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Abstract—Processing Big Data in cloud is on the increase. An
important issue for efficient execution of Big Data processing jobs
on a cloud platform is selecting the best fitting virtual machine
(VM) configuration(s) among the miscellany of choices that cloud
providers offer. Wise selection of VM configurations can lead to
better performance, cost and energy consumption. Therefore, it
is crucial to explore the available configurations and opt for the
best ones that well suit each MapReduce application. Profiling
the given application on all the configurations is costly, time and
energy consuming. An alternative is to run the application on
a subset of configurations (sample configurations) and estimate
its performance on other configurations based on the obtained
values by sample configurations. We show that the choice of
these sample configurations highly affects accuracy of later
estimations. Our Smart Configuration Selection (SCS) scheme
chooses better representatives from among all configurations by
once-off analysis of given performance figures of the benchmarks
so as to increase the accuracy of estimations of missing values,
and consequently, to more accurately choose the configuration
providing the highest performance. The results show that the SCS
choice of sample configurations is very close to the best choice,
and can reduce estimation error to 11.58% from the original
19.72% of random configuration selection. More importantly,
using SCS estimations in a makespan minimization algorithm
improves the execution time by up to 36.03% compared with
random sample selection.

Index Terms—Cloud, Performance Estimation, Big Data Pro-
cessing, MapReduce, Matrix Completion

I. INTRODUCTION

FORECASTS such as [1] predict that the volume of digital
data will increase by 300 times in 2020 compared with

2005. This significant growth further emphasizes the impor-
tance of Big Data as well as Big Data Processing. MapReduce
[2], and its open source implementation Hadoop [3], are
prevailing frameworks for implementing Big Data Analytics
and applications. Because of inherently huge amount of data
and computational requirements of Big Data applications,
acquisition of large amount of computational resources is
necessary. However, managing in-house clusters to respond
the computational requirements is costly such that small- and
middle-sized companies either cannot afford it, or find cloud-
based solutions economically more attractive. Consequently
increasingly more companies are moving towards the on-
demand resources available in the cloud.

The cloud computing concept provides the opportunity to
employ the required computational resources in the form of
VMs and pay for them based on the pay-as-you-go pricing
model. The cloud providers have even launched dedicated
services such as Amazon Elastic MapReduce (EMR) service

The authors are with the Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran.
E-mail: mnabavi@ce.sharif.edu, goudarzi@sharif.edu
Maziar Goudarzi is the corresponding author

[4] to satisfy the growing demand of computational resources
for MapReduce applications. While deploying Big Data ap-
plications on cloud platform brings fascinating opportunities,
there are concerns such as cost and deadline that need to be
addressed.

A large body of research [5]–[12] has tried to address
the aforementioned concerns. A common challenge in these
researches regarding resource allocation and scheduling for
MapReduce jobs is that estimation is needed on the execution
time or performance of the application on available VM
configurations. The common framework used in most these
works is shown in Fig. 1: the Estimation Phase provides an
estimate of the performance, energy consumption or other
metrics of applications on various available VM configurations
in the cloud; then the Resource Allocation/Scheduling Phase
chooses the best configuration(s) and the number of VM
instances required to process the whole big data while adhering
to the given constraints and objective. Obviously, overestima-
tion of the VM configuration performance results in losing
the deadline, and underestimation results in overbooking of
resources and waste of energy and money. Thus, accurate and
low-cost estimation methods are required to avoid both these
cases.

The common method to address the estimation challenge
is profiling. We can divide profiling approaches to complete
profiling and partial profiling. In complete profiling, the ap-
plication is executed on all the accessible configurations for
a short period of time (e.g., a few minutes) to estimate
performance of each configuration. If the state space of the
problem is small (i.e., few number of available configurations)
this approach will be suitable. Otherwise, when the number of
selectable choices is high, which is usually the case with today
and anticipated growth in cloud computing providers, running
the application on all of them imposes large overhead. It means
using a lot of resources that needs lots of money and leads to
waste of energy and time. Thus, complete profiling is usually
not acceptable.

In partial profiling, only a small subset of the state space
(i.e., a few configurations) are actually profiled per new appli-
cation, and then results are extended to the whole state space
based on either the results of prior complete profiling of a few
representative benchmarks or using mathematical methods [7],
[9], [13]. In [14], the authors first run some applications on all
the available configurations (Offline Training), and then, when
a new application arrives, its performance is measured on two
sample configurations for a short period of time, and then
by a reconstruction technique called Matrix Completion [15],
the values for other configurations is predicted. Consequently,
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Fig. 1. Common framework in resource allocation/scheduling for MapReduce
jobs in cloud.

the Offline Training Phase (see Fig. 2) serves several future
applications, and less time and resources are used for the
Usage Phase per new application. Reference [14] chooses the
two sample configurations randomly. However, our results in
section II show that the accuracy of predicting the missing
values is widely dependent on the choice of these sample
configurations.

In this paper, we propose Smart Configuration Selection
(SCS) method to leverage the power of matrix completion by
carefully choosing the sample configurations. SCS uses either
Pearson correlation coefficient or Kendall rank correlation
coefficient to opt for the most effective sample configurations.
We apply our method on a set of VM configurations that are
already offered by various cloud providers such as Amazon
EC2 [16], and Microsoft Azure [17]. We show that the SCS
choice of sample configurations is close to the best choice,
and can reduce estimation error to 11.58% from the original
19.72% of random configuration selection. More importantly,
we show that using SCS estimations in a makespan minimiza-
tion algorithm, which uses matrix completion in its profiling
phase to estimate the performance of applications on various
configurations, improves the execution time by up to 36.03%
compared with random sample selection.

This paper is an extension of our prior work published in
[18]. In brief, we have added the following investigations in
this paper:

• We have added more applications and VM configurations
to more comprehensively verify our approach.

• We have used Kendall Rank Correlation Coefficient, in
addition to Pearson Correlation Coefficient, and have
compared the performance of our approach under these

two variants of correlation coefficient.
• We have applied our approach to the well-known

makespan minimization algorithm to investigate and
demonstrate the impact of our SCS approach on the
end result of scheduling and resource management tech-
niques.

• We have analyzed the time complexity of our proposed
approach to show its negligible overhead and its applica-
bility to large-scale applications.

Our major contributions in this work are as follows:
• We investigate the impact of choice of sample con-

figurations (known values) on the accuracy of matrix
completion for estimating the performance of applica-
tions on new configurations (missing values). We show
that accuracy changes dramatically by choosing different
sample configurations.

• We propose Smart Configuration Selection (SCS) ap-
proach to select the sample configurations wisely. SCS
uses correlation coefficient between configurations to opt
for most appropriate pair of configurations as sample con-
figurations. We demonstrate the accuracy improvement of
matrix completion using SCS approach.

• Profiling phase, which uses matrix completion to estimate
the performance of applications, is a prerequisite for
resource management and scheduling phase. Hence, we
further evaluate the influence of increased estimation
accuracy by SCS on this phase using a makespan mini-
mization algorithm. We show that the algorithm can yield
less execution time for applications using SCS estimation
compared with estimation obtained by random sample
configuration selection.

The rest of the paper is organized as follows. Section II
gives an example to show the motivation beyond this work
and discusses it. Section III introduces the SCS approach
and its mathematical background. Section IV represents the
experimental results. Related works are discussed in section V.
Finally, the paper is concluded and future works are provided
in section VI.

II. MOTIVATION

In this section, we employ an example to show motivation
behind our research. We ran 14 MapReduce applications from
PUMA suite [19] on 13 VM configurations with different
amount of resources (e.g., RAM and CPU). VM configurations
are the same as some of the instances from [16] and [17].
We also used datasets from [19] as the input of MapReduce
applications. The numbers in Table I indicate the execution
time of each application on the various configurations (in
seconds) for 3GB of data.

Before presenting the results, we depict the overall flow of
experiments and define necessary concepts for pursuing the
rest of paper. Fig. 2 illustrates the flow from training phase
to usage phase. First, some applications are executed on all
the available configurations. These applications are training
set and information obtained from their execution is used
for next steps. This step is offline and need to be done just
once (Training Phase). Next, a subset of configurations is



employed and the new application is executed on them. From
now on this subset is called sample configurations. Finally,
from information of training phase and executing the new
application on sample configurations, the matrix completion
approach estimates the performance of new application on the
rest of the configurations which we call missing values. This
step is done online (Usage Phase).

For showing that selecting the sample configurations ran-
domly might lead to imprecise estimation of missing values,
we conducted a set of experiments for each application in
Table I. In each set, we selected one application and assumed
it as the new application we want to estimate its performance
on configurations, and assumed there is no prior information
about it. The other applications are considered as training set
that we want to predict the missing values of new application
based on their information. Then, we chose a pair of con-
figurations randomly as known samples, which the execution
time of application is known on them. The seven left ones
are considered as missing values. Finally, we applied matrix
completion program from [20] on the matrix with missing
values and observed the results. This process repeated ten
times for each application and in different iterations we chose a
different pair of random sample configurations. Approximation
error (the difference between estimated value and actual value)
of matrix completion regarding missing values for each of
ten iterations in all the eight applications is demonstrated in
Fig. 3. As this figure reveals, the amount of error differs
significantly from one sampling pair to the other. Therefore,
it can be concluded that the selected sample configurations
can affect the outcome of matrix completion remarkably; as
Fig. 3 shows, the approximation error of matrix completion
varies from 3.5% to over 71.2% depending on the selected
sample configurations. So, it is essential to choose the sample
configurations wisely in order to have an accurate prediction
of missing values.

III. SMART CONFIGURATION SELECTION (SCS)

In this section, we present the SCS approach. The main
goal of SCS is to select the sample configurations in a way
that leads to more accurate prediction of missing values in
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Fig. 2. Overall flow of performance estimation using matrix completion.

matrix completion process. First, the mathematical background
of SCS, including correlation coefficient and its variants, is
explained and then the approach itself is expanded.

A. Mathematical Background

1) Matrix Completion: The general problem of matrix
completion can be defined as follow: we want to recover

TABLE I
EXECUTION TIME OF MAPREDUCE APPLICATIONS ON DIFFERENT VM CONFIGURATIONS

Execution Time (s) VM Configurations
Application Config 1 Config 2 Config 3 Config 4 Config 5 Config 6 Config 7 Config 8 Config 9 Config 10 Config 11 Config 12 Config 13

Adjacency-List 4126 2025 1803 3668 827 1870 1236 1405 1775 2505 1591 916 861
Classification 3262 1780 1714 3389 428 1685 903 897 1800 1813 901 457 485

Grep 557 287 247 470 148 255 156 164 243 389 210 168 191
Histogram-Movies 212 121 112 214 41 117 66 72 114 131 89 105 38
Histogram-Ratings 473 282 279 468 85 278 152 148 286 292 155 91 129

Inverted-Index 815 405 359 710 121 378 208 222 378 529 278 196 109
K-Means 3567 1865 1790 3568 472 1783 945 972 1876 2043 1006 550 518

Pi-Estimator 347 178 178 342 57 180 100 98 185 174 97 58 48
Ranked-Inverted-Index 1334 687 477 993 258 538 281 356 405 1128 629 371 292

Self-Join 506 281 216 410 143 229 150 171 202 415 250 170 160
Sequence-Count 989 521 461 867 228 465 272 297 455 667 385 293 259

Tera-Sort 669 355 268 513 170 294 187 205 256 512 302 223 243
Term-Vector 792 407 362 718 178 374 213 219 357 531 277 200 221
Word-Count 757 392 341 667 118 354 198 202 343 505 266 186 103
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Fig. 3. Approximation Error of Matrix Completion for ten different pairs of
sample configurations.

matrix M with n1 rows and n2 columns, but we only have
m entries of M which is smaller than total entries n1×n2 [15].

Obviously, doing this job without having additional infor-
mation is impossible. Knowing that Matrix M is low rank or
approximately low rank can help recover the matrix. We say
that matrix M has rank r provided that its rows or columns
span an r-dimensional space. For example, In the Netflix
problem, where one should recommend movies to users based
on their preferences, it is believed that a few number of
factors have impact on an individuals taste or preferences for
movies, and hence, the matrix M of all user-ratings might be
approximately low rank. Finding the similarity factors can be
done using singular value decomposition.
Singular Value Decomposition or SVD is one of the methods
used for dimensionality reduction and similarity identification
in matrices. For example, recommendation systems use SVD
to extract similarities between users and items [21]. If we feed
SVD with matrix M, we will have a factorization of the form.
U×Σ×VT

U is the left and V is the right singular vectors matrices.

U n1×r =


u11 . . . u1r
u21 . . . u2r

...
. . .

...
un11 . . . un1r

 , V n2×r =


v11 . . . v1r
v21 . . . v2r

...
. . .

...
vn21 . . . vn2r


And Σ is the matrix of singular values which is a diagonal

matrix. r is the rank of Matrix M [14].

Σr×r =

σ1 . . . 0
...

. . .
...

0 . . . σr


Each singular value σi and its magnitude represents a

similarity concept (factors that affect users taste in Netflix
problem) and the confidence in it respectively. The complexity
of SVD on a n1×n2 matrix is min(n1

2 × n2, n2
2 × n1).

Now that we have matrices U, Σ and V, we use PQ-
reconstruction to approximate Matrix X in which the missing
values of matrix M are predicted.

X = Q n1×r×PT
r×n2 , where Q n1×r = U and PT

r×n2 = Σ×VT

Since the matrix M was incomplete, this incompleteness
will propagate to X via Q and P. Different approaches are
proposed to estimate the missing values in X such as convex
optimization [15], gradient descent [22], and Alternating least
squares minimization [23]. Using any of this approaches, we
can have matrix X such that for m observed entries of M, 1) Xi,j

= Mi,j and 2) rank (X) is minimized. In this paper, we use the
TFCOS [20] which uses convex optimization approach. Note
that matrix completion cannot work properly in special cases
when there is not enough information in matrix. However,
discussing such cases is beyond the scope of this paper.

2) Correlation Coefficient: Correlation Coefficient indi-
cates the linear relationship between two variables and also
shows the strength and direction of this relationship. Various
versions of correlation coefficient are available such as Pearson
and Kendal. We use both variants in our work to evaluate and
compare their performance and see which one might be more
effective for selecting sample configurations.

Kendal Rank Correlation Coefficient (KRCC) [24] indi-
cates the portion of ranks that match between two data sets.
Considering two random variables X and Y and a set of
their observations (x1,y1), (x2,y2), (xn,yn), for each pair of
observations (xi,yi) and (xj,yj), the pair is called:

concordant if

∀(xi, yi), (xj, yj), i 6= j&i, j = 1...n :

(xi > xj ∧ yi > yj) ∨ (xi < xj ∧ yi < yj) (1)

discordant if

∀(xi, yi), (xj, yj), i 6= j&i, j = 1...n :

(xi > xj ∧ yi < yj) ∨ (xi < xj ∧ yi > yj) (2)

In other words, in concordant pair the ranks for both
observations agree while in discordant pair disagree. Using
(1) and (2), the KRCC is defined as (3) where denominator
indicates the total number of pairs.

KRCC(X,Y ) =
# concordant pairs−# discordant pairs

n(n−1)
2

(3)

If the random variables are completely independent, KRCC
would be near zero. Otherwise, when the ranks for both
observations agree in all the pairs, KRCC equals 1 and
for disagree case equals -1. Note that for the case where
observations are equal (tied values), for example xi = xj or
yi = yj, the formulation would be a bit different. However,
in our experiments we never faced such situation, and hence,
we skip those situations. The enthusiast readers can find more
about these cases in [24].

Pearson Correlation Coefficient (PCC). For two variables
X and Y, the PCC is a value between -1 and +1. +1 and -
1 shows that the variables are strongly related to each other.
Zero value means that there is no kind of relationship between



two variables. The PCC of two variables can be calculated as
(4):

PCC(X,Y ) =
cov(X,Y )

σX σY
(4)

Where cov stands for covariance and σ stands for standard
deviation.

Comparing KRCC and PCC, we can conclude that while
PCC considers the value of observations, KRCC relies on
ranking of observations rather than their values. Later in the
experimental results, we see the impact of these two different
approaches.

B. SCS Approach

In this section, we first show the impact of correlation be-
tween sample configurations on accuracy of matrix completion
and then expand SCS approach.

Considering Table I, we perceive that configurations 5 and
7 have strong relationship with each other (PCC (5, 7) =
0.9997, KRCC (5, 7) = 0.84615). So, what if we choose these
two as sample configurations? The results are shown in Fig.
4 and compared with the average of ten random samples of
Fig. 3. It shows the approximation error is too high and we
can say it is an inauspicious choice. But, what is the reason?
The answer is that since these two configurations are highly
correlated to each other, they cannot represent the diversity of
all configurations. Hence the estimation leads to poor results.
From this observation, we can conclude that the two selected
samples should be the best representatives of the assortment of
configurations in order to obtain a precise prediction. It is an
interesting question to explore how many samples should be
used to best represent a given training set based on the number
of configurations present in that set, but in this paper we suffice
to the case of using two sample configurations. From this
conclusion, we present the SCS approach which concentrates
on finding dichotomy between configurations and picking the
two bests that can represent it. This approach is offline and
need to be applied just once in Sample Configuration Selection
part in Fig. 2.

SCS pseudo-code is presented in Algorithm 1. SCS first
calculates the PCC or KRCC (which we refer to as CC from
now on) (5) for each two configurations (columns in Table I)
where N stands for the set of all configurations (lines 3 to 5).
In fact, in SCS approach each configuration stands for random
variables and execution time of applications on configurations
stand for observations.

∀i, j ∈ N,CC(i, j) (5)

Then, it calculates the total amount of correlation between
each configuration and other ones as (6) (lines 6 to 10). Note
that since the CC might be negative, we use absolute value of
it. TCC stands for Total Correlation Coefficient.

∀i ∈ N,TCC i =

n(i 6=j)∑
j=1

|CC(i, j)| (6)

After that, the first configuration that will be chosen is the
one with least amount of TCC (7) because the one with least
TCC shows the most diversity with other configurations (line
11).

Config1 = {i|TCC i = Min(TCC j), j = 1...n} (7)

Finally, for second configuration, the one should be chosen
that has the least CC with first selected configuration (8). In
this way, the two selected configurations have: 1) minimum
correlation so are different from each other and 2) at least
one of them has the least possible correlation with other
configurations and can represent diversity among them (line
12). For choosing more than two sample configurations, we
can continue the procedure by choosing the configuration that
has the least amount of correlation with previously chosen
configurations. For example, the third sample configuration is
the one that has minimum correlation with the two previously
selected configurations.

Config2 = {i|CC i = Min(CC(i, config1), i = 1...n}(8)

If consider the number of VM configurations as n and
number of applications in training set as m, then the time com-
plexity of SCS approach can be analyzed as follow: the time
complexity of PCC is O(m) and time complexity of KRCC
is O(m logm) (Note that time complexity of conventional
method for KRCC is O(m2), but a more sophisticated method
based on merge sort can compute KRCC in O(m logm) [25]).
Hence, the time complexity of (5) would be O(n2m) if PCC
is used or O(n2m logm) if KRCC is used. Note that PCC
or KRCC should be calculated for each pair of configurations
and number of observations for each pair of configurations is
m. Time complexity of (6) is O(n2) and time complexity of
(7) and (8) is O(n). Since (5), (6), (7), and (8) are executed
in serial, the time complexity of SCS would be O(n2m) or
O(n2m logm), if PCC or KRCC are used respectively.

Algorithm 1 Smart Configuration Selection
1: N: Set of Configurations
2: TCC: total correlation coefficient of each configuration

with other ones (initialized as zeros)
3: for each i&j ∈ N do
4: calculate the Correlation Coefficient of i & j (CCij)
5: end for
6: for i ∈ N do
7: for j ∈ N do
8: TCCi += CCij
9: end for

10: end for
11: sample configuration 1 = configuration with minimum

TCC
12: sample configuration 2 = configuration that has minimum

CC with sample configuration 1

SCS method is simple, yet very effective because it can
quickly distinguish the two most proper configurations for
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Fig. 4. Impact of choosing highly correlated configurations on approximation error.

sampling by doing a few calculations. The selected config-
urations are different from each other regarding CC and they
also can represent the diversity among whole set of available
configurations.

IV. EXPERIMENTAL RESULTS

The state space of problem in our example (Table I) is small
enough to be explored completely; so we have calculated the
amount of approximation error of matrix completion for all
the possible pairs of sample configurations for all applica-
tions. Fig. 5 illustrates the results. As can be seen, for all
the applications there is a wide gap between minimum and
maximum error; note that the horizontal lines of each box in
Fig. 5 show the 25th, 50th, and 75th percentile of dots. The
minimum, maximum, and average error for all the applications
is presented in Table II. These observations further prove
the necessity for careful selection of sample configurations.
In upcoming subsections, we first introduce the MapReduce
applications we have used in our experiments and present
the specifications of VMs in experiments setup subsection.
After that, we illustrate the effectiveness of SCS for improving
estimation accuracy of applications performance on different
configurations. Then, we further explore the problem and
depict the impact of estimation accuracy on meeting/missing
applications deadline and resource utilization.

A. Experiments Setup

We have used 14 MapReduce applications and 13 types of
VM configurations in our experiments to evaluate our SCS ap-
proach. We have used Hadoop version 1.2.1 on Ubuntu 12.04
as the framework of experiments. We have used two nodes per
experiments to extract the performance of applications and
fill Table I. Extending the number of VMs wont affect our
approach but increases its resource overhead. In the following,

TABLE II
DETAILS OF APPROXIMATION ERROR (%) FOR APPLICATIONS

Application Min Error Max Error Average Error

Adjacency-List 16.1118 71.23322 47.14514

Classification 2.923779 61.39729 31.70884

Grep 4.819775 26.93327 14.04154

Histogram-Movies 8.762522 44.85916 16.85232

Histogram-Ratings 5.461222 43.36961 14.22351

Inverted-Index 5.384964 49.48646 13.90891

K-Means 3.364519 63.63151 34.30891

Pi-Estimator 3.999684 49.37178 12.1857

Ranked-Inverted-Index 7.596326 40.62434 21.11223

Self-Join 5.564344 31.89142 14.64871

Sequence-Count 3.506523 34.81392 13.63431

Tera-Sort 4.59812 32.4036 15.3514

Term-Vector 4.777848 29.99559 13.27253

Word-Count 5.519747 48.68563 13.73046

we first introduce the applications and then present the VM
configurations.
MapReduce Applications. We have used the applications
in PUMA benchmark suit to evaluate our approach. This
benchmark suit has been used in a large body of papers
related to big data and MapReduce [26]–[29]. The applications
are various in several aspects such as amount of generated
intermediate data, the resource demand of map and reduce
tasks, the number of tasks, the share of Map, Reduce, and
shuffle phases in total execution time, etc. So, they can present
variety of MapReduce applications..The following are name
and a brief description of each application:

• Adjacency-List: produces the list of the neighbors for each



vertex of a graph. Algorithms such as PageRank can use
the results.

• Classification: uses the data of movie rating and classifies
the movies into clusters.

• Grep: a common tool in many data analyses. It searches
for a pattern in a file.

• Histogram-Movies: gets the movie rating data as input
and generates the histogram of movies.

• Histogram-Ratings: the input is the same as Histogram-
Movies, but it generates the histogram of ratings.

• Inverted-Index: generates the mapping of word to docu-
ment for a set of documents and their constituent words.

• K-Means: a popular data mining algorithm that is used
for clustering input data into k clusters. The input data
of K-Means in our experiments is movie rating data.

• Pi-Estimator: estimates the value of Pi by a tunable
precision.

• Ranked-Inverted-Index: for a list of words and number of
their repetitions in documents, generates the decreasing
list of documents that given words appears in them.

• Self-Join: gets the association of k fields and generates it
for k+1 fields.

• Sequence-Count: finds the number of all individual sets
of three successive words per document

• Tera-Sort: a well-known Hadoop benchmark. It sorts 100-
byte tuples where the first 10-byte is key and rest is value.

• Term-Vector: suitable for finding the frequent words in a
set of documents. The data can be used for understanding
the relevance of a host to a search.

• Word-Count: calculates the number of appearance of each
word in a set of documents

VM configurations. The specification of VMs that we have
used as different configurations for generating Table I are
presented in Table III. Since it is a common practice to
consider the number of Map and Reduce slots same as the

number of cores that a machine has [30], [31], we also
considered the number of slots for each VM equal as the
number of its cores. The specifications of VMs are obtained
from Google Cloud [32], Amazon EC2 [16] and Microsoft
azure [17].

B. Impact of SCS on Estimation Accuracy

We applied both variants of SCS (SCS PCC and
SCS KRCC which use Pearson and Kendall correlation co-
efficients respectively) on Table I. For each application, we
first removed it from the table and then applied SCS, so
values of that application could not affect the results. Applying
SCS PCC, it selected configurations 1 and 13 for all the
application except Classification, where it chose configurations
1 and 11. SCS KRCC, on the other hand, opted configurations
9 and 13 as sample configurations for most of the applications.
For applications InvertedIndex and WordCount, SCS KRCC
chose configurations 9 and 12.

The comparison between SCS PCC, SCS KRCC, Average
of all possible pairs of sample configurations (Average in
short) and best pair and worst pair of sample configurations
per application are depicted in Fig. 6. The average estimation
error of SCS PCC over 14 applications is 11.58% and for
SCS KRCC it is 20.56%. The average of worst case is
44.90%, average of best case is 5.88% and average of all states
is 19.72%. Considering the average results, we conclude that
overall performance of SCS when using PCC, SCS PCC, is
better than when it uses KRCC (SCS KRCC) since SCS PCC
can obtain more accurate estimations than SCS KRCC.

However, exploring the results in more detail, we perceive
that while overall performance of SCS PCC is better than
SCS KRCC, in some applications the SCS KRCC yields
more accurate estimations than SCS PCC. In two applications,
Grep and HistogramRatings, SCS KRCC can obtain near best
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Fig. 5. Scattering of approximation error for all the possible sample configurations.
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Fig. 6. Comparison of SCS with other sample configurations.

case answers, while SCS PCC estimations are even worse than
average. Thus, leveraging both PCC and KRCC at the same
time might lead to near best case estimations.

Up to this point, we showed how our SCS approach can
decrease the approximation error of matrix completion by
leveraging the correlation between configurations, and hence,
opting more appropriate sample configurations than conven-
tional random approach. The average execution time of SCS
approach is around 30 ms when implemented in MATLAB
(R2013a) and executed on a machine with Core i5 processor
(2.96 GHz) and 4GB of memory, and hence, its time overhead
is absolutely negligible.

To further evaluate the accuracy of SCS approach, we have
conducted more experiments by changing Hadoop parameters
and also input data of applications. In two experiments, we

TABLE III
VM SPECIFICATION USED IN OUR EXPERIMENTS

VM Type
CPU

(#)

Mem

(GB)

Map

Slot (#)

Reduce

Slot (#)

Memory of

Slot (GB)

Config 1 amazon-t2.small 1 2 1 1 2000

Config 2 amazon-t2.medium 2 4 2 2 2000

Config 3 amazon-t2.large 2 8 2 2 4000

Config 4 amazon-m3.medium 1 3.75 1 1 3700

Config 5 azure-A4 8 14 8 8 1750

Config 6 azure- D2 2 7 2 2 3500

Config 7 azure- D3 4 14 4 4 3500

Config 8 azure- F4 4 8 4 4 2000

Config 9 google-n1-highmem-2 2 13 2 2 6500

Config 10 google-n1-highcpu-2 2 1.8 2 2 920

Config 11 google-n1-highcpu-4 4 3.6 4 4 920

Config 12 google-n1-highcpu-8 8 7.2 8 8 920

Config 13 google-n1-highcpu-16 16 14.4 16 16 920

have changed the block size from 64MB of Fig. 6 to 32MB
and 128MB. We have also changed slow start parameter from 1
to 0.1 and 0.5. Slow start determines how much the Map phase
and Reduce phase will have overlap. We have chosen block
size and Slow start parameter because a large body of research
has studied them and it shows their importance among Hadoop
parameters [33]–[37]. Block size affects the I/O performance
of Hadoop clusters and Slow start has significant impact on
the network behavior of clusters, especially during shuffle
phase of MapReduce applications. Finally, we have changed
the input data of applications in another two experiments to
evaluate the impact of data variety, which is a key feature of
Big Data, on the performance of our SCS approach. We have
changed the input data of five applications: Grep, Inverted-
Index, Sequence-Count, Term-Vector, Word-Count (Since we
did not have data from different sources for other applications,
we could not change their input data). The original source
of input data for those five applications was Wikipedia data
set from PUMA benchmark suit [19]. We used data from
Gutenberg [38] and Common Crawl [39] sources for new
experiments instead of Wikipedia.The results are presented
in Fig. 7. Yet again, we can see that SCS can yield near
best case or even best case predictions. SCS PCC still has
more accurate results compared with SCS KRCC. From these
results we conclude that SCS can improve the prediction
accuracy under different scenarios, and hence, can be used
in production clusters where jobs with different settings and
input data are submitted constantly.

In the next section, we study the impact of estimation error
on resource allocation and performance of applications.

C. Estimation Accuracy Effect on Resource Management

Makespan minimization of MapReduce applications is pur-
sued in a large body of MapReduce scheduling and resource
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Fig. 7. Further experiments to evaluate the effectiveness of SCS approach under different Hadoop settings and input data.

allocation research [40]–[44]. Hence, we implement such an
algorithm to investigate the effect of estimation accuracy on
its performance. First, this algorithm profiles the application
to obtain information such as Table I. The profiling approach
of algorithm is the same as Fig. 2. It uses matrix completion
to estimate the performance of applications on different con-
figurations using known information of sample configurations.
Then, it schedules the tasks of job on available instances of
those configurations using profiling information in order to
minimize the execution time of job.

For the sample configurations in profiling phase (see Fig.
2), we select them once randomly, and once more, using
SCS approach. In either case, these sample configurations are

given to the makespan algorithm to schedule the tasks. After
scheduling the job based on profiling information, we calculate
the execution time of job using real information of actual
execution time we already have such as Table I. In this way, we
obtain the impact of profiling on the actual final job execution
time. Finally, we compare the results of random selection and
SCS approach to illustrate how much SCS approach can be
effective in terms of makespan minimization scheduling.

The results of makespan minimization algorithm for all
applications with respect to 5 different random sample config-
uration selections, two variants of SCS approach (SCS PCC
and SCS KRCC), and the best pair (i.e. the pair that minimizes
the approximation error in Matrix Completion) are presented
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Fig. 8. Results of makespan minimization algorithm for different applications. In the Profiling Phase of makespan minimization, we have used matrix completion
with different sample configuration selection approaches. RS 1 to RS 5 sample configurations are selected randomly. In SCS KRCC and SCS PCC, we have
applied our smart configuration selection (SCS) approach. The best pair of sample configurations is found using brute force approach.

in Fig. 8. The cluster that msakespan minimization algorithm
schedules the job on it consists of 130 VMs (10 instances from
each VM type of Table III).

The results indicate that while a random sample can some-
times lead to better answers than SCS, its fluctuation in dif-
ferent applications is significant. Note that inaccurate perfor-
mance estimation does not necessarily lead to poor scheduling.
Obviously an imprecise estimation can accidentally yield a
good schedule in some cases as we can see in Fig. 8, but
the point is that on average over several applications, it has
detrimental impact and degrades the performance dramatically.
For example, we see that in RankedInvertedIndex and Ter-

mVector applications, the schedule based on results of matrix
completion using RS 1 has obtained less execution time than
two variants of SCS. However, overall performance of it over
14 applications illustrates that it is not a good choice. On the
other hand, investigating the results obtained by SCS reveals
that more accurate estimation can significantly reduce the
execution time.

Comparing the SCS with average of five random samples
demonstrate that using SCS KRCC estimations in makespan
minimization algorithm can improve the execution time by
up to 36.03% and the average of improvement over all 14
applications is 8.51%. Using SCS PCC also can yield im-



provement by up to 27.02% (10.84% on average). Only in two
applications (SelfJoin and HistogramMovies) the SCS PCC
cannot improve the execution time compared to the average
of all random samples. In these applications, SCS estimation
degrades the execution time by 1.39% and 2.27% for SelfJoin
and HistogramMovies, respectively, compared against average
of random samples. Normalized average times to SCS PCC
are depicted in Fig. 9.

From the results in Fig. 8, we conclude that investing more
time and resources in profiling phase in order to improve its
accuracy can be compensated in resource management and
scheduling phase by obtaining higher performance and less
execution time. We showed, by measurements, that spending
30 ms (less than 0.01% of total execution time of job)
more time on configuration selection by SCS for performance
estimation yields up to 36%, and 10% on average, higher
performance than blind random configuration selection.

Comparison between the best pair results and SCS in Fig.
8 sheds light on how much opportunity is left to improve SCS
estimation accuracy. Scheduling based on the best pair esti-
mation improves the makespan by up to 22.60% and 22.21%
compared with SCS KRCC and SCS PCC respectively. The
average improvement of the best pair for all the applications is
6.39% and 5.29% for SCS KRCC and SCS PCC respectively.
These results indicate that it is still worth to investigate
proposing even better approaches to find the best pair of
sample configurations for each application. Note that the best
pair of sample configurations for each application varies from
one to another. Another interesting point to note is that in
some cases, e.g. Grep and HistogramMovies, the execution
time obtained by the best (in terms of approximation error)
pair of sample configurations is marginally (4%) higher than
SCS PCC. Note that while the estimation accuracy has an
important role in scheduling, it is not the only factor that
affects it. Other factors such as cluster specification and its
resources as well as scheduling algorithm also affect the final
results. That is why we see SCS PCC slightly outperforms
the best pair in two applications.

V. RELATED WORK

Profiling applications for resource allocation and schedul-
ing purpose is commonplace especially in data centers and
cloud environment [45]–[47]. To address the heterogeneous
MapReduce placement in cloud, [10] employs a subset of
MapReduce tasks and profiles them on all the available VM
configurations to obtain their performance. Then, it uses the
profiling information to allocate resources to all the MapRe-
duce tasks. A similar approach is employed by [30], but
instead of profiling a subset of tasks it profiles all the tasks
on all the VM configurations. This approach is suitable for
periodic MapReduce jobs where the number of tasks and their
data size is constant, but the data contents changes from job
to job. While these approaches use complete profiling, we use
partial profiling in our work and do not profile jobs on all the
VM configurations.

Leveraging matrix completion to estimate the performance
of applications on all the configurations is objective of [14],

[48]. In [14], each application is executed on two sample
configurations. Then it uses matrix completion to estimate
the performance of application on other configurations without
executing the application. Then, it uses obtained performance
values to choose the best configuration. Moreover, it estimates
the interference between applications again using matrix com-
pletion. It co-locates the applications on physical machines
based on obtained information to reduce performance degra-
dation due to contention between applications. The proposed
QoS ranking prediction framework in [48], employs matrix
completion to predict the ranking of functionally equivalent
cloud services without real world service invocations. It uses
the experience of past users to predict the QoS of each
service for current users. While both [14], [48] utilize matrix
completion, none of them considers the impact of sample
configurations or sample services on the accuracy of matrix
completion. However, we take into account this fact and depict
its influence on final results.

Several works [7]–[9], [11], [13], [49], [50] use partial
profiling in the process of resource allocation or scheduling
for MapReduce applications in cloud and data centers. The
prediction module in [13] employs locally weighted regression
to estimate the performance of MapReduce application. The
prediction module is fed by a job analyzer module that gathers
information from currently executed jobs. CRESP [9] presents
mathematical model for execution time of tasks based on
profiled information. HFSP [50] first estimates the size of jobs
based on a sample subset of tasks and then schedules the jobs
on cluster according to their size. Using Starfish [51] profiling
tool, Cura [7] proposes a resource allocation mechanism to
reduce cost of VMs for executing Hadoop jobs in cloud.

In the following, we will discuss Starfish [51] and MRTuner
[52] in more details and explain their difference with our
approach. First, we explain the mechanism that they use in
their what-if engines. Prior to using the engine, a job or
workload needs to be profiled executing a certain percent
of its tasks on a cluster. Using this profiling, they construct
a job profile that consists of information such as execution
time of different phases and tasks, CPU and IO cost of tasks
and subtasks, and amount of read and written bytes. After
that, when the user sends a query to system to evaluate a
new setting (e.g. change in number of nodes, MapReduce
parameters, input data), the system tries to construct a virtual
profile for job based on previous real one. After constructing
the virtual profile, using simulation, they estimate different
parameters such as total execution time of job under new
settings. The process of constructing virtual profile and es-
timating performance on new settings is done through a what-
if-engine. The what-if-engine uses a mixture of black-box
and white-box models to construct the virtual profiles. During
the process of constructing virtual profiles, it may need to
generate training data by running actual jobs for black-box
models. Finally, after the constructing virtual profile for a
certain scenario, they simulate the virtual profile to obtain the
final performance of job on the hypothetical cluster and under
hypothetical MapReduce configurations.

For analyzing different cluster configurations (e.g., changing
the number of nodes in cluster or changing the type of nodes),



0.0

0.5

1.0

Adja
ce

nc
yL

ist

Clas
sif

ica
tio

n
Gre

p

Hist
og

ra
m

M
ov

ies

Hist
og

ra
m

Rat
ing

s

Inv
er

te
dI

nd
ex

KM
ea

ns

PiE
sti

m
at

or

Ran
ke

dI
nv

er
te

dI
nd

ex

Self
Jo

in

Seq
ue

nc
eC

ou
nt

Te
ra

Sor
t

Te
rm

Ve
cto

r

W
or

dC
ou

nt

N
or

m
al

iz
ed

 A
ve

ra
ge

 M
ak

es
pa

n 
of

 F
iv

e 
R

an
do

m
 S

am
pl

es
 to

 S
C

S
_P

C
C

Fig. 9. Normalized average makespan of scheduling using all the five random samples to the SCS PCC for different applications. Except for HistogramRatings
and Selfjoin applications, in other applications the average execution time of random samples is higher than SCS PCC.

the what-if engine needs to know the performance of job on
all the available machine configurations. For example, if the
cloud consists of 10 different VM configurations, it needs
to profile the job on all of them. In other words, it cannot
estimate the performance of job on a VM configuration by
knowing performance on other VM configurations and needs
to use complete profiling. Here, our proposed SCS approach
can tackle the problem of complete profiling. The relationship
between our approach and what-if engine is depicted in Fig.
10. This figure indicates that Starfish is not an alternative for
our approach, but complementary to it. Our SCS approach can
estimate the performance of new jobs on VMs and Starfish can
use them to evaluate and analyze different scenarios.

VI. CONCLUSION

Obtaining accurate estimation for performance of appli-
cations on VM configurations in cloud can lead to better
resource allocation and scheduling, and consequently, to faster
execution. Matrix completion is among well-known estimation
methods that use partial profiling to estimate the performance.
It first profiles the applications on a subset of configurations
(sample configurations) and then estimates the performance of
application on all the remaining configurations. Our studies
show that the choice of these sample configurations has
direct impact on the estimation accuracy, and hence, choosing
them wisely can improve the precision of matrix completion.
In this work, we proposed the SCS approach that selects
the sample configurations based on correlation coefficient.
Our experiments illustrate that SCS improves the accuracy
significantly. Further evaluations show that this more accurate
estimation leads to better scheduling by a makespan minimiza-
tion algorithm. The algorithm, powered by our SCS estimation

engine, improved the execution time of applications up to 36%
compared against random selection of sample configurations.

The best pair of sample configurations differs per appli-
cation. We saw in Fig. 6 that the best pair can still further
decrease the approximation error compared with SCS; we
showed this can further reduce makespan by 6% on average in
Fig. 8. Finding this pair for each application is an interesting
direction for future research. Another direction for future work
is proposing new metrics or approaches to select the sample
configurations. For example, we can use clustering methods
instead of correlation coefficient to identify the dichotomy
between configurations. Furthermore, exploring the proper
number of sample configurations, to best represent a given
training set, based on the number of configurations present in
that set is another open avenue for further research.
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