
Semi-Supervised Knowledge Amalgamation for Sequence Classification

Jidapa Thadajarassiri, Thomas Hartvigsen, Xiangnan Kong, Elke Rundensteiner
Data Science Program and Computer Science Department, Worcester Polytechnic Institute

100 Institute Road, Worcester MA, USA 01609
{jthadajarassiri, twhartvigsen, xkong, rundenst}@wpi.edu

Abstract

Sequence classification is essential for domains from medical
diagnosis to online advertising. In these settings, data are typ-
ically proprietary and annotations are expensive to acquire.
Often times, so few annotations are available that training a
robust model from scratch is impractical. Recently, knowl-
edge amalgamation (KA) has emerged as a promising strat-
egy for training models without this hard-to-come-by labeled
training dataset. To achieve this, KA methods combine the
knowledge of multiple pre-trained teacher models (trained
on different classification tasks and proprietary datasets) into
one student model that becomes an expert on the union of all
teachers’ classes. However, we demonstrate that the state-of-
the-art solutions fail in the presence of overconfident teachers,
which make confident but incorrect predictions for instances
from classes upon which they were not trained. Addition-
ally, to-date no work has explored KA for sequence models.
Therefore, we propose and then solve the open problem of
semi-supervised KA for sequence classification (SKA). Our
SKA approach first learns to estimate how trustworthy each
teacher is for a given instance, then rescales the predicted
probabilities from all teachers to supervise a student model.
Our solution overcomes overconfident teachers through care-
ful use of a very small amount of labeled instances. We
demonstrate that this approach beats eight state-of-the-art al-
ternatives on four real-world datasets by on average 15% in
accuracy with as little as 2% of training data being annotated.

Introduction
Background and Motivation. Sequence classification has
a wide range of real-world applications. Examples include
disease prediction (Razavian, Marcus, and Sontag 2016),
activity recognition (Yang et al. 2020), and speech recog-
nition (Graves, Jaitly, and Mohamed 2013). Conventional
approaches to sequence classification mainly focus on su-
pervised settings, which require a large amount of labeled
data to train a model. Unfortunately, large datasets, such as
health records or customer activities, are not always avail-
able to the public due to privacy concerns. Often too few an-
notations are available to train a robust model from scratch.
Fortunately, some research groups may train a model on
their private data (e.g., medical records) and release the pre-
trained models instead of releasing the training data to sup-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Teacher 1

Teacher 2

Labeled Unlabeled
Sequence Data

Student Model

Comprehensive classes

Pre-trained
Models

Teacher 1

Teacher 2

Specialized classes

Specialized classes

Neural networks
Classes

Labeled data
Unlabeled data

Figure 1: Semi-supervised knowledge amalgamation (SKA)
for sequence classification. Given sequence data, a tiny sub-
set of which is labeled, and a set of pre-trained models
(teachers), the goal is to train a student model that can amal-
gamate the teachers’ knowledge, learning to predict any of
the classes in which the teachers specialize.

port reuse by other researchers or practitioners (Harutyun-
yan et al. 2019).

However, these pre-trained models may not be directly
usable because (1) they may be too large to fit within the
resources of some applications (e.g., sequence classification
in mobile devices), or (2) there may be differences in the
classification tasks of the teacher and student models (e.g.,
disease prediction with more disease classes than the pre-
trained model). Many works have studied these two issues
for image classification (Hinton, Vinyals, and Dean 2015;
Shen et al. 2019a) while no works have yet studied such
problems for sequence classification.

In image classification, Knowledge Distillation (KD)
(Hinton, Vinyals, and Dean 2015) methods address problem
(1) by training a small target model (the “student” model)
that learns from one pre-trained, and possibly complex,
model (the “teacher” model) with a set of unlabeled data. To
address problem (2), Knowledge Amalgamation (KA) (Shen
et al. 2019a) methods have been proposed to train a student
model from multiple pre-trained teacher models, where dif-
ferent teacher models are pre-trained to classify distinct sets
of classes. The student model in KA aims to cover the union

Student

Image Data
Unlabeled

Teacher 1

cycling, run, walk cycling, run, walk

Pre-trained
Models

(a) Knowledge Distillation on Image
Data (Hinton, Vinyals, and Dean 2015):
learning from one teacher network on the
same classification task.

Student

Image Data
Unlabeled

Teacher 1

Teacher 2

cycling, run, walk

walk, stand, sit
cycling, run, walk, stand, sit

Pre-trained
Models

(b) Unsupervised Knowledge Amalgama-
tion on Image Data (Luo et al. 2019): learn-
ing from multiple teacher networks.

Labeled Unlabeled
Sequence Data

Student

Teacher 1

Teacher 2

cycling, run, walk

walk, stand, sit
cycling, run, walk, stand, sit

Pre-trained
Sequence
Models

(c) Semi-supervised Knowledge Amalgamation
on Sequence Data (this paper): learning from
multiple teachers with access to a small set of
labeled sequences.

Figure 2: Comparison of related problems. Each rectangular box represents a neural network model and the words under each
box (e.g., “cycling” and “run”) denote the classes that the model is trained for in the classification task.

of all classes specialized in by any of the teachers.
In this paper, we study the problem of KA for sequence

classification. As an example of this setting, consider a hu-
man activity recognition problem to support health screen-
ing. To monitor patients’ wellness, medical researchers may
want to develop a model that can recognize patients’ ac-
tivities based on the sequence data collected by smart de-
vices (Masum, Bahadur, and Ruhi 2020). As shown in Fig-
ure 1, suppose two pre-trained teacher models are released
to the public: one teacher can detect cycling, running and
walking classes from the patient’s activities, while the other
teacher detects walking, standing and sitting. If we want to
build a model that can detect activities of all 5 classes, in-
cluding cycling, running, walking, standing, and sitting, we
need to learn a student model that can amalgamate the col-
lective knowledge of these pre-trained teacher models.

State-of-the-Art. Conventional methods for knowledge
amalgamation (KA) (Shen et al. 2019a,b; Ye et al. 2019; Luo
et al. 2019; Vongkulbhisal, Vinayavekhin, and Visentini-
Scarzanella 2019) focus on the unsupervised setting, where
student models are trained by learning to imitate the teach-
ers’ outputs and/or intermediate layers from unlabeled data.
For many sequence classification tasks, however, the classi-
fication performance of unsupervised KA methods suffers
heavily when an overconfident teacher exists, which pro-
vides predictions that are inaccurate, yet have high confi-
dence on instances about which it has no knowledge. For
instance (Figure 1), due to similarities between Cycling and
Sitting, Teacher 2 may be overconfident in predicting Sitting
when a person is in fact Cycling because it is not trained
to detect Cycling. Without access to any labels, this type of
mistake is unavoidable. However, an overlooked opportunity
is that in some sequence classification tasks we may be able
to gain access to a small set of labeled data.

Problem Definition. In this paper, we thus propose the
study of a new problem, called semi-supervised knowledge
amalgamation (SKA) for sequence classification, as de-
picted in Figure 1. Given multiple pre-trained teacher mod-
els and sequence data, a tiny subset of which is labeled, the
goal is to train a multi-class student model that covers the
union of all classes predicted by the teachers. The teachers
may have different architectures. SKA extends beyond clas-
sic KA, as shown in Figure 2, both by exploring sequence

classification and by broadening the KA setting to the more
realistic case when a few annotations are available, thereby
handling overconfident teachers.

Challenges. The open SKA problem is challenging for
the following reasons:

● Very limited supervision: Modern multi-class sequence
classifiers notoriously require a large amount of labeled
training data (Fawaz et al. 2018; Malhotra et al. 2017). With
only a tiny amount of labeled data, the risk of overfitting,
which inhibits generalization, is quite high.

● Disparate teachers: Teachers are typically trained on
different, and often private, sets of training data. Thus, their
internal representations are customized for their own respec-
tive tasks while their behavior and output for classes un-
known to them is unpredictable and has no relation to out-
puts of other teachers. To amalgamate knowledge from such
disparate teachers, we must find the middle ground between
these heterogeneous sources of knowledge.

● Overconfident teachers: Individual teachers are experts
on different sets of classes and so the scales of their soft
predicted values may differ drastically. Further, given an in-
stance from a class that a teacher was not have trained to
predict, a teacher may be overconfident in its prediction, giv-
ing misleading information to a student. This is particularly
prevalent when the sheer number of classes differs between
teachers: having more classes tends to generate on average
higher soft predicted scores. A good solution must filter out
untrustworthy recommendations by teachers when supervis-
ing the student’s training.

Proposed Method. To overcome these challenges, we
propose the Teacher Coordinator (TC) training paradigm.
TC consists of two novel components: A Teacher Trust
Learner (TTL), which learns to estimate how trustworthy
each teacher is for a given data instance, and a Knowledge
Amalgamator, which combines the sets of class probabili-
ties predicted by disparate teachers into one final probability
distribution over the set of target classes. The TTL is mod-
eled as a Recurrent Neural Network (RNN), trained using
very limited labeled data to predict a probability distribution
over the teachers, estimating for each teacher the likelihood
that it should be trusted to predict the given class label. The
Knowledge Amalgamator uses the TTL’s prediction to nor-
malize and combine the predicted probabilities from each

teacher. This then serves as a surrogate class label used to
train a student RNN model to classify the input sequences.
Altogether, TC is the first solution to the open problem of
SKA, which estimates for the first time the probability over
all target classes by rescaling outputs of each teacher based
on its trustworthiness.

Contributions. Our main contributions are as follows:
● We define the novel semi-supervised knowledge amal-

gamation (SKA) problem for sequence classification, which
is to train a multi-class student model to cover all classes
predicted by a set of disparate pre-trained sequence models.

● We propose the Teacher Coordinator (TC), the first so-
lution to the SKA problem. Our approach learns to estimate
the probability distribution over all target classes by amalga-
mating knowledge of pre-trained teachers. TC is the first to
estimate the trustworthiness of each teacher for KA.

● We find that TC significantly outperforms eight state-
of-the-art alternatives on four real datasets by an average of
15% in accuracy. Additionally, TC is effective even when as
little as 2% of the training data are annotated.

Related Work
The open problem of SKA for sequence classification is re-
lated to knowledge extraction from pre-trained models.

Ensemble Learning. Ensemble learning methods combine
the predicted outputs from multiple models. Classical meth-
ods use averaging or majority voting (Kittler et al. 1998;
Dietterich 2000); recent methods relying on deep learn-
ing include Drop Connection (Wan et al. 2013), Stochastic
Depth (Huang et al. 2016), and Swapout (Singh, Hoiem, and
Forsyth 2016). These methods assume every teacher is re-
sponsible for exactly the same set of classes, which is a spe-
cial case of our problem. Moreover, this approach requires
all methods to be run on each instance as part of inference
during classification, which could cause scalability issues.

Knowledge Distillation (KD). As originally proposed, KD
(Hinton, Vinyals, and Dean 2015) overcomes this scalability
problem by compressing a large teacher model into a smaller
student model while aiming to retain the accuracy of the
teacher. This is achieved by training the student to imitate
the teacher’s soft predictions (logits). More recent works ex-
tend this technique by imitating intermediate layers (Adri-
ana et al. 2015; Wang et al. 2018) or distilling knowledge
from multiple teachers (You et al. 2017; Fukuda et al. 2017;
Chen, Su, and Zhang 2019). However, these works continue
to assume the teacher and student have identical class sets.

Knowledge Amalgamation (KA). KA (Shen et al. 2019a)
advances beyond KD by combining teachers that special-
ize in different class sets. This is a more general form of
the KD problem. Most KA works strongly assume that all
teachers and students have identical network architectures
(Shen et al. 2019a; Ye et al. 2019; Shen et al. 2019b).
Most-related to our work, Luo et al. (2019) and Vongkulb-
hisal, Vinayavekhin, and Visentini-Scarzanella (2019) relax
this assumption and allow for multiple teachers with het-
erogeneous architectures and different specialties. Luo et al.
(2019) train a student to imitate the concatenated teachers’
soft targets while simultaneously imitating their final repre-

sentation layers, trained in a new shared space. Vongkulb-
hisal, Vinayavekhin, and Visentini-Scarzanella (2019) train
the student’s predictions over all classes by optimizing mul-
tiple cross entropy losses that match each teacher’s special-
ized class sets. As shown later in our experiments section, all
of these KA methods suffer when teachers are overconfident
in terms of the scales of their predicted probabilities. This
can lead to an inflated impact of an erroneous teacher while
training a student model. None of these methods incorporate
any labeled data during training, which we will show can be
a quite effective approach to mitigating such overconfidence.
Moreover, these works have been developed exclusively for
images and do not tackle the KA problem for sequences.

Problem Formulation
We address the problem of semi-supervised knowledge
amalgamation (SKA) for sequence classification. In this
problem, we denote X as a sequence, or instance, of length
m and xt is its value at timestep t. We are given a training
dataset D consisting of a tiny subset of labeled data Dl and
a proportionately large subset of unlabeled data Du. Each
instance in Dl has an associated yj ∈ Y where Y = {yj}cj=1.
Thus, Dl = {(X l, ylj)}nl

l=1 while Du = {Xu}nu

u=1, and D =
Dl ∪ Du. We denote all n training sequence instances as
X = {X l}nl

l=1 ∪ {Xu}nu

u=1 and n = nl + nu:

X =
⎛
⎜
⎝

x11 x12 ⋯ x1m
⋮ ⋮ ⋱ ⋮
xn1 xn2 ⋯ xnm

⎞
⎟
⎠

´¹¹¸¹¹¶
Sequence of length m

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
n instances

We also have access to a set of p powerful pre-trained se-
quence classifiers (teachers), T = {Tk}pk=1, each of which
specializes in classifying a set of classes Yk. We note that
Y = ⋃p

k=1Yk. The goal is to train a student model, which can
accurately predict the probability that instance X is associ-
ated with any class yj out of the c classes in Y . We describe
our method in terms of one instance to improve readability.

Proposed Method
We propose the Teacher Coordinator (TC), which tackles
SKA by utilizing the relationship between two conditional
probabilities: the probability a teacher Tk is an expert on
an instance’s true label, or P (yj ∈ Yk ∣X), and the proba-
bility an instance’s label is yj according to teacher Tk, or
P (yj ∣yj ∈ Yk,X). As shown in Figure 3, TC works in two
steps. First, we use a tiny amount of labeled data to train
a Teacher Trust Learner (TTL), which estimates the like-
lihood a given teacher is an expert for an instance. This in-
formation then informs the Knowledge Amalgamator, which
rescales the probability outputs from each teacher, each of
which predict over different class sets Yk, to be used as su-
pervision for training the student model. We model the TTL
and the student as RNNs with LSTM memory cells.

Recurrent Neural Network (RNN) Background
RNNs are the state-of-the-art solution to several sequence
classification problems (Hartvigsen et al. 2019, 2020).
RNNs model sequences by updating representation vectors
as new timesteps are observed. For sequence classification,

the final representation is used to predict the class label of
a sequence. Traditional RNNs suffer from vanishing gra-
dients when learning to represent long-term dependencies.
Thus, most RNN-based models use gating mechanisms such
as Long Short-Term Memory cells (LSTM) (Hochreiter and
Schmidhuber 1997). The LSTM works by computing a hid-
den state ht ∈ Rd at every step of a sequence, where d is
the dimension of the hidden state. At timestep t, given the
current input xt and the previous hidden state ht−1, the new
hidden state for the current timestep, ht, is computed as:

ft = σ(Wf ⋅ [ht−1, xt] + bf) (1)
it = σ(Wi ⋅ [ht−1, xt] + bi) (2)
c̃t = tanh(Wc ⋅ [ht−1, xt] + bc) (3)
ct = ft ⊙ ct−1 + it ⊙ c̃t (4)
ot = σ(Wo ⋅ [ht−1, xt] + bo) (5)
ht = ot ⊙ tanh(ct) (6)

where σ is the sigmoid function, tanh is the hyperbolic tan-
gent function, ⋅ is the dot product, and ⊙ is the hadamard
product. W ’s and b’s are learnable matrices and vectors of
parameters, respectively. For simplicity, we denote the col-
lection of all such parameters as θ. After an entire sequence
X has been observed and this process has been repeated m
times, the final hidden state is used as input to a classifier.
We denote this process as one function that outputs the final
hidden state: h = LSTMθ(X).

The Proposed Teacher Coordinator (TC)

The first step of TC is to train the Teacher Trust Learner
(TTL). The TTL estimates the probability a teacher Tk is an
expert on a given instance’s true label. The TTL is modeled
as an LSTM network trained on the small set of labeled data
Dl. Given a sequence X , the task is to classify which teach-
ers are experts on X’s true label yj . Multiple teachers may
be experts simultaneously because their respective sets of
predicted classes may overlap. Thus, the TTL’s task is nat-
urally multi-label: given an instance, predict one probability
per teacher. This is achieved using Equations 7 and 8:

ha = LSTMθa
(X) (7)

e = σ(Wa ⋅ ha + ba) (8)
where θa, Wa and ba are learnable parameters. σ is the sig-
moid function, which maps vector elements into the range
[0, 1], thereby predicting one probability per teacher. Thus,
the closer elements of e are to 1, the more likely the given in-
stance is associated to the corresponding teachers. This vec-
tor is normalized through a softmax function to generate our
target, a true distribution over all teachers:

P (yj ∈ Yk ∣X) = softmax(e). (9)

As shown in Figure 3, the TTL is trained separately in
Step 1, and used statically to train the student model during
Step 2. The training objective of the TTL is to iteratively
update θa, Wa, and ba, grouped into θTTL, by minimizing
binary cross entropy:

J(θTTL) = −
p

∑
k=1

(1Tk
log(ek) + (1 − 1Tk

)log(ek)) (10)

where 1Tk
is 1 if yj ∈ Yk and 0 otherwise.

Step 1: Training Teacher Trust Learner (TTL) Model

Ground-truth

Knowledge Amalgamator

Teacher 1

Teacher 2

Pre-trained Models StudentTTL Model
(from Step 1)

Gradient
No gradient
Loss
Neural network

(

Labeled ()
Training Sequence Data ()

Step 2: Training Student Model

)

Prob. on teachers

Prob. on T ’s classes

Prob. on T ’s classes

y y y

()

Prob. on all classes
y y y y y

Prob. on teachers
T T

TTL Model

Prob. on all classes 1 2 3

y y y3 4 5

1 2 3 4 5

rescale

rescale

Teacher 1 (T)
or

Teacher 2 (T)

1

21 2

T T 1 2

1

2

y y y y y1 2 3 4 5

LSTM(X)

LSTM(X)

Unlabeled ()

Figure 3: The architecture of our proposed Teacher Commu-
nicator. Training proceeds through both steps sequentially.

The second step of TC is the Knowledge Amalgama-
tor, which produces a probability an instance’s label is yj .
As shown below, this distribution over all classes in Y can
be estimated using the relationship between two conditional
probabilities: (i) the probability each teacher is an expert on
X’s true label as estimated by the TTL, and (ii) the proba-
bility X’s label is yj , given a teacher model.

Estimating the Class Probability. Given an input in-
stance X , the goal is to estimate P (yj ∣X), where yj ∈ Y .

Given that the TTL has estimated P (yj ∈ Yk ∣X), let
us consider the set of teacher models {Tk}pk=1, each of
which specializes on a corresponding set of classes Yk. Each
teacher thus generates a separate prediction

P (yj ∣yj ∈ Yk,X). (11)
The target P (yj ∣X) can be estimated directly:

P (yj ∣yj ∈ Yk,X) ∗ P (yj ∈ Yk ∣X)

= P (yj , yj ∈ Yk,X)
P (yj ∈ Yk,X) ∗ P (yj ∈ Yk,X)

P (X)

= P (yj , yj ∈ Yk,X)
P (X)

= P (yj , yj ∈ Yk ∣X)
= P (yj ∣X) (12)

Finally, the Student Network estimates Q(yj ∣X), the
probability ofX’s label being yj ∈ Y , by imitating P (yj ∣X),
which has been produced by the Knowledge Amalgamator.

We model the student as an LSTM network:
hS = LSTMθS

(X) (13)

Q(yj ∣X) = exp(WS ⋅ hS + bS)
∑j exp(WS ⋅ hS + bS)

(14)

where yj ∈ Y , and θS , WS and bS are trainable parameters.

The student network is trained on all training sequences
in X using P (yj ∣X) as a surrogate target. The goal is to it-
eratively update the collection of parameters: θS ,WS and bS
(collectively referred to as θSN) by minimizing the cross en-
tropy between its own predicted probability over all classes
and the amalgamated probability distribution P (yj ∣X):

J(θSN) = −
c

∑
j=1

P (yj ∣X)log(Q(yj ∣X)). (15)

Experiments
We evaluate our approach, TC, using three challenging set-
tings of the SKA problem on four datasets. We compare the
performance of TC to eight state-of-the-art alternatives.

Datasets
We focus our experiments on four well-known time series
classification datasets below.

● SyntheticControl (SYN) (Alcock, Manolopoulos et al.
1999). These data contain control chart patterns of a ma-
chine parameter recorded over time consisting of 600 in-
stances, each with 60 timesteps. The task is to classify six
different patterns: normal, cyclic, increasing trend, decreas-
ing trend, upward shift, and downward shift.

● MelbournePedestrian (PED) (Carter et al. 2020). This
dataset consists of pedestrian counts at 10 locations in Mel-
bourne, Australia throughout 2017 recorded over 3,633 in-
stances with 24 length for each. The target is to detect from
which location a given pedestrian’s activity pattern comes,
thereby supporting urban planning problems.

● Human Activity Recognition Using Smartphones (HAR)
(Anguita et al. 2013). The task is to detect which action a
person is performing, given their smartphone sensor data,
out of the 6 actions: running, walking, sitting, lying down,
going up stairs, and going down stairs. Each sample out of
10,299 instances has 561 timesteps.

● ElectricDevices (ELEC) (Lines and Bagnall 2014).
Seven devices were monitored from 251 households in the
UK in two-minute intervals over a month. The task is to
detect patterns in device usage and ultimately anomalous
behavior. This dataset contains 16,637 instances. Each of
which has 96 length.

Note that we assume that each dataset (D) used to train a
student model consists of a small subset of labeled data (Dl)
and a proportionately large subset of unlabeled data (Du).

Compared Methods
As the SKA problem is newly proposed in this work, state-
of-the-art approaches to KA are not designed directly for
this setting. We divide eight alternative methods into three
categories as follow.

Baselines: These methods assume access to no teachers.
● Original Teachers: Teachers are used independently. No

predicted probabilities are assigned to classes outside of a
teacher’s specialties.

● SupLSTM: An LSTM is trained from scratch on the la-
beled data. This is standard supervised learning, though with
few labeled instances.

● SelfTrain (Rosenberg, Hebert, and Schneiderman 2005):
A classic semi-supervised approach that iteratively learns
pseudo-labels for unlabeled data, adding high-confidence
predictions to the training set.

Unsupervised KA methods: These methods use all in-
stances in D and all teachers in T to train a student model.

● KD (Hinton, Vinyals, and Dean 2015): A student’s
soft targets (logits) are trained to imitate the average of all
teachers’ logits using Knowledge Distillation. For disjoint
classes, the logits are concatenated.

● CFL (Luo et al. 2019): The student is trained to imitate
each teachers’ logits and final hidden features. Final features
of the student and teachers are mapped to a common space
in which similarity is encouraged.

● UHC (Vongkulbhisal, Vinayavekhin, and Visentini-
Scarzanella 2019): The student’s output is split into subsets
corresponding to each teacher’s class set. Then, each subset
is trained to estimate its corresponding teacher’s output.

Supervised KA methods: These methods use only the
labeled instances in the small setDl to train a student model.

● SupKD: A student is trained only on the small set of
labeled data to imitate the teachers’ logits and also to predict
correctly such labels.

● SupUHC: UHC is extended by adding supervision from
the small amount of given labeled data. This is achieved by
adding a supervised objective to the original model.

Implementation Details
Each dataset in our study has pre-specified training and test-
ing subsets, defined in the literature. In our experiments, the
training file is used only for training teacher models, while
the original testing file is split to train and evaluate the stu-
dent network (70% of which for training, 10% for valida-
tion, and 20% for testing). All hyperparameters are tuned
using the validation set. Once hyperparameters are set, we
train the student model using both the training and validation
sets and record accuracy on the testing set. Each experiment
is replicated on three random seeds after which we report
the mean and standard deviation of accuracy over all repli-
cations. All teacher/student models are LSTMs. Our model
is implemented using PyTorch and optimized using Adam
(Kingma and Ba 2014). All code and datasets are available
at https://github.com/jida-thada/SKA.

Experimental Results
We investigate three key properties of the SKA task: the ef-
fects of using small labeled data, learning from disparate
teachers, and the impact of overconfident teachers.

SYN PED HAR ELEC
Ratio of labeled data Ratio of labeled data Ratio of labeled data Ratio of labeled data

Methods 2% 4% 6% 8% 2% 4% 6% 8% 2% 4% 6% 8% 2% 4% 6% 8%
Teacher 1 .66±.00 .66±.00 .66±.00 .66±.00 .55±.00 .55±.00 .55±.00 .55±.00 .51±.00 .51±.00 .51±.00 .51±.00 .47±.00 .47±.00 .47±.00 .47±.00
Teacher 2 .64±.00 .64±.00 .64±.00 .64±.00 .49±.00 .49±.00 .49±.00 .49±.00 .58±.00 .58±.00 .58±.00 .58±.00 .41±.00 .41±.00 .41±.00 .41±.00

SupLSTM .51±.11 .58±.10 .66±.12 .71±.06 .27±.05 .49±.03 .52±.06 .57±.06 .42±.07 .50±.12 .61±.03 .68±.07 .52±.06 .62±.05 .69±.04 .69±.01
SelfTrain .58±.06 .65±.04 .75±.04 .79±.05 .48±.03 .65±.02 .65±.02 .68±.06 .46±.06 .54±.06 .64±.05 .65±.10 .56±.03 .62±.01 .70±.03 .69±.02

KD .87±.01 .87±.01 .87±.01 .87±.01 .61±.03 .61±.03 .61±.03 .61±.03 .60±.01 .60±.01 .60±.01 .60±.01 .65±.01 .65±.01 .65±.01 .65±.01
CFL .63±.01 .63±.01 .63±.01 .63±.01 .48±.02 .48±.02 .48±.02 .48±.02 .30±.00 .30±.00 .30±.00 .30±.00 .58±.02 .58±.02 .58±.02 .58±.02
UHC .86±.01 .86±.01 .86±.01 .86±.01 .60±.03 .60±.03 .60±.03 .60±.03 .66±.10 .66±.10 .66±.10 .66±.10 .62±.01 .62±.01 .62±.01 .62±.01

SupKD .55±.04 .61±.14 .67±.08 .69±.01 .51±.07 .61±.02 .64±.05 .67±.01 .48±.09 .58±.06 .64±.04 .64±.03 .45±.04 .64±.03 .69±.04 .68±.01
SupUHC .47±.07 .58±.12 .66±.13 .70±.04 .46±.04 .58±.02 .65±.03 .64±.01 .41±.06 .46±.05 .49±.05 .65±.12 .52±.05 .61±.04 .62±.05 .63±.02

TC (Ours) .90±.02 .91±.04 .92±.02 .93±.01 .69±.01 .70±.02 .75±.04 .76±.03 .75±.01 .77±.02 .78±.01 .78±.02 .66±.01 .68±.03 .71±.02 .71±.02

Table 1: Compared performance (Accuracy±SD) on varied tiny rates of available labeled data in the training data.

Overlapping class sets Exclusive class sets
Methods SYN PED HAR SYN PED HAR
Teacher 1 .66±.00 .55±.00 .51±.00 .50±.00 .43±.00 .38±.00
Teacher 2 .64±.00 .49±.00 .58±.00 .47±.00 .44±.00 .45±.00
SupLSTM .51±.11 .27±.05 .42±.07 .51±.11 .27±.05 .42±.07
SelfTrain .58±.06 .48±.03 .46±.06 .58±.06 .48±.03 .46±.06
KD .87±.01 .61±.03 .60±.01 .54±.04 .44±.03 .55±.02
CFL .63±.01 .48±.02 .30±.00 .50±.03 .30±.05 .50±.08
UHC .86±.01 .60±.03 .66±.10 .61±.02 .43±.02 .55±.01
SupKD .55±.04 .51±.07 .48±.09 .48±.12 .48±.02 .50±.02
SupUHC .47±.07 .46±.04 .41±.06 .53±.02 .43±.09 .22±.11
TC (Ours) .90±.02 .69±.01 .75±.01 .77±.07 .64±.04 .84±.04

Table 2: Accuracy±SD when combining disparate teachers.
Left: teachers are partially related, sharing 2 classes. Right:
teachers are disjoint, sharing no classes.

0% 25% 50% 75% 100%
% Overlapped classes between teachers
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Teacher1
Teacher2
SupLSTM
SelfTrain
KD
CFL
UHC
SupKD
SupUHC
TC (Ours)

Figure 4: The shared classes in teachers are varied from 0%
(fully disparate) to 100% (homogeneous).

Incorporation of limited labeled data. Effective use of
very limited available annotations is essential to solving the
SKA problem. We thus compare each method’s performance
using label proportions ranging from 2%-8% of the training
data. In this setting, we use two teacher models, each with
an equal number of classes, that have partially overlapped
classes (one or two classes in common depending on the
number of classes in each dataset).

The results of these experiments are in Table 1. By incor-
porating small labeled data effectively, even if such data are
available only 2% of the training set, we observe that TC
improves the classification accuracy significantly by an av-
erage of 6% over the second-best methods across the board.
We notice that unsupervised KA methods (KD, CFL, and
UHC) outperform baselines (SupLSTM and SelfTrain) and

supervised KA methods (SupKD and SupUHC) when we
have too few labels (2% and 4% annotated), as expected.
This is because the baseline and supervised KA methods de-
pend on sufficient labeling, though the impact is highly task-
dependent. Once enough labels become available (6% and
8%), such baseline and supervised KA methods do begin to
outperform unsupervised KA methods. This clearly shows
the need for carefully incorporating labels into the KA prob-
lem, no matter how few are available. As shown in bold,
our TC significantly outperforms all other compared meth-
ods on all label proportions for all datasets. As expected,
in line with the observed trend of the supervised methods,
as the proportion of labeled data increases, so does the per-
formance of TC. This is because TC combines the benefits
when labels are available with the strengths of the unsuper-
vised KA methods when there are only few labels.

Amalgamating disparate teachers. Since teacher mod-
els are typically trained independently on their own tasks,
their outputs are often unrelated to one another and are thus
challenging to combine. To understand how this impacts the
performance of all compared methods, we vary the propor-
tion of overlapping classes among the teachers. Thereby
we assume that the smaller the overlap between predicted
classes, the more disparate are the teachers because they
share less information. We conduct this experiment using
two scenarios: (1) Overlapping class sets arise when the
class sets of the teachers are at least partially shared. Here,
both teachers share exactly two classes. (2) Exclusive class
sets occur in the extreme case that the teachers’ class sets
are entirely disjoint. The latter is challenging because these
teachers have no common class to anchor the scale of the
predicted probabilities while supervising the student.

Table 2 shows all results on these settings. All meth-
ods have access to annotations for only 2% of the training
data. We observe that all methods suffer when the teachers’
class sets are mutually exclusive as the student models fail
to fuse different knowledge from such disparate teachers.
However, TC successfully overcomes this issue by rescal-
ing each probability output of their disparate class sets to
form their joint probability over all classes, resulting in 14%
higher accuracy than the other methods on average.

Moreover, we extend this study to a wide variety of class-
overlap ranges (0% to 100%) on the SYN dataset, the re-

Methods SYN PED HAR ELEC

Teacher 1 .33±.00 .30±.00 .28±.00 .32±.00
Teacher 2 .64±.00 .64±.00 .58±.00 .44±.00
SupLSTM .51±.11 .27±.05 .42±.07 .52±.06
SelfTrain .58±.06 .48±.03 .46±.06 .56±.03
KD .66±.01 .66±.02 .57±.02 .37±.00
CFL .64±.01 .63±.01 .53±.04 .36±.01
UHC .66±.03 .64±.02 .49±.10 .36±.03
SupKD .49±.03 .55±.04 .31±.13 .34±.06
SupUHC .51±.05 .46±.06 .35±.07 .39±.05
TC (Ours) .85±.07 .70±.08 .75±.01 .64±.01

Table 3: Learning from overconfident teachers. Teacher 2
has roughly twice as many classes as Teacher 1 for all tasks.

1x 1.5x 2x
Ratio of #classes in Teacher 2 to Teacher 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Teacher1
Teacher2
SupLSTM
SelfTrain
KD
CFL
UHC
SupKD
SupUHC
TC (Ours)

Figure 5: Increasing the proportion of all classes on which
Teacher 2 is an expert, observed on the SYN dataset.

sults of which are shown in Figure 4. As expected, all mod-
els perform their worst when teachers have 0% overlap and
improve gradually as teachers share more classes. Once
the teachers’ classes are 100% overlapping, each teacher
is an expert on all classes and so no KA methods can sur-
pass their performance. TC surpasses the other methods in
all other cases, showing that rescaling the predicted scores
from each teacher solves the disparate teacher challenge.
Our publicly-available repository contains similar trends ob-
served on the other datasets.

Overcoming overconfident teachers. Next, we study the
effects of overconfident teachers, which make confident pre-
dictions, even when instances are actually from classes on
which they are not experts. The sheer number of classes for
which a teacher is an expert is a key contributor in the scale
of its predictions. A teacher with more classes usually gen-
erates a large range of its logits to clearly distinguish the
predictions over many classes. Such large logits can produce
overconfident predictions for unseen instances for which the
teacher is not an expert. This can therefore dominate the
predictions of other teachers. We investigate this condition
across datasets when the number of specialized classes in
Teacher 2 is roughly twice that of Teacher 1 (the actual num-
ber ranges from 2 to 2.5, depending on the number of classes
in each dataset). We once again assume only 2% labeling.

As shown in Table 3, we first notice that the accuracy of
Teacher 2 is roughly twice as high as those of Teacher 1.
Further, due to its overconfidence, the compared KA meth-
ods cannot improve beyond the performance of Teacher 2. In
contrast, our TC is still able to combine the relevant knowl-
edge from each teacher, boosting accuracy 13% higher.

Methods 3 teachers 4 teachers 5 teachers
Teacher 1 .35±.00 .30±.00 .19±.00
Teacher 2 .37±.00 .28±.00 .20±.00
Teacher 3 .36±.00 .26±.00 .18±.00
Teacher 4 NA .26±.00 .20±.00
Teacher 5 NA NA .20±.00
SupLSTM .27±.05 .27±.05 .27±.05
SelfTrain .48±.03 .48±.03 .48±.03
KD .30±.01 .30±.01 .21±.02
CFL .27±.05 .21±.01 .21±.01
UHC .32±.02 .42±.09 .22±.04
SupKD .35±.06 .39±.04 .44±.01
SupUHC .37±.10 .34±.04 .33±.10
TC (Ours) .71±.04 .67±.05 .62±.04

Table 4: Learning from many teachers on the PED dataset.

To study this effect more deeply, in Figure 5 we illus-
trate the effect of different levels of overconfidence using the
SYN dataset. The number of classes for Teacher 1 is fixed
in all experiments and varied for Teacher 2, spanning from
the same number as Teacher 1 (three classes per teacher)
to twice as many classes (six classes for Teacher 2, three
classes still for Teacher 1). Our results indicate that as the
number of classes for Teacher 2 compared to Teacher 1 in-
creases, all KA methods are controlled more by the pre-
dictions from Teacher 2 and thus the improvement beyond
Teacher 2 decreases. However, TC achieves the largest im-
provements in all cases compared to other methods as it suc-
ceeds in informing accurate predictions from the correct and
trustworthy teachers to the student model. At 2x, Teacher 2
specializes in all classes in the student’s task, leading to a
plateau in performance. Thus the students cannot improve
beyond Teacher 2’s accuracy. Similar results on the other
datasets are shown in our publicly-available repository.

Amalgamating many teachers. Finally, we find that TC
dramatically outperforms state-of-the-art KA methods when
we use many teachers. To demonstrate this, we compare
methods trained to amalagamate three, four, and five teacher
models using the PED dataset. The PED dataset has 10
classes, allowing us to train more teachers specialized on
different class sets. Our results, shown in Table 4, indicate
that TC dramatically outperforms the other methods with
an average improvement of 26%, even with as few as three
teachers and especially when there are five teachers.

Conclusion
In this work, we introduce the new problem of semi-
supervised knowledge amalgamation for sequence classifi-
cation. We design the first solution, the Teacher Coordina-
tor (TC), which tackles knowledge amalgamation learning
from multiple pre-trained teachers on sequence data. TC
overcomes the issue of not having enough annotations for
learning multi-class tasks by training a student model using
the knowledge of teachers with different specialties while
requiring only a tiny set of annotations. Our approach effec-
tively rescales the predicted output of all disparate teachers
by estimating how trustworthy each teacher is for a given
instance. Our experiments show that TC significantly out-
performs other state-of-the-art methods with an average im-
provement of 15% in accuracy across a wide variety of tasks.

Acknowledgements
This work is supported by NSF grants IIS-2007932 and IIS-
1718310 and the National Institute of Food and Agricul-
ture under AFRI grant 1023720. We also thank the GAANN
Fellowships in Computer and Information Sciences for AI
from the U.S. Dept. of Education, P200A180088. Jidapa es-
pecially acknowledges the Royal Thai Government for her
support.

References
Adriana, R.; Nicolas, B.; Ebrahimi, K. S.; Antoine, C.;
Carlo, G.; and Yoshua, B. 2015. Fitnets: Hints for thin deep
nets. In Proceedings of ICLR.
Alcock, R. J.; Manolopoulos, Y.; et al. 1999. Time-series
similarity queries employing a feature-based approach. In
Hellenic conference on informatics, 27–29.
Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; and Reyes-Ortiz,
J. L. 2013. A public domain dataset for human activity
recognition using smartphones. In Proceedings of ESANN,
volume 3, 3.
Carter, E.; Adam, P.; Tsakis, D.; Shaw, S.; Watson, R.; and
Ryan, P. 2020. Enhancing pedestrian mobility in Smart
Cities using Big Data. Journal of Management Analytics
1–16.
Chen, X.; Su, J.; and Zhang, J. 2019. A Two-Teacher Frame-
work for Knowledge Distillation. In Proceedings of ISNN,
58–66.
Dietterich, T. G. 2000. Ensemble methods in machine learn-
ing. In International workshop on multiple classifier sys-
tems, 1–15.
Fawaz, H. I.; Forestier, G.; Weber, J.; Idoumghar, L.; and
Muller, P.-A. 2018. Transfer learning for time series classi-
fication. In Proceedings of Big Data), 1367–1376.
Fukuda, T.; Suzuki, M.; Kurata, G.; Thomas, S.; Cui, J.; and
Ramabhadran, B. 2017. Efficient Knowledge Distillation
from an Ensemble of Teachers. In Proceedings of Inter-
speech, 3697–3701.
Graves, A.; Jaitly, N.; and Mohamed, A.-r. 2013. Hybrid
speech recognition with deep bidirectional LSTM. In Pro-
ceedings of IEEE workshop on automatic speech recognition
and understanding, 273–278.
Hartvigsen, T.; Sen, C.; Kong, X.; and Rundensteiner, E.
2019. Adaptive-Halting Policy Network for Early Classi-
fication. In Proceedings of ACM SIGKDD, 101–110.
Hartvigsen, T.; Sen, C.; Kong, X.; and Rundensteiner, E.
2020. Recurrent Halting Chain for Early Multi-label Classi-
fication. In Proceedings of ACM SIGKDD, 1382–1392.
Harutyunyan, H.; Khachatrian, H.; Kale, D. C.; Ver Steeg,
G.; and Galstyan, A. 2019. Multitask learning and bench-
marking with clinical time series data. Scientific data 6(1):
1–18.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 .

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.
Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; and Weinberger,
K. Q. 2016. Deep networks with stochastic depth. In Pro-
ceedings of ECCV, 646–661.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. In Proceedings of ICLR.
Kittler, J.; Hatef, M.; Duin, R. P.; and Matas, J. 1998. On
combining classifiers. IEEE TPAMI 20(3): 226–239.
Lines, J.; and Bagnall, A. 2014. Ensembles of elastic dis-
tance measures for time series classification. In Proceedings
of SDM, 524–532.
Luo, S.; Wang, X.; Fang, G.; Hu, Y.; Tao, D.; and Song, M.
2019. Knowledge amalgamation from heterogeneous net-
works by common feature learning. In Proceedings of IJ-
CAI, 3087–3093.
Malhotra, P.; TV, V.; Vig, L.; Agarwal, P.; and Shroff, G.
2017. TimeNet: Pre-trained deep recurrent neural network
for time series classification. In Proceedings of ESANN.
Masum, A. K. M.; Bahadur, E. H.; and Ruhi, F. A. 2020.
Scrutiny of Mental Depression through Smartphone Sensors
Using Machine Learning Approaches. International Journal
of Innovative Computing 10(1).
Razavian, N.; Marcus, J.; and Sontag, D. 2016. Multi-task
prediction of disease onsets from longitudinal laboratory
tests. In Proceedings of MLHC, 73–100.
Rosenberg, C.; Hebert, M.; and Schneiderman, H. 2005.
Semi-Supervised Self-Training of Object Detection Models.
In Proceedings of IEEE WACV/MOTION, 29–36.
Shen, C.; Wang, X.; Song, J.; Sun, L.; and Song, M. 2019a.
Amalgamating knowledge towards comprehensive classifi-
cation. In Proceedings of AAAI, 3068–3075.
Shen, C.; Xue, M.; Wang, X.; Song, J.; Sun, L.; and Song,
M. 2019b. Customizing student networks from heteroge-
neous teachers via adaptive knowledge amalgamation. In
Proceedings of ICCV, 3504–3513.
Singh, S.; Hoiem, D.; and Forsyth, D. 2016. Swapout:
Learning an ensemble of deep architectures. In Proceedings
of NeurIPS, 28–36.
Vongkulbhisal, J.; Vinayavekhin, P.; and Visentini-
Scarzanella, M. 2019. Unifying heterogeneous classifiers
with distillation. In Proceedings of CVPR, 3175–3184.
Wan, L.; Zeiler, M.; Zhang, S.; Le Cun, Y.; and Fergus, R.
2013. Regularization of neural networks using dropconnect.
In Proceedings of ICML, 1058–1066.
Wang, H.; Zhao, H.; Li, X.; and Tan, X. 2018. Progressive
Blockwise Knowledge Distillation for Neural Network Ac-
celeration. In Proceedings of IJCAI, 2769–2775.
Yang, X.; Chen, Y.; Yu, H.; Zhang, Y.; Lu, W.; and Sun, R.
2020. Instance-Wise Dynamic Sensor Selection for Human
Activity Recognition. In Proceedings of AAAI, 1104–1111.
Ye, J.; Wang, X.; Ji, Y.; Ou, K.; and Song, M. 2019. Amalga-
mating filtered knowledge: learning task-customized student

from multi-task teachers. In Proceedings of IJCAI, 4128–
4134.
You, S.; Xu, C.; Xu, C.; and Tao, D. 2017. Learning
from multiple teacher networks. In Proceedings of ACM
SIGKDD, 1285–1294.

