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Abstract—MapReduce has become a popular paradigm for
Big Data processing. Each MapReduce Application has two
phases: Map and Reduce. Each phase consist of several tasks
in a defaulted sequence of processes. It is common place to
determine the number of Map tasks equal to the number of
data blocks in the input data. However, there is no specific
rule for determining the number of Reduce tasks based on
the amount of intermediate data generated by Map tasks or
the specifications of machines that execute the tasks. Since the
Reduce tasks bring the data into memory for processing, this may
lead to inefficient execution of application and even application
failure because of memory shortage or temporary consumption.
In this work, we first evaluate this challenge and show its
problematic significance. To address this challenge, we propose a
Mnemonic approach. Mnemonic leverages a profiling mechanism
to detect the application behavior regarding intermediate data
generation. It first decides the amount of memory to be dedicated
to each Reduce slot. Then it determines the number of Reduce
tasks based on the gathered information through profiling and
the decided size of memory for Reduce slots. Experimental
results using PUMA benchmark suit indicates that our proposed
memory-aware approach can 1) completely remove the likelihood
of application failure due to out of memory error and 2) decrease
the execution time of Reduce phase up to 58.27%, 79.36%, and
88.79% compared with Memory Oblivious, Fine Grain 1, and
Fine Grain 2 approaches, respectively.

Index Terms—MapReduce, Hadoop, Big Data Processing,
Memory-awareness I. INTRODUCTION

MAPREDUCE [1] and its open source implementation,
Hadoop [2], has emerged as manageable, scalable, and

fault tolerant framework for processing big data. MapReduce
has two phases: Map and Reduce. In the Map phase, the input
data, in the form of data blocks, is processed by Map tasks
to generate intermediate data. Each Map task processes one
data block. After that, the intermediate data is handled by
Reduce tasks of Reduce phase to deliver the final results.
Reduce tasks bring the intermediate data chunks to memory
to process it. Despite the Map phase, where the number of
tasks is determined by the number of data blocks, in Reduce
phase the number of tasks can be determined by user or cluster
administrator. The ability to manage intermediate data, as
well as determination of amount of Reduce tasks, significantly
affects the performance. A large body of research has tried to
improve the storage performance [3], [4] or use compression
techniques in order to reduce the volume of intermediate data
[5], [6]. The intermediate data movement time during shuffle
phase is addressed in [7]–[9]. However, neither of them has
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addressed the memory limitation in Reduce phase, which can
lead to job abortion, or proper number of Reduce tasks.

As described above, all the previous works has concentrated
on storage or network regarding intermediate data or solely
focused on ratio between slots and disregarded slots internal
configuration. While saturation of storage IO operations or
network bandwidth can lead to performance degradation of Re-
duce phase, the good news is that the MapReduce application
would not be killed in such cases by the Hadoop framework
and continues its execution although slowly. However, in case
of out of memory error, the job is killed since the Reduce phase
needs to bring large portions of intermediate data into memory
for processing. If there is not enough space left in memory,
the Reduce tasks and consequently the Reduce phase will fail
which leads to job termination by Hadoop. This is a major
difference between shortage of memory vs. other resources
such as disk/network IO or CPU in MapReduce applications
and makes it a significant challenge to conquer. Albeit similar
to other resources if the memory becomes the bottleneck, one
will face performance degradation even if the job is not killed.
Moreover, according to study on a real world Hadoop cluster
[10], one-third of all misconfiguration problems in cluster are
related to memory mismanagement. This further emphasizes
the importance of proper memory tuning to avoid problems
and improve performance.

It is noteworthy that out of memory is not the only reason
for failures of MapReduce jobs; there are also other factors
such as disk failure, out of disk, and socket timeouts that might
also lead to failure [4], [11]–[14]. Such causes are however
fundamentally different from the focus of this work since they
are imposed by external effects (e.g., by faults in case of disk
failure and network timeouts, or lack of enough resources such
as disk space), whereas in our case, the main cause of the
failure is internal to the operation of the application; thus we
consider such above factors as out of scope of this paper.

In this work, we propose and implement a new memory-
aware technique to determine the number of Reduce tasks as
well as reconfiguration of Reduce slots. The primary objective
of this technique is avoiding job abortion due to lack of
memory in Reduce phase. Furthermore, it aims to increase
the performance of Reduce phase and consequently, decrease
the execution time of applications. The key idea of this new
technique, called Mnemonic, is to automate the configuration
of Reduce slots in term of memory as well as determination
of number of Reduce tasks. The first step of Mnemonic is
to determine the memory size of each Reduce slot based on
the available memory of machine that hosts the slots. At the
same time, it estimates the volume of intermediate data that is



going to be generated through profiling. Finally, it determines
the number of Reduce tasks based on the memory size of
slots and estimated volume of intermediate data. We have
implemented Mnemonic using Hadoop v1.2.1 and evaluated
our proposed approach; we have used applications and data
sets of representative PUMA MapReduce benchmark suit
[15]. Our experimental results indicate that Mnemonic can
completely omit the job failure related to lack of memory.
It also can reduce the execution time of Reduce phase by
up to 58.27%, 79.36%, and 88.79% compared with Memory
Oblivious approach and two Fine Grain algorithms - see
section III - respectively.

Our major contributions in this work are as follows:

• We accentuate the impact of memory limitation on man-
agement of intermediate data in Reduce phase of MapRe-
duce applications and show how memory limitation can
lead to job failure or serious performance degradation.

• We investigate the slot configuration in Hadoop clusters
in more details compared with previous approaches and
configure each individual slot in term of memory size.

• We propose Mnemonic mechanism and implement it
in Hadoop to determine number of Reduce tasks with
respect to volume of intermediate data and memory
size of Reduce slots. Experimental results indicate that
Mnemonic can completely eliminate job failure due
to memory limitation. Furthermore, it can increase the
performance of applications compared with three rival
approaches.

The rest of the paper is organized as follows. We have
motivated our work in section I-A. The architecture of our new
approach, Mnemonic, is presented in section II. Experimental
results for evaluating the proposed approach are illustrated in
section III. We review the related work in section IV. Finally,
we conclude the paper and draw new directions for further
research in section V.

A. Motivation

For a number of applications, the Reduce phase has a
short execution time, while for many others it contributes
significantly to total execution time. To quantify this, we have
run nine applications from PUMA benchmark suit [15] with
1 GB to 6 GB input data size. The execution time breakdown
of these applications is presented in Fig.1 (see Section 3 for
specs of platform which results are obtained by). When the
size of input data is increased from 1 GB (a) to 6 GB (b),
for three applications (e.g., Classification, HistogramMovies,
HistogramRatings) the share of Reduce phase in total execu-
tion time drops down dramatically. We can conclude that in
these applications the execution time of Reduce phase for large
scale jobs is negligible. However, for the rest of applications
the execution time of Reduce phase grows up almost linearly
with the volume of input data. We can also perceive from Fig.1
that the Reduce phase can contribute more than 50% to total
execution time, and hence, it is important to reduce this time.

After showing the considerable share of Reduce phase in
total execution time, we demonstrate the sensitivity of Reduce

(a) Input Data = 1 GB

(b) Input Data = 6 GB
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Fig. 1. Share of Map phase and Reduce phase in total execution time. In
six out of nine applications, share of Reduce phase is significant and even
surpasses the Map phase. By increasing the size of input data from 1GB to
6GB, this share is constant or even on the increase. Consequently, it worth
trying decreases execution time of Reduce phase.

phase to available memory. Fig.2 illustrates average and max-
imum memory usage of each phase for different input sizes.
While Map phase memory usage is effectively independent of
input size, Reduce phase memory usage significantly changes
with input size. Thus, tuning the memory size can improve
the performance of Reduce phase. These observations can
be intuitively justified as below: During transfer of input
data to HDFS, input data is divided into equal size chunks
(default size in Hadoop is 64MB) and each Map task processes
one chunk at a time. Consequently, the Map phase always
consumes the same amount of memory provided that the
number of concurrent Map tasks, which is equal to the number
of Map slots, is constant. However, in the Reduce phase, total
number of Reduce tasks is set in benchmark configuration
files, and hence, depending on the input data and the resulting
intermediate data size, Reduce tasks need to bring different
amounts of intermediate data into memory to process . Despite
predetermined number of Map tasks and their set input data
size, Reduce phase is not set and can be changed to better
manage memory during processing and improve performance.

As described in Fig.1, for six out of nine applications, the
execution time of Reduce phase contributes significantly to
total execution time. We have run those applications eight
times and each time we only changed the number of Reduce
tasks to evaluate its effect on performance of Reduce phase.
The machine we use in the experiments has 4 Reduce slots
with 4 GB of RAM for each slot. The total memory available
in the machine is 7 GB so the slots share the memory with each
other. The depicted results in Fig.3 indicate that in a number
of experiments, the Reduce phase cannot be completed and
consequently the job fails, and hence, no point is plotted in
the figure. We can also perceive from Fig.3 that execution
time varies by the number of Reduce tasks. Up to this point,
this implicates that number of Reduce tasks directly affects
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Fig. 2. Memory usage pattern of Map and Reduce phases for different sizes of input data. For Map phase (left column) both average and maximum memory
usage are almost constant and independent of size of input data. In contrast, Reduce phase (right column) shows different memory usage under different input
data. We conclude that tuning memory usage can affect performance of Reduce phase, while it might not be effective regarding Map phase.
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Fig. 3. Impact of number of Reduce tasks on Reduce phase performance.
The points that are not plotted indicate job failure because of out of memory
error in Reduce phase. We also can perceive the impact of number of reduce
tasks on the performance. We see that different number of Reduce tasks yields
different execution times.

the status of Reduce phase (finished/killed) as well as its
performance.

Now, we plot the maximum memory usage of applications
for different number of Reduce tasks and compare it against

total memory of machine that has executed the applications.
Comparing the results presented in Fig.4 with Fig.3, it clearly
show that whenever the memory usage has approached the
total memory, the application has encountered out of memory
error and consequently failed. As an example, in Adjacen-
cyList application we can see that except for one Reduce
task, for other number of Reduce tasks the maximum memory
usage has approached the total memory and consequently the
job has failed. So, in Fig.3 only one point is plotted for this
application. The same happens for RankedInvertedIndex and
SequenceCount applications when they have 4 or 5 Reduce
tasks and consequently they fail too. This can be justified as
follows:

We mentioned earlier that number of Reduce slots of
machine is four. Thus the machine can run four Reduce tasks
simultaneously. When the number of Reduce tasks is four, all
of them will be run. Consequently, all the intermediate data is
being brought into memory for processing. In SequenceCount
and RankedInvertedIndex applications, the amount of interme-
diate data is more than 6 GB. Since the machine’s memory
capacity is 7GB and a portion of it is reserved for OS and other
applications functionalities, the out of memory error occurs
and job fails. Almost the same happens in the case of five
Reduce tasks. However, when the number of Reduce tasks is
one, two, or three, we do not observe the same phenomena
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Fig. 4. Maximum memory usage of applications under different number of
reduce tasks. Comparing this figure and Figure 3 illustrates that when memory
usage approaches total memory and begins to exceed it, Reduce phase fails
and consequently we face job failure.

for SequenceCount and RankedInvertedIndex. The reason is
that for those numbers of Reduce tasks, the CPU becomes
bottleneck and hence, the applications cannot bring all the
intermediate data into the memory. So, no out of memory
error occurs.

II. MNEMONIC ARCHITECTURE

According to the observations in section I-A, it is important
to determine the number of Reduce tasks with respect to
total memory in order to avoid job failure and simultaneously
improve the performance of Reduce phase. Since the memory
is distributed among the slots and tasks are also executed
by those slots, the first step in a memory aware approach
should be determining the size of memory dedicated to each
slot. After that, the number of Reduce tasks should be de-
termined accordingly. Memory size of each slot and volume
of intermediate data are two important factors that should
be considered when determining number of Reduce tasks.
As previously mentioned, memory size of slots is important
because they run the Reduce tasks. Furthermore, Reduce tasks
process the intermediate data, so the volume of intermediate
data is another decisive factor.

We have designed Mnemonic to tackle the problems related
to memory in Reduce phase of MapReduce applications.
Mnemonic is a memory-aware approach that aims to 1)
completely eliminate the probability of job failure due to
insufficient memory and 2) increase the performance of Re-
duce phase by determining the proper number of reduce tasks
considering the amount of available memory. Fig.5 illustrates
the architecture of Mnemonic by a walk through.

Mnemonic uses profiling to collect information about vol-
ume of intermediate data generated by Map phase. It first
executes the application for a sample input data and profiles
the amount of intermediate data. By the use of gathered
information in previous step and the size of input data for each

Sample Input Data

Available Memory of Machine

No. of Reduce Slots of Machine

Memory-aware Tuner

Amount of memory for Reduce slot : 8/4  =2 GB

Detecting memory demand of reduce function : 0.2 GB

Accessible memory of Reduce slot : 2 – 0.2 = 1.8 GB

Number of Reduce tasks : ceil (195.3/1.8, 4) = 112

Intermediate Data Profiler

Size of Input Data of Machine

Intermediate Data Estimator

Number of Reduce TasksAmount of Memory for each Slot

1 GB

400 MB

500 GB

195.3 GB

8 GB

4

2 GB 112

Hadoop Parameters

Fig. 5. Flow of Mnemonic memory tuning approach.

machine in cluster that executes the application, Mnemonic
estimates the amount of intermediate data that will be gener-
ated on each machine. Firstly our observations implicate that
there is a linear relationship between the size of input data
and volume of generated intermediate data in our employed
applications. Fig.6 depicts this linear relationship, which we
use to estimate the amount of generated intermediate data
for large scale jobs with substantial input data. It should be
noted that this linear relationship might not be applicable to
all the applications. A second possible case is where there is
a deterministic but nonlinear behavior; in such case, a once-
off profiling to identify the pattern of generated intermediate
data size would be enough. The linear estimator then can
be replaced by this obtained pattern in the Intermediate Data
Estimator module in Fig.5. The third possible pattern of size of
intermediate data generation is a non-deterministic behavior.
In this pattern, the amount of intermediate data depends
completely on the input data. With change in input data, the
pattern would dramatically change. Our Mnemonic approach
can handle the first and second ones (linear and nonlinear
behaviors), but would lose its effectiveness in case of non-
deterministic behavior until equipped with a suitable prediction
mechanism.

Similar to collected data-side information, Mnemonic needs
information from machine-side too. It needs to have knowl-
edge about the number of configured reduce slots on the
machine and also the available memory of it. Memory-aware
Tuner module in Fig.5 utilizes data-side and machine-side
information and determines 1) amount of memory for each



Reduce slot and 2) number of Reduce tasks. Since it is
common practice to set one Map slot and one Reduce slot
per core [16], [17], each Reduce slot has one core which
determines the computing capacity of it. Our experiments
reveal that regarding memory size of Reduce slots, the best
practice is to divide the memory among slots equally as long
as the cores of machine are homogeneous.

In addition to volume of intermediate data and memory
size of reduce slots, number of Reduce tasks also depends on
memory demand of Reduce function of application. One simple
way for determining the number of Reduce tasks is to divide
the volume of intermediate data by the amount of memory
for Reduce slot - Memory-aware Tuner in Fig.5. While this
solution might seem very fast and easy, it ignores the memory
demand of the Reduce function that processes the data. Since
the Reduce task processes data in memory, discarding memory
demand of the Reduce function will lead to memory overload
and consequently job failure. Mnemonic considers this fact and
identifies the memory demand of Reduce function to subtract
it from memory size of Reduce slot to obtain the accessible
memory of Reduce slot - see Memory-aware Tuner module in
Fig.5.

After that, Mnemonic proceeds to specify the number of
Reduce tasks. It first divides the volume of intermediate data
by the accessible memory of Reduce slot. Then, it maps the ob-
tained number to the smallest following integer, that is a multi-
ple of number of Reduce slots of machine, using ceil function.
The reason for a ceiling is to increase the parallelism of
Reduce tasks execution. The Hadoop receives the determined
number of Reduce tasks as well as the memory amount of each
slot and sets its corresponding internal parameters with respect
to them. To set the memory amount of each slot, Mnemonic
changes the amount of mapred.reduce.child.java.opts parame-
ter in mapred-site.xml file and overrides the default value for
each individual slave node. To set the number of Reduce tasks,
this should be applied in the configuration files of the appli-
cation; Mnemonic applies the proper values per application in
the PUMA benchmark suit.

The overheads of Mnemonic can be broken down into two
parts: offline and online. The main overhead imposed by
Mnemonic is the profiling phase,which is offline and once-
off, where it wants to derive the pattern of intermediate data
generation. Since in this phase only a small portion of input
data is profiled, the overhead is negligible compared with total
execution time of job. Moreover, this overhead is compen-
sated by the improvement in performance of application due
to proper memory management. For repeating jobs, which
includes most of practical uses, it can be overlapped with the
first run of the job to hide even this small overhead for the
next runs. The other overheads of Mnemonic are (i) computing
and (ii) setting the memory amount of each slot by changing
the configuration options in configuration file of each slave.
The computation is of O(1) but settings should be done per
slave node, so time complexity of this part is O(n) where n is
the number of slaves in Hadoop cluster. We can see that the
online part of our technique is a light-weight mechanism with
negligible performance overhead even at large datasets since
it is independent from data size.
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Fig. 6. Linear relationship between size of input data and volume of
intermediate data. We estimate the amount of intermediate data for large input
data according to this linear relationship. However, in some applications we
see nonlinear relationship. Even in that case, once-off profiling can help find
the pattern of relationship.

In this paragraph, we discuss the multi-job environments
because many Hadoop clusters operate in such mode. While
we have assumed an environment with single job running at
each time, our approach is still applicable in a multi-tenant
environment, such as clouds, where the (virtual) machines are
not shared among jobs and every job has its own machines.
Even if the machines are shared among jobs, we can consider
the worst case scenario and adjust the parameters accordingly.
In this situation, the only parameter that needs adjustment is
the memory demand for Reduce function - see Fig.5. We can
consider the worst case for it and then determine the amount
of slot memory based on that. Then, for each job we can
determine the number of Reduce tasks separately based on
the slots memory and continue as before.

III. EVALUATION

We use six applications and their corresponding input data
set from PUMA benchmark suit to evaluate our proposed
approach. The algorithms and implementations of benchmark
applications are publicly available from PUMA suit [15]. We
have used the same implementation without any change. The
applications are:

• Adjacency-List: for each vertex of a graph, produces the
list of its neighbors. The results can be used in algorithms
such as PageRank.

• Inverted-Index: generates the mapping of word to docu-
ment for a set of documents and their constituent words.

• Ranked-Inverted-Index: for a list of words and number of
their repetitions in documents, generates the decreasing
list of documents that given words appears in them.

• Self-Join: gets the association of k fields and generates it
for k+1 field.

• Sequence-Count: finds the number of all individual sets
of three successive words per document.



• Word-Count: calculates the number of appearance of each
word in a set of documents

Hadoop version 1.2.1 is used as the MapReduce framework
on a machine with four cores and 7 GB of RAM. While
we have used Hadoop version 1 in our work, Mnemonic
is applicable to newer version of Hadoop, Yarn [18], too.
The only difference between Hadoop version 1 and Yarn,
concerning our work, would be the name of parameters that
Mnemonic needs to modify, but the main concept remains the
same. The operating system of machine is Ubuntu 12.04. The
size of input data of all the applications is 6 GB from data sets
in PUMA suit [15]. The PUMA data sets are publicly available
similar to PUMA applications. Data sets are accessible in
different sizes and one can download a portion or all of them.
We have used a portion of data but we have not applied any
kind of filtering on them and used the raw data intact, and
this is the same setup used for all previous observations. We
compare Mnemonic with three rival approaches:

• Memory Oblivious: this approach is neither aware of
memory size of Reduce slots nor memory demand of
Reduce tasks. It uses an inefficient profiling mechanism
that changes the number of Reduce tasks from one to
eight and chooses the one with the best performance.

• Fine Grain 1 and Fine Grain 2: the main concept of
Fine Grain approach is to increase the number of Reduce
tasks to decrease chance of job failure. The higher the
number of Reduce tasks, the lower their input data size.
This lower input size leads to lower memory demand
when executing in parallel. Therefore, this lower memory
demand decreases the possibility of job failure due to lack
of memory. While this approach tries to avoid job failure,
it does not pay attention to job performance. We see the
effect of performance ignorance of this approach in the
following figures. The number of Reduce tasks in this
approach is constant and equals to 64 and 128 for Fine
Grain 1 and Fine Grain 2 respectively.

Fig.7 depicts the execution time of Reduce phase by dif-
ferent approaches. As can be seen, our proposed Mnemonic
approach can surpass all the other ones in all the applica-
tions. The average reduction of execution time compared with
Memory Oblivious, Fine Grain 1 and Fine Grain 2 is 19.8%,
42.58%, and 62.78% and the maximum is 58.27%, 79.36%,
and 88.79% respectively. These results also indicate that
Fine Grain approach sacrifices performance to avoid memory
shortage. The performance of this approach is usually the
worst. Even Memory Oblivious yields better performance in a
number of applications. The source of such poor performance
is the overhead of task creation and termination. When the
number of Reduce tasks increase, the negative impact of
this overhead on performance becomes more significant. The
value of profiling is the other conclusion that can be derived
from Fig.7. Comparing Fine Grain approach with Mnemonic
and Memory Oblivious indicates that while profiling imposes
overhead, it can improve the performance if used wisely.

After evaluating the effect of different approaches on perfor-
mance, in the following we discuss the results in more details.
Fig.8 illustrates the maximum memory usage, average memory
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Fig. 7. Execution time of Reduce phase under different approaches.
Mnemonic can always yield the best performance since it considers volume
of intermediate data as well as memory size of slots when deciding on the
number of Reduce tasks.

usage, and average CPU utilization of Reduce phase. It also
presents number of Reduce tasks decided and created by each
approach.

If we take a closer look to the number of Reduce tasks in
Fig.8(a), we can see that while they are constant in both Fine
Grain cases, they vary in Memory Oblivious and Mnemonic.
The amount of variation in Memory Oblivious is low since
it only changes the number between one and eight. However,
for Mnemonic the amount of variation is higher (from 4 to
40). It shows that Mnemonic effectively leverages the different
behavior of applications in terms of intermediate data and
decides on the number of Reduce tasks based on that. The
average utilization of CPU - see Fig.8(b) - for Fine Grain is
higher than others while its performance is lower. It confirms
that the overhead of Reduce tasks creation and termination
significantly wastes a portion of CPU time. Furthermore, the
low CPUutilization of Memory Oblivious demonstrates its
weakness in using the resources efficiently. The Mnemonic
stands between two approaches and can effectively use the
CPU to achieve high performance.

Considering the memory usage pattern of Memory Oblivi-
ous and Fine Grain in Fig.8(c) and Fig.8(d), we conclude that
their behavior with respect to memory is as the opposite of
their CPU behavior. For example, the memory utilization of
Fine Grain is lower than Memory oblivious since the size of
Reduce tasks data is smaller. So it cannot utilize the accessible
memory effectively to lessen the execution time of Reduce
phase. The Mnemonic again stands between other approaches.

The conclusion derived from memory and CPU usage
information is that Mnemonic is successful in improving
performance of Reduce phase because it can leverage available
resources simultaneously. Unlike Mnemonic, the two other
approaches lack effective use of either memory (Fine Grain)
or CPU (Memory Oblivious), and hence, they cannot reach
the performance of Mnemonic.
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Fig. 8. The results in more details. (a) indicates the number of Reduce tasks by each approach. While fine grain approaches always have the same number of
Reduce tasks for every job, Mnemonic chooses different number of tasks based on application characteristics. The average CPU utilization is shown in (b).
The average memory usage and maximum memory usage is illustrated in (c) and (d) respectively.

IV. RELATED WORK

An Important direction for enhancing the performance
of MapReduce applications is considering intermediate data.
Since the Reduce phase processes the intermediate data to
generate final result, any technique that can improve the man-
agement of intermediate data will lead to better performance
in Reduce phase. Hadoop stores the intermediate data on local
disk of nodes temporary prior to being processed by Reduce
tasks. Hence, several techniques are proposed to improve the
performance of storage system for intermediate data [3], [4],
[19]. Two common policies for storing/replicating intermediate
data in Hadoop are locally stored (LS) and Distributed File
System (DFS). The former stores the intermediate data on the
same node that has generated it, while the latter distributes it
on several nodes. Reference [3] studies the impact of afore-
mentioned policies on job reliability and energy consumption.
In the presence of LS approach, machine failure leads to
intermediate data lost. Consequently, all the previous tasks
should be re-executed to generate it again. So, [4] prefers DFS
rather than LS and proposes BlobSeer as the storage layer to
realize DFS. Compressing the intermediate data in order to
minimize its volume and consequently improve the storage I/O
performance is proposed by [5], [6], [20]. Reducing movement
time of intermediate data during shuffle phase [7]–[9] can
increase the performance of MapReduce applications. Hence,
approaches such as ShuffleWatcher [9] and JVM bypassing [7]

are introduced to address it. Since none of the above works
has addressed the memory issue of intermediate data, our work
can be assumed as complementary to them.

V. CONCLUSION

Memory has an important role in the performance of Reduce
phase in many MapReduce applications. It not only can
degrade the performance, but also can lead to job failure due
to lack of memory. So, if an approach considers memory
correctly in the process of decision making about Reduce slots
configuration as well as number of Reduce tasks, it can achieve
high performance. Our memory aware approach, Mnemonic,
considers this fact and achieves high performance compared
with Memory Oblivious and Fine Grain approaches. Our major
contributions in this approach are 1) accentuating the impact
of memory on intermediate data management, 2) investigating
the slot configuration and configure memory size of each slot,
and 3) setting the number of Reduce tasks as well as memory
size of Reduce slots properly to eliminate job failure and
increase the performance of applications. The experimental
results indicate that while Mnemonic can outperform other
approaches, it still cannot fully utilize the available computing
resource e.g., memory and CPU. This warrants further work
and analysis for more efficient approaches that can achieve
higher performance.
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