
Data Locality and VM Interference Aware Mitigation of
Data Skew in Hadoop Leveraging Modern Portfolio Theory

Seyed Morteza Nabavinejad
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

mnabavi@ce.sharif.edu

Maziar Goudarzi
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

goudarzi@sharif.edu

ABSTRACT
Data skew, which is the result of uneven distribution of data among
tasks in big data processing frameworks such as MapReduce, causes
significant variation in the execution time of tasks and makes their
placement on computing resources more challenging. Moreover,
with the proliferation of big data processing in the cloud, the inter-
ference among virtual machines co-located on the same physical
machine exacerbates the aforementioned variation. To tackle this
challenge, we propose Locality and Interference aware Portfolio-
based Task Assignment (LIPTA) approach. LIPTA leverages the
modern portfolio theory to mitigate the variation in execution time
of tasks while considering the interference of virtual machines and
locality of input data. It selects and assigns groups of tasks (the
portfolio) to each machine such that variation of their total execu-
tion time is reduced due to portfolio effect. Experimental results
using real-world workload logs demonstrate the effectiveness of
our LIPTA approach. It can reduce the total execution time of work-
loads by up to 46.7% compared with several variation-oblivious
approaches.

CCS CONCEPTS
• General and reference → Performance; • Computer sys-
tems organization → Cloud computing;

KEYWORDS
cloud computing, big data, data skew, portfolio theory

ACM Reference Format:
Seyed Morteza Nabavinejad and Maziar Goudarzi. 2019. Data Locality and
VM Interference AwareMitigation of Data Skew in Hadoop LeveragingMod-
ern Portfolio Theory. In Proceedings of ACM SAC Conference (SAC’18). ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Data skew is an inevitable feature of jobs in big data processing
frameworks such as MapReduce [5]. It can dramatically change the
execution time of tasks and create significant variation among them,
which makes the resource allocation and task assignment of big
data jobs an arduous challenge. It also has detrimental impact on
the current proposed performance estimation [2, 12, 17, 27, 28, 35]
and resource allocation and task scheduling [21, 22, 26, 29, 36]
approaches for big data jobs that are data skew-oblivious. These
approaches profile the tasks prior to allocation/scheduling to predict

SAC’18, April 9-13, 2018, Pau,France
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the execution time of tasks (and not their distribution) or their
resource demand. Changing the input data affects the data skew
pattern and its impact on tasks, and hence, makes the profiling
mechanism of these approaches less effective. BothMap and Reduce
tasks suffer from this phenomenon in MapReduce applications and
a large body of research has tried to tackle this issue [4, 10, 19].
Most of the currently proposed approaches address data skew in
Reduce tasks by modifying the partitioning phase of MapReduce
applications [4, 13, 23, 33, 38]. However, only a few approaches try
to tackle the data skew problem in Map tasks [10]. The reason is
that applications have control over the input data of Reduce tasks.
They can partition the key-value pairs of intermediate data (which
is the input of Reduce phase) and determine the input size and input
distribution of Reduce tasks. But for Map tasks, usually, the input
data (data chunks or data blocks) are already copied to the HDFS
and application has no control over them.

Moreover, with the explosive growth of big data processing,
using the cloud to provide the computing and storage resources
for big data applications is on the increase. Users deploy their
applications either on public clouds that offer dedicated services for
big data processing such as Amazon EMR [1] or on private clouds.
Processing big data on the cloud has various advantages such as
VM migration [20] which can facilitate resource management. But,
it also introduces challenges such as VM interference [24] that can
exacerbate the variation of tasks’ execution time caused by data
skew.

Previous approaches such as FlexSlot [10] address the data skew
in Map tasks by changing the resources of their corresponding slots
rather than task assignment. FlexSlot first identifies the stragglers,
tasks that are slower than average, and then increases the resources
of their slots to improve their performance. The low performance
of a task might be the result of data skew or the interference among
VMs. It also uses the speculative execution to further mitigate data
skew. While these mechanisms can improve the performance of
applications, they impose resource overhead and extra monetary
cost due to concurrent execution of several instances of one task.
Furthermore, when FlexSlot decides to increase the slot’s resources
of a machine due to VM interference, it does not readjust its re-
sources after the VM interference is resolved, which can lead to
resource under-utilization.

To tackle the execution time variation of MapReduce applica-
tions, as well as the interference among co-located VMs in the cloud,
we propose our Locality and Interference Aware Portfolio-based
Task Assignment (LIPTA) approach. LIPTA considers an environ-
ment where several MapReduce jobs share the same VM cluster and
execution time of tasks of each job has its own normal distribution.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SAC’18, April 9-13, 2018, Pau,France Seyed Morteza Nabavinejad and Maziar Goudarzi

To have the distribution of tasks’ execution time, our approach uses
profiling. However, unlike other approaches, it does not rely on the
exact value of execution time of tasks, but only needs mean and
standard deviation of tasks’ execution time. It leverages the portfo-
lio effect introduced in section 2.2 to reduce the execution time of
tasks assigned to each machine. Furthermore, It takes into account
both placement of input blocks on machines (data locality) and
VM interference when assigning tasks to VMs. Moreover, LIPTA
divides tasks into several subsets of tasks and assign each subset in
one interval, instead of assigning all the tasks at the beginning. By
this, LIPTA is able to adapt itself to changes that happen during the
course of time such as VM interference. The overall flow of LIPTA
is depicted in Figure 1

In this study, we discuss the MapReduce applications because the
real world workloads that we have belongs to a Hadoop cluster that
executes such applications. However, the proposed approach can be
generalized to any other programming paradigm that suffers data
skew or VM interference, and the data locality affects the execution
time of the tasks.

The rest of the paper is organized as follows: in section 2 we
discuss the motivation behind our study and introduce the required
mathematical background. Our proposed approach is introduced in
section 3. We evaluate our approach and present results of experi-
ments in section 4 and summarize the relevant previous works in
section 5. Finally, we conclude the paper and outline directions for
future research in section 6.

2 MOTIVATION AND BACKGROUND
In this section, we first present a motivational example to show the
wide variety of tasks’ execution time in MapReduce applications
using the Hadoop log dataset. After that, we discuss Modern Port-
folio Theory and explain how we are going to use it to mitigate the
variation of tasks’ execution time.

Input
Block

Vritual Machine

Input
Block

Vritual Machine

Input
Block

Vritual Machine

LIPTA

Interference and
Input Blocks Information

Interference

Job1 (μ1, σ1)

Job2 (μ2, σ2)

Job3 (μ3, σ3)

Job4 (μ4, σ4)

Job5 (μ5, σ5)

Subset of Tasks Chosen
for Assignment

Assigned Tasks to Machine

Distribution of Tasks’
Execution Time of Each

Job Obtained Via
Profiling

Figure 1: Overall flow of our proposed LIPTA approach

2.1 Motivational Example
To show how data skew affects the execution time of Map tasks in
MapReduce applications, we employ the Hadoop log dataset [31].
Depicting the execution time of Map tasks for several jobs of these
logs reveals a significant variation in them. Figure 2 demonstrates
this variation. jobs are identified by their ID in logs. We see that for
all 10 jobs, there is a wide gap between minimum and maximum
execution time of tasks and the variation is also very high; note that
the horizontal lines of each box in Figure 2 show the 25th , 50th ,
and 75th percentile of dots (execution time of tasks).

2.2 Mathematical Background
Modern Portfolio Theory (MPT) developed by Harry Markowitz
[25] is a theory of finance. Using this theory, an investor can form
his or her portfolio by selecting proportions of different assets
based on individual risk of each asset in order to reduce the risk
of the portfolio for a certain expected return. Return of each asset
is modeled as a normal distribution where the risk of the asset is
the standard deviation of the distribution. Since the correlation
between assets would affect the final risk of the portfolio, MPT
aims to reduce the risk of a portfolio by selecting the assets that do
not have a perfect correlation with each other [7, 32].

MPT leverages portfolio effect to reduce the risk. The portfolio
effect may be defined as follows: A reduction in variation (risk)
of returns on a portfolio, which is a proportional selection of dif-
ferent assets, compared with the average of the variations (risk)
of the individual assets. If we indicate each asset Xi with mean of
its return µi and standard deviation of its return, σi , then for the
portfolioY , which is a combination ofN assets, we would have [15]:

µY =
N∑
i=1

µXi ,σY =

√√√√ N∑
i=1

N∑
j=1

ρi jσiσj ≤
N∑
i=1

σi (1)

0.25

0.50

0.75

1.00

Jo
b_

53
18

Jo
b_

53
19

Jo
b_

53
23

Jo
b_

53
26

Jo
b_

53
27

Jo
b_

53
35

Jo
b_

53
42

Jo
b_

53
44

Jo
b_

54
57

Jo
b_

54
60

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

of
 M

ap
 T

as
ks

Figure 2: Percentiles (min, 25%, 50%, 75%, max) of execution
time of tasks for 10 jobs from Hadoop workloads log [31]

Data Locality and VM Interference Aware Mitigation of
Data Skew in Hadoop Leveraging Modern Portfolio Theory SAC’18, April 9-13, 2018, Pau,France

In (1), ρi j is the correlation coefficient between assets Xi and
X j . The mean of portfolio (µY) is the sum of the mean of N assets.
Assuming that there is no correlation between assets (ρi j = 0),
the expression under radical sign can be simplified as

∑N
i=1 σ

2
i .

Finally, it is obvious that
√∑N

i=1 σ
2
i ≤

∑N
i=1 σi , and hence, the

variation (risk) of portfolio would be less than or equal to all the N
assets. In our study, we consider the tasks of each job as assets and
each machine as a portfolio. we aim to leverage portfolio effect to
assign the tasks of MapReduce jobs to machines, reducing the total
runtime of machines and consequently, reducing the total cost. In
the current study, we suppose that there is no correlation between
jobs since there was no information about it in the logs. It is also
a valid assumption to consider no correlation between jobs when
they are processing independent data. However, in future works,
we are going to use approaches such as [6] for determining the
amount of interference between jobs that are processing the same
data but for different applications.

3 LOCALITY AND INTERFERENCE AWARE
PORTFOLIO-BASED TASK ASSIGNMENT

Before presenting our proposed approach, we describe all the pa-
rameters used in the rest of the paper in Table 1.

The pseudo-code of LIPTA is presented in Algorithm 1. Earlier
we mentioned that LIPTA uses statistics of the execution time of
tasks provided by logs to obtain the mean and standard deviation.
But, for tasks of new jobs (whose execution times are not known)
or new VM configurations (where the execution time profiles can
vary), LIPTA can use dynamic profiling (that can constantly update
execution time statistics) to address the limitation of static profiling.

The LIPTA does not assign all the tasks at once, but divides them
into several subsets and assign tasks of each subset in one iteration.
Assigning subsets instead of whole tasks, LIPTA is able to adapt
itself to VM interference fluctuation. The amount of interference

Table 1: List of the parameters used in the paper

Parameter Description

IF Interference Factor

LF Locality Factor

VMS Set of virtual machines

TS Set of tasks

µT Mean of task’s execution time

σT Standard deviation of task’s execution time

RST Set of machines that have replica of task’s input data

IDVM ID of VM

TAVM Set of tasks assigned to VM

RTVM runtime of VM

ST Subset of tasks

EVMT Estimated VM Execution Time

and its impact on the performance of VMs fully depends on the
co-located VMs and alters by any change in them such as change
of VM workload [18].We consider the effect of VM interference in
the LIPTA algorithm through IF parameter.

Waiting for one subset of tasks to finish completely before as-
signing the next one, imposes a delay. To avoid it, we can start
assignment of the next subset after the first machine finished ex-
ecution of all its tasks from the previous subset. Please note that
this mechanism is not employed in current version of LIPTA and
other approaches in experiments.

Effect of doing the task assignment in several iterations on the
MPT might be of question since the original theory was proposed
for single decision period. Several studies [8, 11] have analyzed that
how single-period problem should be modified if the true problem
is multi-period such as our task assignment problem. They have
found that considering reasonable assumptions, the case of multi-
period problem can be solved as a sequence of single-period ones.
However, the final optimum portfolio would be different from the
case of only one period of decision making [7]. Since our LIPTA
approach is not searching for the optimum portfolio, we can use
MPT in our task assignment iterations.

After dividing the tasks into subsets of tasks (line 1), LIPTA
proceeds with each subset. First, LIPTA uses mean time of each
task to estimate the total execution time of tasks in the subset.
Dividing the result by number of machines, LIPTA will have an
estimation of the execution time of each machine (lines 3 to 5).
This estimation helps LIPTA to assign the tasks to machines to
balance the execution time of machines against each other. It also
avoids some machines act as stragglers and waste the time and
resources of others. Next, LIPTA sorts the tasks based on their
standard deviation of execution time in descending order (line 6). It
helps the tasks with higher standard deviation being next to each
other, and hence, LIPTA can assign them to the same machine to
reduce their total standard deviation leveraging portfolio effect.

After estimating the expected execution time of machines and
sorting the tasks, it is time to assign the tasks to machines. For each
machine, LIPTA starts from the head of the subset, where tasks with
higher standard deviation are there, and assigns tasks one by one
to the machine. At this part, for the sake of locality, it only assigns
those tasks that the machine has a replica of their input block. Later,
if LIPTA decides to assign a task to a machine that has not a replica
of input data block of that task, it increases the execution time of
task by LF parameter to consider the effect of data locality. After
assigning each task, LIPTA calculates the runtime of the machine
using (1). If the runtime of the machine is more than EVMT ∗(1+β),
it removes the last task and continues examining the rest of them
(lines 8 to 13). We add β% to EVMT because earlier we saw that
the EVMT is an estimated value, and hence, we assume that the
runtime of machine can be β% less or more than the EVMT .

In the previous step, only the tasks that the machine has a replica
of their input block are assigned to it. However, it is possible that the
machine still has capacity for more tasks. If the estimated runtime
of current tasks assigned to machine is less than EVMT ∗ (1 − β)
(line 14), LIPTA tries to assign more tasks to machine similar to the
previous step, but this time without considering locality (lines 15
to 19).

SAC’18, April 9-13, 2018, Pau,France Seyed Morteza Nabavinejad and Maziar Goudarzi

Algorithm 1 Locality and Interference Aware Portfolio-based Task
Assignment (LIPTA)
1: Divide TS into M subsets
2: for each subset of tasks ST ∈ M do
3: for each task T ∈ ST do
4: mean = mean + µT
5: EVMT = mean/size(VMS)
6: Sort tasks of STi in descending order based on σT
7: for each virtual machine VM ∈ VMS do
8: for each unassigned task T ∈ ST do
9: if IDVM ∈ RST then
10: Temporarily assign T to VM
11: RTVM = (

∑
T ∈TAVM µT +√∑

T ∈TAVM σ 2
T) ∗ IFVM

12: if RTVM > EVMT ∗ (1 + β) then
13: Remove T from VM
14: if RTVM < EVMT ∗ (1 − β) then
15: for each unassigned task T ∈ ST do
16: Temporarily assign T to VM
17: RTVM = (

∑
T ∈TAVM µT ∗ LFVM,T +√∑

T ∈TAVM σ 2
T ∗ LF2VM,T) ∗ IFVM

18: if RTVM > EVMT ∗ (1 + β) then
19: Remove T from VM
20: for each unassigned task T ∈ ST do
21: Assign them to machines with least estimated

runtime in a round-robin fashion.

Lines 8 to 19 are repeated for each machine. Finally, if there are
still unassigned tasks, LIPTA assigns them to the machines with
the least estimated runtime in a round-robin fashion (lines 20 to 21).
These tasks might have remained unassigned as a result of EVMT
underestimation (total runtime estimated for machines being less
than total required time for executing tasks).

If we consider the number of tasks as n, number of subsets of
tasks asm, number of tasks in each subset as (n/m), and number
of machines as k , the time complexity of LIPTA can be analyzed
as follow: for loop in line 2 repeatsm times. Among for loops in
lines 3, 7, and 20, obviously the time complexity of loop in line 7 is
more than others since it traverses both machines and tasks while
the two others only traverse the tasks. Loops of lines 8 and 15 are
within for loop of line 7. They are executing sequentially and their
time complexity is the same (O(n/m)). We can conclude that for
loops of lines 2, 7 and either 8 or 15 determine the overall time
complexity of LIPTA, which is O(m × k × (n/m)) = O(k × n).

4 EVALUATION
In this section, we first describe the experimental setup, workloads,
and the comparison methods used in our experiments. After the
experimental setup description, we report the results of evaluating
LIPTA against other methods for different scenarios.

4.1 Experimental Setup
We have used seven workloads from Hadoop log dataset [31] in our
experiments. Each workload represents log of jobs for one month.

However, there is a slight difference between workloads and logs
since we have refined logs and removed some tasks or jobs such
as failed ones. Each workload consists of ten’s of MapReduce jobs
submitted to a cluster with 64 nodes. Since the original log consists
of 64 nodes, data such as ID of machines that have a replica of input
data of Map tasks is only available for those 64 machines. Hence,
we have also considered 64 machines in our experiments. A brief
description of workloads used in our experiments is presented in
Table 2. For each task of a job, there is various information such as
task type (Map or Reduce), job ID, task ID, task execution time, and
ID of machines that have a copy of input block of data for Map tasks.
Note that for most Map tasks in the logs there are three machines
that have the copy of input block (i.e., the replication parameter had
been set as three in HDFS settings). Since there is no information
about the number of slots of each machine, we have supposed that
each machine had one slot. We evaluated the performance of LIPTA
against three other methods explained as follow:

• Locality Aware (LA). This algorithm estimates the runtime
of machines before assigning tasks. After that, it assigns the
tasks to machines considering the data locality, but ignores
the VM interference [45].

• Interference Aware (IA). Same as LA estimates the runtime.
But this algorithm ignores data locality and only pays atten-
tion to VM interference [41].

• Interference and Locality Aware (ILA). Considers both local-
ity and interference. The locality has higher priority than
interference in this algorithm. This algorithm is closest to
LIPTA [3].

Please note that all the methods assign the tasks periodically,
and the tasks subsets are exactly the same as LIPTA regarding size
and tasks of each subset. Furthermore, LA, IA, and ILA use exactly
the same mechanism as LIPTA for estimating the initial runtime
of machines (lines 3 to 5 of Algorithm 1). However, none of them
employs the portfolio effect.

For including the impact of data locality, we set the value of 1.2
for the LF parameter in the experiments. In real-world clusters,
the value of LF is determined by the replication pattern of data
blocks among computing nodes. HDFS file system used in Hadoop
distributes the data among machines in the form of data blocks. To
increase the reliability of the cluster, HDFS creates several replicas
(default value is 3) of a data block on different machines. If a task
is placed on a machine that has not a replica of its input block,

Table 2: Brief description of workloads

Workload #
Corresponding
log in [31]

No. of jobs No. of tasks

1 2010-05 695 393075
2 2010-06 328 347455
3 2010-07 575 425271
4 2010-12 108 228150
5 2011-07 1261 276711
6 2012-03 1622 927361
7 2012-08 909 302431

Data Locality and VM Interference Aware Mitigation of
Data Skew in Hadoop Leveraging Modern Portfolio Theory SAC’18, April 9-13, 2018, Pau,France

then we increase the execution time of task on that machine by
LF factor. Later in section 4.2.1, we study the impact of LF on the
performance of our approach and other methods.

We also have considered the value of 1.2 for the IF parameter.
We randomly assign this value to around 10% of machines in each
task assignment iteration. IF of 1.2 for a machine means that the
execution time of the tasks on this machine would take 1.2 longer
than what is in the workload logs. The source of IF is the interfer-
ence among VMs in the cloud and is determined by the significance
of this interference. VMs co-located on the same physical machine
compete for shared resources such as Disk I/O or cache, and hence,
their performance might degrade and consequently, the execution
time of tasks would be elongated. We have considered the VM inter-
ference in our study via IF parameter. We also study the sensitivity
of different approaches to this factor parameter in section 4.2.1.

Finally, we have considered β = 0.05 in the experiments. The
value of β should be determined empirically. Since the LIPTA algo-
rithm is executed periodically, one can change it per iteration to
find the best value for it.

In summary, LF and IF depend on the system and are determined
by replication of data blocks and VM interference, respectively.
Since we did not have the exact values of them in the workload
logs, we assume some values for them in our experiments and
evaluate the sensitivity of LIPTA to them. But in reality, the user
cannot determine their values. The value of β , however, should be
determined by the user and can be tuned empirically.

4.2 Experimental Results
Before reporting the results, we should note that we have repeated
each set of experiments 10 times and reported the average of them.

The overall runtime of the cluster for processing workloads,
using different algorithms, is presented in Figure 3. The runtime
of the cluster is considered as the maximum runtime of all the
machines because while the last machine is working, we should
pay for the whole cluster (the job and its results are distributed
among all the machines in the cluster). As can be seen in Figure 3,
LIPTA outperforms all other methods. The average improvement of
runtime compared with LA, IA, and ILA is 26.7%, 13.52%, and 19.7%
respectively. The maximum improvement compared with LA, IA,
and ILA happens in workload 1, workload 5, and workload 1 where
LIPTA reduces runtime by 46.7%, 19.3%, and 35%, respectively.While
we expect ILA to perform better than IA, we see that in several
workloads (1, 3, 6, and 7) it yields worse results than IA. The reason
is that ILA considers a higher priority for locality than interference.
In those workloads, the effect of VM interference is more significant
than locality, and hence, IA gives better results. Note that we inject
interference to VMs randomly as we described earlier in section 4.1

To further analyze the performance of different applications, in
the following we present more details. In Figure 4 we report the
number of tasks that are assigned to machines that have a replica of
input data of task (i.e., tasks that are assigned considering locality).
As expected, IA has the least amount of task locality and on average
over seven workloads, only assigns 3.9% of tasks to machines that
have a replica of input data of task. on the other hand, LA and
ILA excessively consider task locality and assign 88.6% and 86.2%
of tasks to local machines, respectively. Task locality of ILA is

0.0

0.5

1.0

1.5

W
or

klo
ad

 1

W
or

klo
ad

 2

W
or

klo
ad

 3

W
or

klo
ad

 4

W
or

klo
ad

 5

W
or

klo
ad

 6

W
or

klo
ad

 7

N
or

m
al

iz
ed

 T
ot

al
 R

un
tim

e
(t

o
LI

P
TA

)

LIPTA LA IA ILA

Figure 3: Normalized total runtime of workloads (to LIPTA)

0

30

60

90

W
or

klo
ad

 1

W
or

klo
ad

 2

W
or

klo
ad

 3

W
or

klo
ad

 4

W
or

klo
ad

 5

W
or

klo
ad

 6

W
or

klo
ad

 7

Ta
sk

s
P

la
ce

d
on

 M
ac

hi
ne

s
 C

on
ta

in
in

g
 a

 R
ep

lic
a

of
 T

he
ir

In
pu

t B
lo

ck
 (

%
)

LIPTA LA IA ILA

Figure 4: Percentage of locally assigned tasks

slightly lower than LA because ILA pays attention to interference
too. LIPTA, however, stands between them and tries to find a trade-
off between locality and interference. Its task locality is 67.6% on
average.

We illustrate the impact of different task assignment policies
on the variation of machines’ runtime in Figure 5 for one work-
load and then give more results in Table 3. In Figure 5 we can see
the runtime of all the 64 machines normalized to the maximum
value for workload 1 (for each method, the maximum value of that
method is considered). as can be seen, LIPTA demonstrates the
least amount of variation and all the machines have almost even
runtime. However, other methods suffer significant fluctuation of
runtime that elongates the completion of workload. In Table 3, the
runtime variation of machines under different methods for all the
workloads is presented. The reported variation is calculated using
(2), where σmachines_runtime is the standard deviation of runtime
of machines and the µmachines_runtime is the mean of it.

Variationmachines_runtime =
σmachines_runtime

µmachines_runtime
∗ 100 (2)

4.2.1 Sensitivity Analysis. In the following, we analyze the sen-
sitivity of LIPTA and other methods to the locality of data and the
interference among VMs.

SAC’18, April 9-13, 2018, Pau,France Seyed Morteza Nabavinejad and Maziar Goudarzi

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

To
ta

l R
un

tim
e

LIPTA

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

To
ta

l R
un

tim
e

LA

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

To
ta

l R
un

tim
e

IA

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Machines

N
or

m
al

iz
ed

To
ta

l R
un

tim
e

ILA

Figure 5: Normalized runtime of machines for workload 1
under different task assignment methods

Table 3: Runtime variation of machines for different work-
loads

LIPTA LA IA ILA

Workload 1 0.23% 15.29% 5.37% 13.43%
Workload 2 0.74% 7.76% 2.24% 3.14%
Workload 3 1.21% 17.52% 3.21% 11.28%
Workload 4 1.33% 15.69% 5.34% 10.91%
Workload 5 0.29% 14.65% 2.62% 4.26%
Workload 6 0.37% 44.62% 6.94% 37.16%
Workload 7 0.07% 20.81% 5.69% 18.50%

Locality. To evaluate the sensitivity of different algorithms to data
locality, we change the value of LF from 1.2 to 2.0 by 0.2 steps. The
results for workload 7 are presented in Figure 6. Increasing the

value of LF , which means increasing the overhead of case when
the task is not assigned to a machine that contains a replica of its
input data block, worsens the performance of IA algorithm which is
data locality oblivious. Since IA does not consider the data locality
when assigning the tasks (see Figure 4), increasing the value of LF
means that data locality dominates VM interference, and hence, IA
shows poor performance. On the other hand, both LA and ILA show
performance improvement since they either only pay attention to
data locality (LA) or consider a high priority for it (ILA). LIPTA
still presents acceptable performance; however, we see that the
performance gap between LIPTA and ILA becomes slightly smaller.
It shows that when the impact of data locality (LF) is too high, it can
even dominate the portfolio effect used by LIPTA and give better
results. However, existence of such high LF is doubtful.
Interference. In this section, we change the value of IF from 1.2
to 2.0 by 0.2 steps to see how algorithms react to this factor. The
results (again for workload 7) is depicted in Figure 7. Unlike the
previous section, we see that increasing the IF cause IA to show
better performance than LA and ILA. Here we see that the per-
formance gap between LIPTA and IA becomes smaller for high IF
values. It implicates that in clouds with high VM interference rate,
IA may outperform LIPTA. However, again the existence of such
cloud with such high VM interference rate is something that needs
more investigation.

Another factor that we wanted to analyze here but we couldn’t
due to limited information, is the impact of the standard deviation
of tasks’ execution time on the performance of different algorithms.
The normal distribution of tasks’ execution time originates from
the Hadoop logs dataset, and hence, we couldn’t change it. Study
of this factor can reveal how much improvement LIPTA can gain
over other algorithms when the execution time variation of tasks
is higher than current values.

To conclude this section, we can say while ILA or IA can improve
the performance when either LF or IF increases dramatically, in
real-world scenarios where 1) both LF and IF increase concurrently
and 2) the execution time variation of tasks is on the increase, LIPTA
approach gives the best results.

0.0

0.5

1.0

1.5

LF
 =

 1
.2

LF
 =

 1
.4

LF
 =

 1
.6

LF
 =

 1
.8

LF
 =

 2
.0

N
or

m
al

iz
ed

 T
ot

al
 R

un
tim

e
(t

o
LI

P
TA

)

LIPTA LA IA ILA

Figure 6: Analyzing the impact of Locality Factor (LF) on the
performance of algorithms

Data Locality and VM Interference Aware Mitigation of
Data Skew in Hadoop Leveraging Modern Portfolio Theory SAC’18, April 9-13, 2018, Pau,France

0.0

0.5

1.0

1.5

IF
 =

 1
.2

IF
 =

 1
.4

IF
 =

 1
.6

IF
 =

 1
.8

IF
 =

 2
.0

N
or

m
al

iz
ed

 T
ot

al
 R

un
tim

e
(t

o
LI

P
TA

)

LIPTA LA IA ILA

Figure 7: Analyzing the impact of Interference Factor (IF) on
the performance of algorithms

5 RELATEDWORK
A large body of research has studied the impact of data locality [9,
16, 24, 30, 34, 39, 42, 45, 46], VM interference [14, 37, 40, 41, 43, 44],
or both of them [3, 10] on task assignment of big data jobs. In this
section, we overview the most related ones to our work.
Data Locality. Delay scheduling approach [42] highlights the con-
flict between fairness in scheduling and data locality that happens
for fair scheduler of Hadoop. To address this conflict, it delays the
scheduling of tasks that the available machines have not a replica
of their input data and schedules the other tasks behind them in
the queue. The proposed approach in [45] tackles the data locality
issue in heterogeneous environments. After detecting a node with
spare capacity, this method first tries to schedule the tasks that their
input data is stored on that node. If it cannot find such tasks, it will
select a task whose input data is closest to the node and transfers
the input data of that task to the node on the fly. vLocality [24]
proposes a solution for data locality in virtualized environments.
It consists of a storage architecture to mitigate the contention of
shared disk, and a scheduling algorithm which prioritizes VMs co-
located on the same physical machine. The main objective of all the
aforementioned approaches is to place the tasks as close as possible
to the data, but do not consider other parameters such as data skew
and interference among the VMs.
VM interference. Studying the MapReduce framework, [41] finds
that the integration of computational-intensive operations such as
map/reduce and I/O-intensive ones such as shuffle in MapReduce
seriously affects the performance of applications and degrades and
the efficiency of the system especially in the cloud where the appli-
cations are deployed on VMs co-located on physical machines.Then,
to address this contention, they propose a new interference-aware
scheduling algorithm that assigns the MapReduce jobs to VMs.
Considering the interference between big data batch jobs and inter-
active workloads in virtualized environments, proposed approach
in [44] uses performance models to assign Hadoop tasks to the
servers to improve their throughput. InSTechAH [40] also tries to
address the challenge of co-location of big data batch jobs and ser-
vice workloads in private cloud and improve the resource utilization
by designing a multi-layer node model to reduce interference and
a resource scheduling model that uses prediction based scheduling.

The proposed approaches in this category ignore the importance of
data locality and mostly try to improve the performance by mixing
different workloads. They also skip data skew and its impact on the
runtime and resource usage of applications.
Locality and Interference. FlexSlot [10] tries to mitigate the data
skew in Map tasks by resizing the slots rather than task assignment.
FlexSlot first identifies the stragglers, tasks that are slower than av-
erage, by two introduced parameters progress rate and progress score
and then increases the resources of their corresponding slots to im-
prove their performances. It also uses the speculative execution to
further mitigate data skew. While it can improve the performance
of applications, resource overhead and extra monetary cost of con-
current execution of several instances of one task render FlexSlot
too expensive. Furthermore, when FlexSlot decides to resize the
slot resources due to VM interference, it does not readjust it after
the VM interference is resolved, which can lead to resource under-
utilization. ILA approach [3] presents a task scheduling approach
to mitigate VM interference while maintaining task data locality for
MapReduce applications.The ILA employs a task performance pre-
diction model to tackle the interference and improves data locality
via adaptive delay scheduling.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented Locality and InterferenceAware Portfolio-
based Task Assignment (LIPTA) algorithm to tackle the Map tasks’
execution time variation inMapReduce applications, which is caused
by data skew and exacerbated by VM interference. LIPTA leverages
MPT to reduce the execution time of tasks assigned to each VM. We
demonstrated how our approach can improve execution time, and
consequently reduce cost of VMs, compared with several methods.

Since the original cluster that logs are created from jobs running
on it is homogeneous, we also have considered a homogeneous VM
cluster in our experiments. Hence, we supposed that the mean and
standard deviation of tasks of a job is same for all the machines. For
heterogeneous clusters, we need to estimate the normal distribution
of tasks for each configuration separately. Moreover, it is worth
trying to update the normal distribution of tasks for each machine
after each task assignment iteration and assign the tasks in the next
iteration using this updated information. Both these improvements
can be obtained via dynamic profiling. Considering the correlation
of tasks executing concurrently when there is more than one slot
in each machine, or when the data blocks are shared among tasks
of different jobs, is another direction for future work. Currently, we
divide the tasks randomly among subsets, however, using clustering
algorithms can help to categorize them wisely and form better
subsets that can lead to more runtime improvement.

REFERENCES
[1] [n. d.]. Amazon EMR. https://aws.amazon.com/emr/. ([n. d.]). Acs: 2016-07-12.
[2] Hanieh Alipour, Yan Liu, Abdelwahab Hamou-Lhadj, and Ian Gorton. 2016. Model

driven performance simulation of cloud provisioned Hadoop MapReduce ap-
plications. In IEEE/ACM 8th International Workshop on Modeling in Software
Engineering (MiSE). 48–54.

[3] Xiangping Bu, Jia Rao, and Cheng-zhong Xu. 2013. Interference and Locality-
aware Task Scheduling for MapReduce Applications in Virtual Clusters. In Pro-
ceedings of the 22Nd International Symposium on High-performance Parallel and
Distributed Computing (HPDC). 227–238.

[4] Qi Chen, Jinyu Yao, and Zhen Xiao. 2015. Libra: Lightweight data skewmitigation
in mapreduce. IEEE Transactions on Parallel and Distributed Systems 26, 9 (2015),

https://aws.amazon.com/emr/

SAC’18, April 9-13, 2018, Pau,France Seyed Morteza Nabavinejad and Maziar Goudarzi

2520–2533.
[5] Emilio Coppa and Irene Finocchi. 2015. On Data Skewness, Stragglers, and

MapReduce Progress Indicators. In Proceedings of the Sixth ACM Symposium on
Cloud Computing (SoCC). 139–152.

[6] Christina Delimitrou and Christos Kozyrakis. 2013. The netflix challenge: Data-
center edition. IEEE Computer Architecture Letters 12, 1 (2013), 29–32.

[7] Edwin J Elton and Martin J Gruber. 1997. Modern portfolio theory, 1950 to date.
Journal of Banking & Finance 21, 11 (1997), 1743–1759.

[8] Eugene F Fama. 1970. Multiperiod consumption-investment decisions. The
American Economic Review (1970), 163–174.

[9] Yifeng Geng, Shimin Chen, YongWeiWu, RyanWu, Guangwen Yang, andWeimin
Zheng. 2011. Location-aware mapreduce in virtual cloud. In International Con-
ference on Parallel Processing (ICPP). 275–284.

[10] Yanfei Guo, Jia Rao, Changjun Jiang, and Xiaobo Zhou. 2017. Moving Hadoop
into the Cloud with Flexible Slot Management and Speculative Execution. IEEE
Transactions on Parallel and Distributed systems 28, 3 (2017), 798–812.

[11] Nils H Hakansson. 1974. Convergence to isoelastic utility and policy in multi-
period portfolio choice. Journal of Financial Economics 1, 3 (1974), 201–224.

[12] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: A Self-tuning System for
Big Data Analytics.. In Cidr, Vol. 11. 261–272.

[13] Tzu-Chi Huang, Kuo-Chih Chu, Guo-Hao Huang, Yan-Chen Shen, and Ce-Kuen
Shieh. 2017. Smart Partitioning Mechanism for Dealing with Intermediate Data
Skew in Reduce Task on Cloud Computing. In IEEE 31st International Conference
on Advanced Information Networking and Applications (AINA). 819–826.

[14] Zhe Huang, Bharath Balasubramanian, Michael Wang, Tian Lan, Mung Chiang,
and Danny HK Tsang. 2016. RUSH: A RobUst ScHeduler to Manage Uncertain
Completion-Times in Shared Clouds. In IEEE 36th International Conference on
Distributed Computing Systems (ICDCS). 242–251.

[15] Inkwon Hwang and Massoud Pedram. 2012. Portfolio theory-based resource
assignment in a cloud computing system. In IEEE International Conference on
Cloud Computing (CLOUD). 582–589.

[16] Yu-Chon Kao and Ya-Shu Chen. 2016. Data-locality-aware mapreduce real-time
scheduling framework. Journal of Systems and Software 112 (2016), 65–77.

[17] Mukhtaj Khan, Yong Jin, Maozhen Li, Yang Xiang, and Changjun Jiang. 2016.
Hadoop performance modeling for job estimation and resource provisioning.
IEEE Transactions on Parallel and Distributed Systems 27, 2 (2016), 441–454.

[18] Younggyun Koh, Rob Knauerhase, Paul Brett, Mic Bowman, Zhihua Wen, and
Calton Pu. 2007. An analysis of performance interference effects in virtual envi-
ronments. In IEEE International Symposium on Performance Analysis of Systems &
Software (ISPASS). 200–209.

[19] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2012. Skew-
tune: mitigating skew in mapreduce applications. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 25–36.

[20] Min Li, Dinesh Subhraveti, Ali R Butt, Aleksandr Khasymski, and Prasenjit Sarkar.
2012. CAM: a topology aware minimum cost flow based resource manager for
MapReduce applications in the cloud. In Proceedings of the 21st international
symposium on High-Performance Parallel and Distributed Computing (HPDC).
211–222.

[21] Norman Lim, Shikharesh Majumdar, and Peter Ashwood-Smith. 2017. MRCP-RM:
A Technique for Resource Allocation and Scheduling of MapReduce Jobs with
Deadlines. IEEE Transactions on Parallel and Distributed Systems 28, 5 (2017),
1375–1389.

[22] Jia-Chun Lin, Ming-Chang Lee, and Ramin Yahyapour. 2014. Scheduling MapRe-
duce tasks on virtual MapReduce clusters from a tenant’s perspective. In IEEE
International Conference on Big Data (Big Data). 141–146.

[23] Zhihong Liu, Qi Zhang, Raouf Boutaba, Yaping Liu, and Baosheng Wang. 2016.
Optima: on-line partitioning skew mitigation for MapReduce with resource
adjustment. Journal of Network and Systems Management 24, 4 (2016), 859–883.

[24] Xiaoqiang Ma, Xiaoyi Fan, Jiangchuan Liu, Hongbo Jiang, and Kai Peng. 2017.
vLocality: Revisiting Data Locality for MapReduce in Virtualized Clouds. IEEE
Network 31, 1 (2017), 28–35.

[25] HarryMMarkowitz. 1968. Portfolio selection: efficient diversification of investments.
Vol. 16. Yale university press.

[26] Lena Mashayekhy, Mahyar Movahed Nejad, Daniel Grosu, Quan Zhang, and
Weisong Shi. 2015. Energy-aware scheduling of mapreduce jobs for big data
applications. IEEE Transactions on Parallel and Distributed Systems 26, 10 (2015),
2720–2733.

[27] Seyed Morteza Nabavinejad and Maziar Goudarzi. 2016. Energy efficiency in
cloud-Based MapReduce applications through better performance estimation.
In Proceedings of the Conference on Design, Automation & Test in Europe (DATE).
1339–1344.

[28] Seyed Morteza Nabavinejad and Maziar Goudarzi. 2017. Faster MapReduce Com-
putation on Clouds through Better Performance Estimation. IEEE Transactions
on Cloud Computing (2017).

[29] Seyed Morteza Nabavinejad, Maziar Goudarzi, and Shirin Mozaffari. 2016. The
Memory Challenge in Reduce Phase of MapReduce Applications. IEEE Transac-
tions on Big Data 2, 4 (2016), 380–386.

[30] Jongse Park, Daewoo Lee, Bokyeong Kim, Jaehyuk Huh, and Seungryoul Maeng.
2012. Locality-aware dynamic VM reconfiguration on MapReduce clouds. In
Proceedings of the 21st international symposium on High-Performance Parallel and
Distributed Computing (HPDC). 27–36.

[31] Kai Ren, YongChul Kwon, Magdalena Balazinska, and Bill Howe. 2013. Hadoop’s
adolescence: an analysis of Hadoop usage in scientific workloads. Proceedings of
the VLDB Endowment 6, 10 (2013), 853–864.

[32] Andrew Rudd and Henry K Clasing. 1982. Modern portfolio theory: The principles
of investment management.

[33] M. Goudarzi S. Nasehi, S.M. Nabavinejad. 2017. A Novel Key Partitioning Schema
for Efficient Execution of MapReduce Applications. The 19th CSI International
Symposium on Computer Architecture & Digital Systems (CADS) (2017).

[34] TP Shabeera and SD Madhu Kumar. 2015. Optimising virtual machine allocation
in MapReduce cloud for improved data locality. International Journal of Big Data
Intelligence 2, 1 (2015), 2–8.

[35] Juwei Shi, Jia Zou, Jiaheng Lu, Zhao Cao, Shiqiang Li, and Chen Wang. 2014.
MRTuner: a toolkit to enable holistic optimization formapreduce jobs. Proceedings
of the VLDB Endowment 7, 13 (2014), 1319–1330.

[36] JiaWang and Xiaoping Li. 2016. Task scheduling forMapReduce in heterogeneous
networks. Cluster Computing 19, 1 (2016), 197–210.

[37] Kewen Wang, Mohammad Maifi Hasan Khan, Nhan Nguyen, and Swapna
Gokhale. 2016. Modeling interference for apache spark jobs. In IEEE 9th In-
ternational Conference on Cloud Computing (CLOUD). 423–431.

[38] SuzhenWang and Haowei Zhou. 2016. The research of mapreduce load balancing
based on multiple partition algorithm. In IEEE/ACM 9th International Conference
on Utility and Cloud Computing (UCC),. 339–342.

[39] Weina Wang, Kai Zhu, Lei Ying, Jian Tan, and Li Zhang. 2013. A throughput
optimal algorithm for map task scheduling in mapreduce with data locality. ACM
SIGMETRICS Performance Evaluation Review 40, 4 (2013), 33–42.

[40] Xueying Wang, Zhihui Lu, Jie Wu, Tong Zhao, and Patrick Hung. 2015. In
STechAH: An Autoscaling Scheme for Hadoop in the Private Cloud. In IEEE
International Conference on Services Computing (SCC). 395–402.

[41] Y. Yuan, H. Wang, D. Wang, and J. Liu. 2013. On interference-aware provisioning
for cloud-based big data processing. In IEEE/ACM 21st International Symposium
on Quality of Service (IWQoS). 1–6.

[42] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. 2010. Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling. In Proceedings of the 5th European
conference on Computer systems (EuroSys). 265–278.

[43] Wei Zhang, Sundaresan Rajasekaran, Shaohua Duan, Timothy Wood, and Mingfa
Zhuy. 2015. Minimizing interference and maximizing progress for Hadoop virtual
machines. ACM SIGMETRICS Performance Evaluation Review 42, 4 (2015), 62–71.

[44] Wei Zhang, Sundaresan Rajasekaran, Timothy Wood, and Mingfa Zhu. 2014.
Mimp: Deadline and interference aware scheduling of hadoop virtual machines.
In 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid). 394–403.

[45] X. Zhang, Y. Feng, S. Feng, J. Fan, and Z. Ming. 2011. An effective data locality
aware task scheduling method for MapReduce framework in heterogeneous
environments. In International Conference on Cloud and Service Computing (CSC).
235–242.

[46] Xiaohong Zhang, Zhiyong Zhong, Shengzhong Feng, Bibo Tu, and Jianping Fan.
2011. Improving data locality of mapreduce by scheduling in homogeneous
computing environments. In IEEE 9th International Symposium on Parallel and
Distributed Processing with Applications (ISPA). 120–126.

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Motivational Example
	2.2 Mathematical Background

	3 Locality and Interference Aware Portfolio-based Task Assignment
	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusion and Future Work
	References

