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Abstract—Reserved instances offered by cloud providers make
it possible to reserve resources and computing capacity for a
specific period of time. One should pay for all the hours of that
time interval; in exchange, the hourly rate is significantly lower
than on-demand instances. Reserved Instances can significantly
reduce the monetary cost of resources needed to process big
data applications in cloud. However, purchases of these instances
are non-refundable, and hence, one should be able to estimate
the required resources prior to purchase to avoid over-payment.
It becomes important especially when the results obtained by
big data job has monetary value, such as business intelligence
applications. But, estimating the resource demand of big data
processing jobs is hard because of numerous factors that affect
them such as data locality, data skew, stragglers, internal settings
of big data processing framework, interference among instances,
instances availability, etc. To maximize the profit of processing
such big data jobs in cloud considering fluctuating nature of
their resource demand, as well as reserved instances limitations,
we propose Reserved Instances Stochastic Allocation (RISA)
approach. Using historical traces of resource demand of big data
jobs submitted by user, RISA leverages stochastic optimization
to determine the amount of resources needed to be reserved for
that user to maximize the profit. Our evaluation using real-world
traces shows that RISA can increase the net profit by up to 10x,
compared to previous approaches. RISA can also find solutions
as close as 2% to the best possible solution.

Index Terms—Cloud Computing, Big Data Processing, Re-
served Instances, Stochastic Optimization, Profit MaximizationI. INTRODUCTION

NOWADAYS, executing big data applications in cloud is
easier than ever. With the dedicated services offered by

cloud providers for big data processing such as Amazon EMR
[1], customers can deploy their applications on pre-configured
clusters as fast as possible. Moreover, the Reserved Instances
(RIs) offered by cloud provide discounted prices compared to
on-demand instances [2], and hence, can potentially reduce the
monetary cost of big data applications, specifically the periodic
ones [3], [4].

A Reserved Instance is a reservation of computing resources
of cloud for 1-year term or 3-year term. While a user should
pay for all of the hours of term, the hourly rate is less
than conventional on-demand instances and offers up to 75%
discount. The RIs can make the execution of big data jobs
cheaper, provided that the challenges that arise from nature
of RIs and big data are addressed in advance. One of the
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challenges of using RIs is that they are non-refundable, and
hence, the customer cannot return them after purchase. While
for some types of RIs such as standard reserved instances the
customers can resell them in RIs Market [5], most of RIs
including Scheduled Reserved Instances have not this feature.
Considering this fact, along with the long term contracts of
purchasing RIs (minimum one year), it is crucial to choose
the number of instances carefully to avoid extra costs due to
inaccurate estimation of resource demand.

In addition to aforementioned challenge of RIs, several
inherent features of big data processing applications such
as data locality [6], [7], data skew [8]–[10], stragglers [11],
[12], and internal settings of big data processing frameworks
[13], [14] cause significant fluctuation in the performance, and
consequently, resource demand of jobs. The previous works
that study the real world traces of big data jobs [15], [16],
also report the fluctuation in the resource demand. Hence, it
becomes even harder to determine the exact number of VM
instances needed to finish the application before a specific
deadline or obtain a desired throughput.

Previous approaches that allocate the resources to a job (and
not a user) either consider the average resource demand [17]–
[19] of the job or conservatively the upper bound [20]–[22].
Since none of these approaches take into account the resource
demand variation of jobs of a user, they are unable to fully
leverage the discounted prices of RIs to maximize the profit.
Several approaches [23]–[26] that consider the RIs, focus on
outdated light, medium, and heavy RIs that are not offered
by cloud providers anymore. Hence, these approaches are not
applicable to current clouds. Another disadvantage of some of
the previous works such as [25], [27] is that they need resource
demand of jobs in an hourly granularity, which is very hard
to obtain accurately, if not possible.

To improve the profit of processing big data applications on
RIs, it is essential to tackle the aforementioned challenges, i.e.,
non-refundable long term contracts and fluctuating resource
demand of big data jobs. In this paper we propose RISA
(Reserved Instances Stochastic Allocation) approach which
uses stochastic optimization to find the best number of RIs
to be rented to maximize the profit of processing big data
jobs over the course of time. RISA derives the distribution of
resource demand of jobs submitted by user through resource
demand histories. Then, it employs the News Vendor Problem,
a well-known stochastic optimization problem, to allocate RIs
to users. Comparing RISA against other methods indicate that
it can improve the net profit by up to 10x compared to a
conservative approach, and achieve results as close as 2% to
the optimal result.



The key contributions we make in this paper is as follows:
• To the best of our knowledge, RISA is the first work

that exploits stochastic optimization in the form of News
Vendor Problem for allocating RIs to maximize the profit.

• RISA exploits historical traces of resource usage of jobs
to extract the probability distribution of their resource
demand, instead of employing point estimates (e.g., mean
of historical traces) when allocating resources.

• RISA considers non-refundable long term contracts of
RIs and fluctuating resource demand of big data jobs
when allocating the resources and tries to maximize the
net profit of users when employing RIs.

• We exploit real-world Hadoop traces to motivate RISA.
Moreover, we employ the same traces, as well as syn-
thetic ones, to evaluate the effectiveness of RISA under
different situations such as various probability distribu-
tion for resource demand.

The rest of the paper is organized as follows. In section II
we demonstrate the resource demand variation of big data jobs
and introduce the reserved instances and news vendor problem,
which are necessary background information to follow the
paper. In section III we formulate the problem and present
RISA to tackle it using stochastic optimization. In section IV
we evaluate the performance of RISA. We discuss the related
work in sectoin V and in section VI we conclude this paper
and provide directions for future work.

II. MOTIVATION AND BACKGROUND

A. Resource Demand Variation
To show the significant fluctuation of resource demand of

big data jobs submitted by the same user, we employ the Open-
Cloud Hadoop cluster trace [28]. This trace consists of logs of
MapReduce jobs submitted by individuals at CMU. While the
username of jobs are anonymized, it is still possible to identify
the jobs submitted by same user. There is no information in
the trace regarding the number of slots (resource allocation
unit in Hadoop v1) or nodes allocated to each job. Hence,
we estimate the resource demand of each job using number
of its tasks. Each task needs one slot to process, and so we
can consider the number of slots of each job equivalent to the
number of its tasks.

Depicting the resource demand of jobs of 40 users in Fig.
1 reveals a significant variation. For each user, We see a wide
gap between minimum and maximum resource demand of
its jobs; note that the horizontal lines of each box in Fig. 1
show the 25th, 50th, and 75th percentile of dots (i.e., resource
demand of jobs). The average resource demand variation of
jobs for the users depicted in Fig. 1 is around 156% and the
maximum is 1292%. We use (1) for calculating the variation.
When deciding to employ the RIs, a cloud user should consider
this significant variation to maximize the profit.

variation =
σ

µ
∗ 100 (1)

B. Reserved Instances

In response to diversity of resource demand of cloud users,
cloud providers offer various types of instances such as on-
demand [29], spot [30], and reserved instances [2]. Reserved
Instances (RI) can help save money while maintaining flexi-
bility. They also provide a capacity reservation under specific
conditions. Amazon EC2 [31] offers RIs in three categories:
1) Standard RIs: offer up to 75% discount compared to on-
demand instances and are suitable for steady-state usage. 2)
Convertible RIs: similar to standard RIs, but with less discount
(up to 54%) and more flexibility. 3) Scheduled RIs: suitable
for periodic jobs that are launched at a specific time such as
calculating value at risk of a bank every weekday afternoon.
They provide up to 10% discount.

The discounted price of RIs can incentivize their employ-
ment by cloud customers. However, the customers should be
aware of long term contracts of purchasing RIs (minimum
one year). Moreover, the RIs are non-refundable and the
customers should pay for the whole duration of contract.
The fluctuating resource demand of jobs (as in Fig. 1) along
with aforementioned limitations of RIs, make it challenging
to choose the best number of RIs for a specific cloud user.

C. News Vendor Problem

The News Vendor Problem (NVP) is a well-known problem
in stochastic optimization. The problem describes a news
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Fig. 1. Resource demand variation of MapReduce jobs submitted to OpenCloud Hadoop cluster by different users



vendor that every morning buys x newspapers, at a price of c
per paper, from publisher. The maximum number of papers
that vendor can buy is limited to u that shows either the
purchase power of vendor or a limit set by publisher. The
vendor tries to sell as many newspaper as possible at the price
q. At the end of the day, the vendor can return the unsold
papers to publisher at the return price r, where r < c. It is
assumed that vendor cannot return to publisher during the day
and buy more newspaper because the other vendors would
have taken them.

In this problem, the goal is to determine the number of
newspapers that the vendor should buy every day to maximize
the profit over the course of time. Obviously, the newspaper
demand varies from day to day and it is described by random
variable ξ. Defining the y as the number of newspaper sold, w
as the number of newspapers returned, and Eξ as the expected
value of ξ, the vendor’s profit can be formulated as follow:

max Q(x)− cx, (2)
0 ≤ x ≤ u

where

Q(x) = EξQ(x, ξ) (3)

and

Q(x, ξ) = max qy(ξ) + rw(ξ) (4)
s.t. y(ξ) ≤ ξ,

y(ξ) + w(ξ) ≤ x,

y(ξ), w(ξ) ≥ 0

in the above equations, Q(x) represents the expected profit
on return and sale, while Q(x, ξ) indicates the same profit but
when the demand for newspaper is at level ξ.

III. PROPOSED APPROACH

A. Problem Statement and Formulation

For a given user, we have a probability distribution for
resource demand of jobs submitted by that user (via the job
history of each user) in the form of number of instances. We
also know the cost of each instance per year (considering
1-year term contracts) and the gross profit can be obtained
from each instance. Now, we want to determine the number
of RIs that we should employ to maximize the net profit of
user over the course of time. Note that we cannot change the
number of RIs after we made the decision, because of the non-
refundable nature of RIs, and we should pay for all of them.
If the resource demand of a job is more than the number of
determined RIs, then the extra demand should be covered by
on-demand instances to make sure that every job is received
its required resources. Hence, considering the higher price of
on-demand instances compared to RIs, when determining the
number of RIs, is necessary.

In other words, the reserved instances should be employed
for coarse-grain granularity, e.g., yearly basis, to help covering

TABLE I
NOTATION USED IN THE PAPER

Parameter Definition

NJ Number of Jobs of User
IP Instance Profit (per year)
ICR Monetary Cost of One Reserved Instance (per year)
ICO Monetary Cost of One On-Demand Instance (per year)
AIC Average Cost of Instance (On-Demand and Reserved)
TRI Total Number of Instances to be Reserved
TOI Total Number of On-Demand Instances
IP/AIC Ratio of Instance Profit to Average Cost of Instance
IDJi Number of Instances Demanded by Job i
RDPD Probability Distribution of Resource Demand of Jobs
RVD A Random Variable that Follows RDPD
TGP Total Gross Profit
TIC Total Monetary Cost of Instance
TNP Total Net Profit

a large portion of computation with lower cost. In this case,
considering the variation of job demand within a year can help
to choose the number of RIs more wisely. On the other hand,
The on-demand instances can address the fluctuation of the
resource demand of jobs in finer granularity, e.g., on a hourly
or daily basis.

In the NVP, the goal is to maximize the profit over the
course of time. Hence, when the number of newspapers that
is needed to be purchased is determined, it is supposed that the
news vendor does not change the number of newspapers from
day to day, but sticks to the predetermined one to maximize the
profit in long term. It is similar to reserving the RIs for a long
period of time (e.g., one year). However, there is a difference
between NVP and our problem in this paper. In NVP once
the vendor purchased the newspapers, he/she cannot return to
whole seller to buy more if needed. But in our problem it is
possible to cover the extra demand of job, which is beyond
the number of RIs, by on-demand instances.

Before presenting the problem formulation, we describe all
the parameters used in the rest of the paper in Table I.

The objective function of our problem is to maximize the
total net profit for the user by deciding how many RIs to buy
for the year ahead:

Maximize TNP (5)

For obtaining the net profit, we need to have the gross profit
and cost of VMs. Hence, we have:

TNP = TGP − TIC (6)

We can calculate the total cost of VMs by multiplying the
cost of each instance per year and the number of RIs we decide
to employ plus the price of on-demand instances required to
cover the requests with resource demand beyond the available
RIs .



TIC = TRI × ICR+

NJ∑
i=1

max(IDJi − TRI, 0)× (
ICO

NJ
) (7)

In our work, we assume that user does not execute several
jobs at the same time, but executes all of them sequentially.
In other words, we consider non-overlapping jobs. Hence, we
have considered the resource demand of one job (IDJi) in
(7). However, for the cases where the user intends to execute
several jobs at the same time, for example M jobs, the sum of
the resource demand of those M jobs (

∑M
i=1 IDJi) should be

considered in (7) instead of a single job. Otherwise, too many
jobs would share one instance.

When we employ a reserved instance, we should pay
the total cost for one year (ICR). However, for on-demand
instances, we should pay only for the fraction of time that
we employ the instance, i.e., the runtime of the job that is
using the instance. Since we do not have the runtime of the
jobs in advance, we divide the ICO by NJ (ICO/NJ) to find
the average cost of on-demand instance per job, instead of
considering the cost per year (ICO).

Since all the required instances of a job are either cov-
ered solely by RIs or a combination of RIs and on-demand
instances, We can obtain the total gross profit by simply
multiplying the demand of each job and the expected profit
of each demand (IP).

TGP =

NJ∑
i=1

IDJi × IP (8)

B. Reserved Instances Stochastic Optimization

In this section, we discuss our RIs allocation approach to
maximize the profit of big data jobs. Fig. 2 presents the overall
flow of the RISA. The problem that RISA wants to address is
choosing the number of rented RIs to maximize the profit
over the course of time. Parts with colored backgrounds are
the contributions of RISA.

Previous works that have studied the reserved instances, can
be categorized into two groups: 1) The ones that focus on find-
ing the proper number of reserved instances [23], [32] and 2)
The ones that try to procure the right instance type, in addition
to the number of instances [25], [27]. RISA, similar to the first
category, focuses on finding the right number of instances to
maximize the profit. So, it is more concerned with cost and
profit of instances, rather than their configuration. We suppose
that the cloud user already knows the best configuration for
its jobs, based on historical information, and only needs to
reserve the right number of instances. The user can choose
from different configuration offered by cloud provider, similar
to the ones listed in Table II, that fits its jobs resource demand
better than others. It is similar to the ”Immidiate Execution”
model introduced by Cura [20].

According to Cura [20], there are three operational models
for cloud: immediate execution, delayed start, and cloud
managed (please see Related Work section for more details).
In this paper, similar to [23], we consider the first model, i.e.,
immediate execution. Our goal is to satisfy all the required

number of instances of a job either by RIs or on-demand in-
stances, while maximizing the profit. In this model, immediate
execution, user specifies the number of required instances of a
job, type of instances, paying the monetary cost, configuration
of jobs, SLO, etc.

In our approach, we assume that the expected revenue or
profit per RI (IP) is known in advance via analyzing the history
of user. The cost of RI and its corresponding on-demand
instance (instance with the same configuration as RI but with
on-demand price) is also known through cloud provider. Using
the history of jobs submitted by the user, RISA fits a probability
distribution (e.g., normal, uniform, lognormal) to resource
demand (IDJi) of jobs to find their demand distribution (Jobs
Demand Distribution in Fig. 2). It is one of the advantages
of RISA over previous approaches, which use simple point
estimates when allocating the resources such as [19], [20], [33]
or the ones that only consider the recent history of jobs demand
in their model such as RIPAM [23]. Having the probability
distribution of resource demand, the cost of instances and
expected revenue, RISA employs the NVP to solve the problem
of choosing the number of RIs to be rented. By employing the
NVP, RISA is able to find a balance between the gross profit
that user can obtain and the monetary cost of RIs that should
be paid. Since returning the idle instances is impossible due
to non-refundable nature of RIs, the value of r (return price
in NVP) is zero in our problem.

Having r = 0, we have the expected profit of reserved RIs
as follow:

E[TNP ] = IDJi × IP−

(TRI × ICR+ E[max(RVD − TRI, 0)]× (
ICO

NJ
)) (9)

Eq. (9) is an extension of the newsvendor problem, known
as inventory optimization. The objective is to minimize the
cost of expected shortage quantity (term E[max(RVD-TRI,0)]
in Eq. (9)) that leads to revenue lost, and consequently,
maximizing the profit. In our problem, the expected shortage
quantity shows the cost of on-demand instances that should be
employed due to lack of RIs, which decreases the net profit.
This problem, can be solved using the critical fractile formula
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TABLE II
INSTANCE CONFIGURATIONS USED IN EXPERIMENTS

Instance Type vCPU Mem (GB)
All Upfront Price - ICR

($/Year)
On-Demand Price - ICO

($/Year)
Expected Revenue - IP ($)

Config 1 r5.2xlarge 8 32 2596 4415 5192
Config 2 m5.2xlarge 8 32 2006 3363 5015
Config 3 m4.2xlarge 8 32 2026 3504 6078
Config 4 c5.2xlarge 8 16 1764 2978 6174
Config 5 c4.2xlarge 8 15 2078 3486 8312
Config 6 h1.2xlarge 8 32 2601 4099 11704
Config 7 i3.2xlarge 8 61 3482 5466 17410
Config 8 d2.2xlarge 8 61 5904 12088 32472

the same as standard newsvendor problem. The only difference
is that in newsvendor problem we have a maximization prob-
lem (maximizing net profit), but here we have a minimization
problem (minimizing the cost of shortage quantity). However,
the optimal q (number of newspapers or number of RIs in our
work) would be the same for both problems [34], [35]. To
solve (9) and find the optimal value of TRI to maximize the
profit, RISA employs the critical fractile formula [36]:

TRI = F−1(
IP −AIC

IP
) (10)

F−1 stands for inverse cumulative distribution function of
RDPD. The critical fractile (ratio in (10)) tries to balance the
cost of over-provisioning (cost of idle instances) and under-
provisioning (losing the profit of satisfying all demands).
Note that the original form of ratio in (10) is IP−AIC

IP−r , but
as mentioned earlier we have r = 0. In (10), AIC is the
average cost of reserved and on-demand instances of a specific
configuration. As mentioned before, since the RISA needs to
cover the demand of job that exceeds the RIs by on-demand
instances, we use AIC to inform RISA about the increased cost
of on-demand instances compared to RIs. AIC is calculated as
(11) where ORR is the ratio of on-demand price to reserved
price of a specific instance configuration (ORR = ICO

ICR ).

AIC =
ICR+ (ICO ×ORR)

1 +ORR
(11)

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Instance configurations. The specification of RIs that we have
used in the experiments are presented in Table II. The speci-
fications are obtained from Amazon EC2 RIs [37]. The price
are for standard 1-year term Linux instances with All Upfront
payment option and corresponding on-demand instance. Since
there is no information for expected revenue in the Hadoop
cluster trace, we consider it as a multiple of instance price
(from 2 for Config 1 to 5.5 for Config 8 with 0.5 steps). We
consider different expected revenue for configurations to study
its impact on performance of RISA in experimental results.
Systems compared. We compare RISA with the following
approaches:

• On-Demand: As it names state, On-Demand does not
reserve any instances, and only uses on-demand ones.

We use it as a baseline approach in our experiments to
show the value of RIs.

• RIPAM: Reserved Instance Provisioning strategy based
on Autoregressive Model (RIPAM) [23] employs an
autoregressive model to obtain the required number of
RIs for average computation.

• Conservative: Some approaches [20]–[22] use conserva-
tive over-provisioning to satisfy all the resource demands.
Conservative represents these approaches by renting RIs
equal to maximum resource demand of jobs(TRI =
max(IDJi)). Conservative hopes to maximize the TNP
by satisfying all the resource demands with RIs. However,
when the resource demand is less than the maximum,
Conservative renders the TNP low.

• Optimal: It is another baseline approach to represent the
optimal profit obtained if the cloud tenant has perfect
information of resource demands of future jobs that are
going to be submitted by the user. Optimal implements
a brute-force algorithm that examines all the possible
combinations of RIs and on-demand instances to find
maximum possible profit. We use it to show how much
RISA solutions are close to best possible ones.

Workloads. We use workloads derived from OpenCloud
Hadoop cluster trace [28] in our experiments. Each workload is
for one user with different number of submitted jobs (from 86
to 159). To calculate the resource demand of each job (in the
form of number of instances), we first obtained the number of
slots required by that job similar to section II-A. The jobs with
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TABLE III
WORKLOADS FROM OPENCLOUD HADOOP CLUSTER TRACE [28]

Number of Jobs
Lognormal Distribution of
Resource Demand (µ, σ)

Resource Demand Variation

User 1 159 (4.104 , 1.14166) 127%
User 2 152 (4.36457 , 1.23772) 93%
User 3 147 (3.03246 , 0.427717) 40%
User 4 140 (4.30553 , 1.36069) 86%
User 5 125 (4.21809 , 1.4066) 95%
User 6 103 (4.32779 , 1.31216) 93%
User 7 90 (4.67843 , 1.38348) 73%
User 8 90 (4.85342 , 1.0466) 68%
User 9 88 (4.42949 , 1.20188) 90%
User 10 86 (5.48792 , 0.031314) 3%

resource demand less than 100 slots are filtered out. Then, we
divided the number of slots by the number of vCPU of instance
configurations to have the number of required instances per
job. Similar to previous works [38], [39], we considered one
Map/Reduce slot per vCPU for each instance.

Number of jobs of each user and their resource demand
distribution are presented in Table III. Distribution of instance
demand of jobs of each user is shown in Fig. 3. We used
Distribution Fitting App of MATLAB [40] and tried various
probability distributions to find the most suitable one for
resource demand of jobs with least amount of error, and
lognormal was a better fit although none of the distributions
we tried were perfect. If the resource demand of jobs of a user
are that random that no suitable distribution can be found for
it, then RISA is not applicable for that user.

B. Profitability and Cost Analysis

In this section, we discuss the main results obtained from the
experiments. First, we report the number of RIs selected to be
reserved by approaches under different instance configurations.
As presented in Table II, while all the configurations have the
same number of vCPUs, and consequently, the same number
of slots, their ICR, ICO, and IP are different. Since RIPAM
and Conservative approaches are unaware of impact of these
two factors on the final profit of resource allocation, their
number of reserved RIs is constant, regardless of instance
configurations. However, RISA selects the number of reserved
instances based on critical fractile introduced in (10) which is
a function of AIC and IP, and hence, its number of RIs varies
for different instance configurations. Optimal also considers
the aforementioned factors and has different number of RIs
for different configurations.

Fig. 4 depicts the number of RIs reserved (TRI) by each
approach for different users under various instance configu-
rations and Fig. 5 shows the number of on-demand instances
(TOI) employed by each approach. Since the number of RIs for
Conservative and RIPAM is constant for all the configurations,
only one curve is plotted for each of them in Fig. 4. The same
is true for On-Demand and RIPAM in Fig. 5. On-Demand does
not use RIs at all, so there is no curve for it in Fig. 4. Also
in Fig. 5, there is no curve for Conservative since it does not
use on-demand instances. As can bee seen, Conservative has
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the highest TRI for all the users, while On-Demand has the
highest TOI, as expected from their definition. But, RIPAM has
relatively lower number of RIs compared to Conservative and
lower on-demand instances. Finally, we can see the sensitivity
of RISA to AIC and IP of configurations. When the ratio of
IP to AIC is low, the TRI of RISA is lower than that of



RIPAM, while its TOI is higher than it. However, when the
IP/AIC ratio is on the increase, we see that RISA tends to
reserve more RIs to gain more profit and approaches the TRI of
Conservative and RIPAM, and uses less on-demand instances
(lower TOI). Finally, considering both Fig. 4 and Fig. 5, we
see that the number of RIs of RISA has the same trend as the
Optimal approach.

After discussing the number of RIs and on-demand in-
stances, we report the net profit obtained by each approach.
The average net profit of all the users obtained by each
approach under various configurations is shown in Fig. 6. As
can be seen, the net profit of RISA always surpasses those of
RIPAM and Conservative, and it is very close to optimal. The
narrowest gap between RISA and Optimal is 1.5% in Config
1 and Config 2, and the widest gap is around 5% in Config 6
and Config 7. The RISA improves the net profit compared to
On-Demand, RIPAM, and Conservative by up to 22%, 21%,
and 10x, respectively.

According to (6), the net profit can be calculated by having
gross profit and cost of instances. Since all the approaches
fulfill the demand of a job either by RIs or on-demand
instances, all of them obtain the same amount of gross profit.
Hence, in the following we report the results of cost of
instances to analyze the behavior of approaches regarding
it. The average cost of instances for jobs of all users under
different configurations is presented in Fig. 7. As expected,
Conservative has the highest cost of instances due to its
high number of RIs. RISA’s cost of instances is very close
to Optimal, where it increases the cost by less than 1%
compared to Optimal in Config 1 (around 5% on average
for all the configurations). Comparing to On-Demand, RIPAM,
and Conservative, RISA decreases cost of instances by up to
16%, 10%, and 38% , respectively. .

Finally, for two configurations (Config 2 and Config 6) we
explore the performance of approaches for each individual
user (instead of average of users). The net profit and cost
of instances for all the users under different approaches for
two aforementioned configurations are depicted in Fig. 8. We
can see that the performance of approaches heavily depends
on the distribution of resource demand of jobs, as well as
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Fig. 6. Average net profit of all the users obtained by each approach under
various configurations.
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Fig. 7. Average cost of instances of all the users resulted by each approach
under various configurations.

the instance configuration. For example, in Config 2 we see
that RISA significantly outperforms RIPAM for User 2, User
4, User 6, and User 9 and yields more net profit. However,
in results of Config 6, we see that the gap between RISA and
RIPAM for the same users is not as wide as in Config 2. These
results clearly show that how the IP/AIC ratio of different
configurations affect the performance of approaches. Please
note that for User 1 and User 2 in Config 2 and User 1 in
Config 6, the net profit of Conservative is negative, and hence,
we substituted them with zero to keep the figure consistent.
The observations for cost of instances support the observations
for net profit.

C. Resource Demand Coverage by RIs

The net profit has a direct relationship with the resource
demand coverage by RIs. The more an approach covers the
resource demand of jobs by RIs, the more net profit it can
obtain because of difference between cost of RIs and cost
of on-demand instances (Note that an approach must fulfill
all the demand of job either fully by RIs or a combination
of RIs and on-demands). Hence, in this section we report
the resource demand coverage by RIs of different approaches
for different configurations, i.e., what percentage of instances
required by each job of a user are covered by RIs under
various approaches. The results are shown in Fig. 9. As we
depicted in Fig. 4 and mentioned in section IV-B, RIPAM
and Conservative select the same number of RIs regardless
of instance configurations. Hence, in Fig. 9, there is only one
curve for each of them. However, for RISA and Optimal we
have two curves, one for Config 2 and the other of Config
6. Please note that we have plotted the results of RISA and
Optimal only for two configurations for the sake of readability
of the figure.

As expected, Conservative satisfies all the demands com-
pletely because it considers the maximum demand when re-
serving RIs. The performance of RIPAM , RISA, and Optimal,
however, depends on the distribution of instance demand
of jobs of each user. Moreover, we see that the coverage
percentage of RISA and Optimal changes with the instance
configuration. For example in User 7, for Config 2 the average
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Fig. 8. Detailed results of all the users for two configurations.
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Fig. 9. Distribution of instance demand coverage of jobs by RIs for all users under different approaches.

coverage of RISA (55%) is significantly less than RIPAM
(88%), but for Config 6 its coverage (81%) is approaching
RIPAM. Please note that since on-demand does not employs
RIs, there is no curve for it in Fig. 9.

D. Resource Waste

In previous section we analyzed the instance demand cov-
erage by RIs for different approaches. Now, we want to
demonstrate why sometimes an approach e.g., Conservative
has poor net profit despite its significant demand coverage. The
key is idle RIs that waste the money without being used. Fig.
10 shows the distribution of idle RIs not being used in each job
of users. As can be seen, Conservative suffers from significant
amount of idle RIs. These idle RIs impose significant cost
without being involved in gross profit, and hence, cause the
net profit to decrease dramatically.

Considering Fig. 10 and Table III, we can see a clear relation
between resource demand variation of users and resource
waste. User 10 has the lowest resource demand variation (3%),
and consequently, it has the lowest amount of idle RIs (less
than 7% for all the jobs under different approaches). On the
other hand, we see too much resource waste in User 1 that
has 127% resource demand variation. The average amount of
idle instances of Conservative for all the jobs in User 1 is
around 84%. From the results, we can conclude that when
the probability distribution of resource demand of jobs is
narrow, we have a low amount of idle RIs. However, when
the distribution is wide, we should expect high amount of idle
RIs, regardless of resource allocation approach.

E. Sensitivity Analysis
To study the impact of demand distribution, we employed

two synthetic workloads with uniform and normal instance
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Fig. 10. Distribution of number of idle RIs in jobs of each user.
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Fig. 11. Distribution of instance demand of jobs of each user in synthetic
workload with uniform distribution.

demand distribution. Each workload consists of 10 users with
100 jobs per user. The probability distribution for instance
demand of jobs of each user is presented in Table IV and
distribution of instance demand of jobs of each user for
uniform distribution and normal distribution workloads are
presented in Fig. 11 and Fig. 12, respectively. Note that since
the instance demand of a job should be positive, for normal
distribution we have substituted the negative or zero numbers
generated by random number generator function with positive
ones.

In synthetic workloads, we consider different distribution
compactness for each user, so they can represent users with
various demand patterns in real world. For uniform distri-
bution, the difference between two boundaries (i.e., a and
b) becomes wider for each user. For User 1, we have the
narrowest distribution with b = a × 1.3 and for User 10 we
have the widest one with b = a× 4. The ratio between a and
b in other users between User 1 and User 10 increases by
0.3 steps. For normal distribution, again the User 1 has the
narrowest distribution with σ = µ× 0.1 and User 10 has the
widest one with σ = µ× 1.

The net profit yielded by each approach for different users
under different configurations is presented in Fig. 13 and Fig.
14 for uniform and normal distributions, respectively. We can
see the superiority of RISA over RIPAM and Conservative

TABLE IV
SPECIFICATION OF SYNTHETIC WORKLOADS WITH NORMAL AND

UNIFORM DEMAND DISTRIBUTIONS

Workload with
Uniform Distribution
(a , b)

Workload with
Normal Distribution
(µ, σ)

User 1 (50 , 65) (50 , 5)
User 2 (100 , 160) (100 , 20)
User 3 (150 , 285) (150 , 45)
User 4 (200 , 440) (200 , 80)
User 5 (250 , 625) (250 , 125)
User 6 (300 , 840) (300 , 180)
User 7 (350 , 1085) (350 , 245)
User 8 (400 , 1360) (400 , 320)
User 9 (450 , 1665) (450 , 405)
User 10 (500 , 2000) (500 , 500)
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Fig. 12. Distribution of instance demand of jobs of each user in synthetic
workload with normal distribution.

in both figures, which emphasizes the ability of RISA to
maximize the net profit in different situations.

We can also see the impact of distribution compactness on
the performance of approaches in Fig. 13 and Fig. 14. As
expected, when the distribution is narrow (e.g., User 1), we
see that the net profit of all the approaches is very close to
each other. As distribution becomes wider, and consequently,
the instance demand of jobs becomes more uncertain, we see
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Fig. 13. Net profit obtained by each approach for all the users under various configurations for uniform demand distribution.
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Fig. 14. Net profit obtained by each approach for all the users under various configurations for normal demand distribution.

that RISA gains more net profit than other approaches because
it can successfully handle the uncertainty in resource demand
of jobs through stochastic optimization. In both figures, the
net profit of RISA is very close to Optimal, which shows
the ability of RISA to find near optimal solutions. Finally,
we see that the performance of Conservative improves as the
instance configuration changes from Config 1 to Config 8 and
the IP/AIC ratio of configurations increases.

V. RELATED WORK

Proposed approaches for resource allocation and scheduling
of big data processing applications in cloud and clusters have
different targets such as deadline [41]–[44], cost [19], [20],
[33], [45]–[47], and energy [38], [48]–[51].

Among the approaches focused on cost, Cura [20] intro-
duces three operational models for cloud: Immediate execution
where the user determines the VM instances needed for exe-
cuting the job, and cloud provider only allocates them to user.
In the second model, delayed start, the user still is responsible
for determining the resources, but the cloud provider might
allocate them to user with a delay to maximize its profit.
However, cloud provider should consider the deadline of jobs
and make sure they can meet them. Finally, in the third model

which is called Cloud managed, cloud provider is responsible
for resource provisioning and scheduling of jobs. The user
only submits the job with its desired deadline. In this model,
the profit of cloud provider can be maximized. Cura aims to
increase the resource utilization of cloud by mixing a variety
of MapReduce workloads, and hence, increase the profit of
cloud provider based on the Cloud managed model.

Maximizing the profit of cloud providers when processing
big data in federated clouds, is the goal of [33]. This work
considers the various VM configurations with fluctuating costs,
data transfer cost, and the deadline of arriving jobs. To reduce
the VM and data transfer cost, they use FedSCD algorithm
[52]. FedSCD leverages data locality and improves the utiliza-
tion of resources by giving priority to the idle resources. They
also reorder the arriving jobs to guarantee the completion of
accepted jobs within their respective deadline to avoid penalty
due to violating the deadlines.

All the aforementioned approaches consider an individual
job, instead of all the jobs of a user, when allocating the
resources. They also do not consider the RIs when allocating
the resources, but the on-demand instances. Finally, they all
rely on point estimates for resource demand of jobs, and ignore
its stochastic nature.



Unlike the previous approaches, which use point estimates
based on historical runtimes, 3Sigma [53] leverages distri-
bution of runtime histories of relevant jobs to mitigate the
runtime uncertainty when scheduling the jobs. 3Sigma con-
siders runtime uncertainty, however it is proposed for physical
clusters, and hence, does not deal with the challenges arises
from nature of RIs.

Among the previous works that focus on reserved instances,
Mazzucco et al. [54] aims to maximize the net revenue of
cloud provider. It considers two types of customers where
the premium ones will receive monetary compensation when
there is not enough resources to execute their job, while the
basic ones do not receive the monetary compensation and
can only expect a best effort service. The net profit of cloud
provider is calculated as the money it receives for server usage
minus the energy cost and monetary compensation of premium
customers. Unlike this approach, we aim to maximize the net
profit of the cloud users.

Shen et al. [27] propose the CoH-R method to combine
the on-demand and reserved instances. CoH-R needs the
resource demand (or distribution of resource demand) of jobs
in an hourly granularity to model the cost of instances. This
approach, similar to several previous works such as [24], [25]
considers the abolished light, medium, and heavy RIs model,
which are not in use anymore. Hence, these approaches are
not applicable to current RIs offered by cloud providers.

Ran et al. [23] propose the Reserved Instance Provisioning
strategy based on Autoregressive Model (RIPAM) to determine
the number of RIs. The proposed approach considers the
difference between monetary cost of RIs and on-demand
instances, but does not consider the profit can be obtained
from each instance. Hence, unlike RISA, the RIPAM approach
cannot distinguish between different instance configurations
when reserving the RIs.

VI. CONCLUSION AND FUTURE WORK

We presented RISA which uses stochastic optimization to
maximize the profit of deploying big data jobs on RIs. RISA is
aware of fluctuating nature of resource demand of big data jobs
submitted by a user. It fits a probability distribution to resource
demand of jobs and then uses robust analytical stochastic
optimization method based on News Vendor Problem for
resource allocation. Hence, it can obtain the highest profit
over the course of time provided that the fitted probability
distribution has little error. Using RISA on a wide collection
of jobs from a real-world Hadoop cluster, as well as synthetic
ones, indicated significant profit gain compared against other
methods.

In this paper we focused on finding the proper number of
RIs to be reserved, assuming that the instance type is predeter-
mined by user. Considering various types of big data jobs such
as CPU-intensive, Memory-intensive, and IO-intensive ones,
it is an interesting direction for future research to determine
the proper instance type for each user based on the resource
demand of jobs, in addition to the number of instances. To
achieve this goal, we need to incorporate multiple dimensions
for distributions of different resources, such as memory and

IO, instead of only considering the CPU consumption of the
jobs. Furthermore, it is interesting to exploit the combination
of several types of RIs for allocating to users, instead of one
specific type.

In this work we consider the SLO as the number of instances
that should be allocated to the job. We also assume that the
job is executed in the form of a single wave of tasks. However,
we can process big data jobs in multiple waves (e.g., multiple
Map or Reduce waves) when the number of tasks is more
than available slots, and hence, we cannot run all the tasks
concurrently. If we consider the completion time of jobs as
SLO, then finding the number of instances with least amount
of cost to complete the job within its SLO, either with single-
wave or multiple-wave execution, can be another direction for
future work.
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