We propose an efficient algorithm to solve MAGL using
block coordinate descent and augmented Lagrangian method. (3) The conducted
experiments illustrate the effectiveness of the proposal.

2 Problem Formulation

In this section, we briefly review some related concepts and notions. We then
formulation the problem of multi-task attributes Graphical Lasso.

• Notations: In this paper, < stands for the set of all real numbers. The
space of symmetric matrices is denoted by Sn. The cone of positive semi-definite
matrices is denoted by Sn+, and its interior is Sn++. ‖X‖1 =

∑
i,j |Xij | is the

element-wise `1 norm. ‖X‖2F =
∑
i,j X

2
ij is the squared Frobenius norm. Tr(·)

and det(·) denote the trace and the determinant of a matrix respectively. σ(X)
returns all singular values of X. 1{condition} is the indicator function.

2.1 Preliminaries

Graphical Lasso: Assume we have a set of samples X ∈ <p×n drawn i.i.d. from
a p-variate Gaussian distribution: xj ∼ Np(0, Σ), j = 1, . . . , n, where Σ ∈ Sp++,
and xj is the j-th column of X. A natural way to estimate the precision matrix
Θ = Σ−1 is via maximum log-likelihood estimation (MLE). The log-likelihood
function takes the form (up to a constant) l(S,Θ) = log detΘ − Tr(SΘ), where
S = 1

nXX
T ∈ Sp+ is the sample covariance matrix. However, the MLE fails

when p > n because S becomes singular. Even if p 6 n and S is not singular,
S−1 is usually dense. To obtain a meaningful estimate, the `1 regularization has
been employed to induce sparsity. This leads to the sparse inverse covariance
matrix estimation problem, also known as Graphical Lasso (GLasso) [7]: minΘ −
l(S,Θ) + λ‖Θ‖1, where λ > 0 is an `1 regularization parameter.

LogDet Divergence: The LogDet divergence [18] is proposed to measure
the “closeness” between two matrices X,Y ∈ Sp++. It is defined as

Dld(X,Y ) = Tr(XY −1)− log det(XY −1)− p.

The LogDet divergence is non-negative, and Dld(X,Y ) = 0 if and only if X = Y .
It is convex in the first argument. It has been shown [4] that the KL divergence
between two multivariate Gaussian distributions with the same mean vector,
N (µ,Θ−1) and N (µ,Ω−1), is proportional to the LogDet divergence between
the corresponding precision matrices:

KL
(
N (µ,Θ−1),N (µ,Ω−1)

)
=

1

2
Dld(Θ,Ω).
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2.2 Multi-task Attributed Graphical Lasso

Consider that we are given K > 2 tasks, each consisting of not only variables’
activities Xk ∈ <pk×nk , but also attributes Ak ∈ <pk×m, where the i-th row of
Ak is the i-th variable’s attributes in the k-th task. The samples within each task
Xk are identically distributed with a pk-variate Gaussian distribution with zero

mean and covariance matrix
(
Θk
)−1 ∈ Spk++. Further we assume that the struc-

tures of graphs are influenced by the variables’ attributes. We wish to borrow
information across the K tasks to estimate the K precision matrices jointly.

For notational simplicity, we assume that pi = p and ni = n ∀i, but our
formulation and algorithm can be easily adapted to the general setting. We
formulate the problem of multi-task attributed Graphical Lasso (MAGL) as

min
Θk,U

16k6K

K∑
k=1

[
−l
(
Sk, Θk

)
+ λ1‖Θk‖1

]
+ λ2

K∑
k=1

Dld

(
Θk, Ωk

)
+
λ3
2
‖U‖2F , (2.1)

where Ωk =
(
εI +AkUUT (Ak)T

)−1
, and U ∈ <m×d is a projection matrix from

a m-dimensional input space to a d-dimensional output space. λ1, λ2, λ3, ε > 0
are the model parameters. The first part in the objective function is the sum of
K GLasso problems. We view the projected attributes AkU ∈ <p×d as d samples

drawn from the Gaussian distributionNp
(
0, (Ωk)−1

)
.Ωk =

(
εI +AkUUT (Ak)T

)−1
is the estimate of the inverse of the precision matrix, where ε is used to make it
non-singular. Now, Dld(Θ

k, Ωk) is the KL divergence between the two Gaussian
distributions. By this means, we build a connection between the structures of
graphs and the variables’ attributes. We also use the squared Frobenius norm
of U to prevent overfitting. As illustrated in Figure 2(c), the Problem 2.1 finds
K precision matrices and a projection matrix that minimize the negative log-
likelihood of data, and meanwhile minimize the divergence between the precision
matrices of data and projected attributes in each task.

3 Methodology

We propose an algorithm based on block coordinate descent to alternatively
update {Θk}Kk=1 and U until convergence. Subproblems then are solved by the
Augmented Lagrangian Method (ALM).

Update Θk: To update {Θk}Kk=1, with U fixed, we can decompose the Prob-
lem 2.1 into K independent parts (suppressing superscript k for simplicity):

argminΘ −l(S,Θ) + λ1‖Θ‖1 + λ2Dld(Θ,Ω) = argminΘ −l(S̃, Θ) +
λ1

1 + λ2
‖Θ‖1,

(3.1)
which is a Graphical Lasso problem with a scaled and shifted covariance matrix

S̃ =
1

1 + λ2

[
S + λ2

(
εI +AUUTA

)]
.
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Algorithm 1 Multi-task Attributed Graphical Lasso (Problem 2.1)

Require: {(Sk, Ak)}Kk=1, d, λ1, λ2, λ3 > 0, ε = 0.01, ρ0 = 2, γ = 1.05
1: Randomly initialize U
2: repeat
3: Solve Problem 3.1 for {Θk}Kk=1

4: Initialize Y k = 0, ρ = ρ0
5: repeat
6: Solve Problems 3.3 and 3.4 for {Zk}Kk=1

7: Solve the linear system 3.5 for U
8: Update Y k := Y k + ρ(Zk − ÃkU)
9: Update ρ := γ · ρ

10: until convergence
11: until convergence
12: return {Θk}Kk=1, U

This problem can be seen as a “supervised” Graphical Lasso since the LogDet
term hopes two distributions to be similar. Since S̃ is positive semi-definite,
Problem 3.1 can be solved by most classical Graphical Lasso solvers efficiently
[2, 15,21,29].

Update U : The Problem 2.1 with {Θk}Kk=1 fixed can be re-organized into

min
U

K∑
k=1

[− log det(I +
Ak√
ε
UUT

(
Ak√
ε

)T
) + Tr

(
(Ak)TΘkAkUUT

)
]

+
λ3
2λ2
‖U‖2F .

(3.2)

Though Problem 3.2 is not convex, we could use the Augmented Lagrangian
Method (ALM) to solve it effectively. It can then be rewritten as

min
Zk,U

16k6K

K∑
k=1

[
− log det

(
I + Zk(Zk)T

)
+ Tr

(
HkUUT

)]
+

λ3
2λ2
‖U‖2F ,

s. t. Zk = ÃkU,

where Zk ∈ <p×d are auxiliary variables, and Hk = (Ak)TΘkAk, Ãk = Ak
√
ε
. The

augmented Lagrangian function is given by

Lρ
(
U, {Zk}, {Y k}

)
=

K∑
k=1

[
− log det

(
I + Zk(Zk)T

)
+ Tr

(
HkUUT

)
+ Tr

(
(Y k)T (Zk − ÃkU)

)
+
ρ

2
‖Zk − ÃkU‖2F

]
+

λ3
2λ2
‖U‖2F ,
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where ρ > 0 is a penalty parameter and Y k ∈ <p×d are dual variables. Solving
Problem 3.2 is equivalent to minimizing Lρ

(
U, {Zk}, {Y k}

)
with a sufficiently

large ρ. In practice, we minimize {Lρt}∞t=0 iteratively with a monotonic increasing
sequence {ρt}∞t=0 satisfying lim

t→∞
ρt →∞.

Given the initial U0, Z
k
0 , Y

k
0 , ρ0, we do the following block coordinate updates:

Step 1: Compute optimal {Zkt+1} with Ut and {Y kt } fixed. The Lρt is separable
w.r.t Zk, so minimizing Lρt over Zk takes the form (suppressing k) of

argmin
Z
− log det(I + ZZT ) +

ρt
2
‖Z − (ÃUt −

1

ρt
Yt)‖2F . (3.3)

The above problem can be converted to a set of scalar minimization problems
using the following theorem [17]:

Theorem 1. For unitarily invariant function F (Z) = f ◦ σ(Z), assuming the

singular value decomposition of R ∈ <p×d is R = UΣRV
T , ΣR = diag({σR,i}min(p,d)

i=1 ),
the optimal solution to the problem

min
Z

F (Z) +
ρ

2
‖Z −R‖2F

is Z? = UΣ?
ZV

T , with Σ?
Z = diag({σ?i }

min(p,d)
i=1 ) obtained by solving scalar min-

imization problems

σ?i = argmin
x

f(x) +
ρ

2
(x− σR,i)2, i = 1, . . . ,min(p, d). (3.4)

Since F (Z) = − log det(I + ZZT ) = −
∑min(p,d)
i=1 log(1 + σ2

Z,i), F (Z) is a

unitarily invariant function with f(σZ,i) = − log(1 +σ2
Z,i), where σZ,i is the i-th

singular value of Z. By checking the gradient equation of Problem 3.4, we can
find that the optimal σ?i is the non-negative root of the cubic equation:

g(x) = x3 − σix2 + (1− 2

ρt
)x− σi = 0,

where σi ≥ 0 is the i-th singular value of ÃUt− 1
ρt
Yt. Observe that there exists at

least one non-negative root. Besides, by checking the discriminant of the cubic
equation, we can find that the equation g(x) = 0 only has one real root if ρt ≥ 2
or a triple root 0 if ρt = 2 and σi = 0. Therefore, Problem 3.4 has a unique
optimum if ρt ≥ 2, so does Problem 3.3.

Step 2: Compute optimal Ut+1 with {Zkt+1}, {Y kt } fixed. The gradient equa-
tion is[∑

k

(
2Hk + ρt(Ã

k)T Ãk
)

+
λ3
λ2
I

]
Ut+1 =

∑
k

[
(Ãk)T (Y kt + ρtZ

k
t+1)

]
. (3.5)

Thus the optimal Ut+1 can be solved from this linear system.
Step 3: Update the dual variables:

Y kt+1 := Y kt + ρt(Z
k
t+1 − ÃkUt+1), ∀k.

Step 4: Update the penalty parameter ρt+1 = γ · ρt, where γ > 1.
The algorithm for MAGL is summarized in Algorithm 1.
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Fig. 3: The precision matrices learned by three comparing methods.

4 Experiments

4.1 Data Collection

We evaluate the proposed method on real-world datasets and synthetic datasets:
• DBLP is a subset of a bibliographical network. Following settings in [23], we
extracted 20 conferences and top-5000 authors among 4 areas from 2006 to
2015. After removing stop words in paper titles, we get 679 frequent terms as
the vocabulary to generate bag-of-words representations as authors’ activities.
Here we assume the life cycle of each author is 5 years, i.e., the length of the
PhD program. Given a year, each author is accompanied by a one-hot attribute
vector of length 5, which indicates the stage he was in. The tasks are to estimate
connections among authors in each year.
• AML contains two groups of gene expression levels of AML (acute myeloid
leukemia) studies [8, 11] used in [9]. Each gene is categorized into at least one
pathway, which is used as its attributes. Specifically, the j-th attribute of the
i-th gene Aij = 1 if the gene is in the j-th pathway, otherwise Aij = 0.

The generative method of synthetic data is as follows: given the number
of tasks K, the number of variables p, the number of observations n, and the
number of classes m, first we generate variables’ classes in two ways:
• Dataset-1 (Ordered): We assign a random integer c1i ∈ {c ∈ N| − bm/2c 6
c 6 m} to each variable as its class in the first task. For the k-th (k > 1) task,
the i-th variable’s class is randomly picked in the set cki ∈ {c

k−1
i , ck−1i + 1}.

• Dataset-2 (Unordered): cki ∈ {c ∈ N|1 6 c 6 m} is always randomly picked
for all tasks. The i-th variable’s attribute vector in the k-th task aki is a vector
of all zeros, except that the cki -th element is 1 if 1 6 cki 6 m. The element

of a precision matrix
(
Σk
)−1
ij

is nonzero with the probability (4−t)p∑
u,v 1{δkuv=t}

if

δkij = t ∈ {0, 1, 2}, otherwise p∑
u,v 1{δkuv≥3}

, where δkij = |cki − ckj |. By this means,

the number of nonzero off-diagonal elements in each precision matrix is about
10p. We calculate the sample covariance matrix Sk using n samples.

Dataset-1 simulates the case that there is a natural order among multiple
tasks, and tasks share a common set of variables, while Dataset-2 does not
assume the identical variable sets nor orderliness among tasks.
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4.2 Compared Methods

To validate the effectiveness of our proposal, we test the following methods: (1)
GLasso [7] is the vanilla Graphical Lasso. We fit a GLasso model for each task
separately. (2) PathGLasso [9] takes a sample covariance matrix and a set of
pathways as input. It assumes that a pair of variables will not be connected if
they do not participate together in any pathways. We fit a PathGLasso model
independently for each task. (3) FMGL [27] jointly estimates multiple tasks
of Graphical Lasso using a sequential fused `1 penalty for adjacent precision
matrices. It requires that the tasks have a natural order. (4) JGL [3] jointly
estimates multiple tasks of Graphical Lasso under the assumption that all graphs
have similar non-zero patterns by using fused penalty or group lasso penalty. (5)
MAGL is our proposal, which makes use of attributes and jointly estimates
multiple tasks. All comparing methods have a parameter λ1 for the `1 penalty.
FMGL and JGL have an extra parameter λ2 to weight the penalty terms. MAGL
uses λ2 to weight the LogDet divergence term and λ3 for regularization.

4.3 Experiment Settings

To test whether these methods can correctly recover the nonzero patterns and
fit the data distributions, we use F1 score and Relative Log-likelihood as the
evaluation metrics. The larger the value, the better the performance.

To ensure a fair comparison, the parameter λ1 is searched using the bisection
technique to make the number of edges in the estimated graphs approximately
equal to the number of edges in the true graphs. The λ2 for FMGL, JGL and
MAGL is determined by cross validation. Besides, for MAGL, we simply let the
dimension of the output space of projection d = 100, and the regularization pa-
rameter λ3 = 1 throughout the experiments. Other default values for algorithm
parameters are: ε = 0.01, ρ0 = 2, γ = 1.05.

4.4 Experiment Results

Following the settings in literatures [3, 27, 28], we only show numerical results
on synthetic datasets, since ground truth in real datasets is hard to obtain. For
example, the network structure in DBLP does not correspond to its Gaussian
graphical model. Case studies on real-world datasets are conducted instead.

We first summarize our findings on synthetic data. We show the averaged
result of 5 runs with different random seeds for each experiment.

Before we show the quantitative results, we manually generate a toy example
and show the learned Θ1 in Figure 3. Because FMGL, GLasso and JGL show
the similar patterns, we only show the result of FMGL. We can see that in the
ground truth, most non-zero elements appear on the diagonal blocks. FMGL
cannot capture the block structures, and thus performs poorly. For PathGLasso,
pathway constraints are employed so that non-zeros elements on off-diagonal
blocks are not allowed. Our proposal, MAGL, learns a precision matrix that is
closest to the ground truth because block structures are revealed by finding a
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Table 1: Results on Dataset-1.

F1↑ Log-likelihood (%)↑
K m p GLasso PathGLasso FMGL JGL MAGL GLasso PathGLasso FMGL JGL MAGL

5

3
500 0.3375 0.3375 0.3408 0.3419 0.3423 1.2412 1.2412 1.2502 1.2426 1.2546
1000 0.4256 0.4321 0.4302 0.4297 0.4372 1.1843 1.2264 1.1977 1.1913 1.2268

5
500 0.3325 0.3477 0.3365 0.3321 0.3524 1.2116 1.2234 1.2222 1.2086 1.2416
1000 0.4222 0.4396 0.4286 0.4286 0.4410 1.1848 1.2020 1.1977 1.2004 1.2235

10
500 0.3248 0.3375 0.3280 0.3273 0.3345 1.2421 1.2647 1.2554 1.2517 1.2863
1000 0.4124 0.4301 0.4167 0.4138 0.4352 1.2243 1.2783 1.2348 1.2274 1.2875

10

3
500 0.3434 0.3435 0.3499 0.3499 0.3543 1.1182 1.1181 1.1430 1.1427 1.1441
1000 0.4192 0.4282 0.4264 0.4236 0.4425 1.1201 1.1465 1.1442 1.1305 1.1523

5
500 0.3381 0.3526 0.3447 0.3426 0.3521 1.1191 1.1450 1.1401 1.1330 1.1487
1000 0.4012 0.4105 0.4100 0.4081 0.4237 1.1457 1.1683 1.1732 1.1611 1.1795

10
500 0.3401 0.3532 0.3448 0.3430 0.3629 1.2343 1.2394 1.2481 1.2398 1.2450
1000 0.3877 0.3970 0.3923 0.3891 0.4075 1.2342 1.2653 1.2514 1.2410 1.2828

Table 2: Results on Dataset-2.

F1↑ Log-likelihood (%)↑
K m p GLasso PathGLasso MAGL GLasso PathGLasso MAGL

5

3
500 0.3318 0.3318 0.3576 1.2449 1.3013 1.3143
1000 0.4170 0.4341 0.4346 1.1842 1.2182 1.2216

5
500 0.3300 0.3378 0.3401 1.2247 1.2348 1.2553
1000 0.4136 0.4372 0.4448 1.1704 1.2361 1.2642

10
500 0.3237 0.3306 0.3294 1.2334 1.2456 1.2877
1000 0.4073 0.4249 0.4293 1.2260 1.2774 1.2831

10

3
500 0.3404 0.3404 0.3541 1.1304 1.1414 1.1568
1000 0.4117 0.4188 0.4332 1.1217 1.1451 1.1532

5
500 0.3321 0.3391 0.3448 1.1079 1.1101 1.1200
1000 0.3986 0.4027 0.4163 1.1478 1.1698 1.1741

10
500 0.3350 0.3516 0.3606 1.2275 1.2797 1.2859
1000 0.3785 0.3999 0.4003 1.2280 1.2331 1.2453

projection matrix across tasks. Since MAGL does not constrain non-zero pat-
terns, elements on off-diagonal blocks are also successfully recovered.

Our first set of experiments are conducted on the synthetic Dataset-1. The
results are shown in Table 1. As we can see, MAGL performs well in most
cases. This is because our proposal considers the relations between attributes of
variables and linkage structures among variables, and shares information across
tasks to improve the quality of estimates. FMGL does not perform well due
to the fact that the sequential fused `1 penalty only considers the values in the
adjacent precision matrices and may hardly capture the global property. Another
multi-task method, JGL, performs worse than GLasso in some cases, due to the
inappropriate assumption, i.e., similar non-zeros patterns across tasks. We can



Multi-task Attributed Graphical Lasso 11

0.001 0.01 0.02 0.05 0.1 0.2 0.5 1
F1↑

0.330

0.335

0.340

0.345

0.350

0.355

λ2
λ3

0.001 0.01 0.02 0.05 0.1 0.2 0.5 1
Relative Log-likelihood ↑

1.209

1.210

1.211

1.212

1.213

1.214

1.215

1.216

1.217

1.218

λ2
λ3

Fig. 4: The influence of λ2,3.

1 2 3 4 5

1 14.49 6.19 6.42 5.26 5.71

2 8.75 4.85 4.55 4.29

3 8.71 5.37 5.26

4 6.99 5.26

5 7.90

(a) DBLP

1 2 3 4 5

1 13.66 3.41 5.85 2.93 9.76

2 5.85 6.34 4.88 5.37

3 5.85 2.93 8.78

4 6.83 5.85

5 11.71

(b) GLasso

1 2 3 4 5

1 16.97 5.46 5.27 4.27 4.60

2 10.94 4.84 4.29 3.74

3 10.56 5.23 4.39

4 7.19 4.56

5 7.71

(c) MAGL

Fig. 5: Co-author patterns on DBLP. The number in cell (i, j) indicates how
often co-author activities happened between authors in stage-i and stage-j.

notice that due to the generative methods of datasets and pathways, by excluding
a large number of impossible edges, PathGLasso gains a huge advantage when
m is large w.r.t F1. Nevertheless, as illustrated in Figure 3, missing elements on
off-diagonal blocks lower the log-likelihood scores.

The experimental results on Dataset-2 are shown in Table 2, which reveals
the similar patterns. FMGL and JGL are not tested here because the sets of
variables are not the same in different tasks and there is no oder among them.

•Parameter Study: In this subsection, we test the performance of MAGL
under different λ2 and λ3. The results are shown in Figure 4. We can see that
MAGL is robust w.r.t. λ3. The performance is also stable w.r.t. λ2 in a wide
range. Specifically, as λ2 grows, the F1 score increases as well but after some
point, the log-likelihood decreases slightly. Recall that Problem 3.1 uses a scaled
and shifted covariance matrix, and hence a large λ2 may skew the data distri-
bution and harm the likelihood.
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4.5 Case Study

We also apply MAGL to the DBLP and AML datasets. Because of lack of the
ground truth, we only show the results qualitatively.

For DBLP dataset, we count the number of co-author activities happened
in different stages and show them in Figure 5(a). For example, about 14.49%
co-authors activities are between authors who are both in the Stage-1, i.e., the
1st year of PhD. We apply MAGL and GLasso on the dataset and count the
number of edges in the learned graphs. From Figures 5(b) and 5(c) we can see
that, with the help of authors’ attributes (i.e., life stages), MAGL reveals co-
author patterns better.

REACTOME_SIGNALING_BY_PDGF
REACTOME_SIGNALING_BY_ERBB2
REACTOME_SIGNALING_BY_EGFR_IN_CANCER
REACTOME_SIGNALING_BY_FGFR_IN_DISEASE
REACTOME_NGF_SIGNALLING_VIA_TRKA_…
…

REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE
REACTOME_REGULATION_OF_MRNA_STABILITY_BY_…
REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE_ODC
…

Fig. 6: Visualization of projection matrix on AML dataset.

In AML dataset, since the attributes of variables (genes) are pathways, the
i-th row of U can be viewed as the latent features of the i-th pathway. We map
U into a 2-dimensional plane using t-SNE [20] and show it in Figure 6. As we can
see, points are clustered. Take a closer look and we find that the points in bottom-
left corner correspond to pathways in which genes are involved in Signaling, and
top-left points are pathways involved in Regulation, which means MAGL could
make use of attributes properly to help it improve the performance.

5 Related Work

To obtain a sparse and meaningful estimate of the precision matrix, numerous re-
searchers have considered the `1 penalized minimum negative log-likelihood esti-
mation problem [1,5–7], i.e., Graphical Lasso. A bunch of algorithms [2,15,21,29]
have also been developed. However, most of these methods suffer from intensive
computation.To make Graphical Lasso applicable in large problems, [26] and [21]
derived a necessary and sufficient condition that a GLasso problem can be de-
composed into several smaller sized and independent problems. Further, path-
way Graphical Lasso [9] provides an efficient framework dealing with overlapping
blocks.Based on pathway Graphical Lasso, [30] uses a related heterogeneous in-
formation network to provide different types of “pathways” and learn a graph
with multiple types of edges.
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Recently, there are some prior works on multi-task Graphical Lasso that
learn multiple precision matrices simultaneously for related tasks. These meth-
ods differ in the choice of penalty functions: [14] suggested to estimate multiple
Graphical Lasso by replacing the `1 norm with an `1,∞ norm. [10] proposed
a non-convex hierarchical penalty. [12, 13, 19] assumed that there are common
(sub)structures among multiple graphs. [3] estimated multiple precision matrices
jointly using a pairwise fused penalty or grouping penalty. [27] considered the
case that multiple tasks have a natural order and proposed a sequential fused
penalty. A necessary and sufficient condition for the graphs to be decompos-
able is also given. [22] proposed a method on the assumption that the network
differences are introduced from node perturbations. Different from the aforemen-
tioned methods that inspected the values in precision matrices, [24] utilized the
structure information directly. However, these methods all require that the sets
of variables are the same among tasks. Besides, they only focus on the variables’
observations and cannot deal with attributed graphs.

6 Conclusion

In this paper, we incorporate variables’ attributes into the framework of multi-
task Graphical Lasso, and propose Multi-task Attributed Graphical Lasso (MAGL).
We introduce the LogDet divergence to bridge graphs structures and attributes
so that information could be shared across multiple tasks. The experiments on
synthetic datasets show the effectiveness of MAGL, and the case studies demon-
strated that our method can produce a meaningful result. As for future work, we
could try other ways to connect variables’ observations and attributes. Besides,
we will consider applying our proposal to more real world applications.
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