
Energy Efficiency in Cloud-Based MapReduce

Applications through Better Performance Estimation

Seyed Morteza Nabavinejad

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

mnabavi@ce.sharif.edu

Maziar Goudarzi

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

goudarzi@sharif.edu

Abstract— An important issue for efficient execution of

MapReduce jobs on a cloud platform is selecting the best fitting

virtual machine (VM) configuration(s) among the miscellany of

choices that cloud providers offer. Wise selection of VM

configurations can lead to better performance, cost and energy

consumption. Therefore, it is crucial to explore the available

configurations and choose the best one for each given

MapReduce application. Executing the given application on all

the configurations for comparison is a costly, time and energy

consuming process. An alternative is to run the application on a

subset of configurations (sample configurations) and estimate its

performance on other configurations based on the obtained

values on those sample configurations. We show that the choice

of these sample configurations highly affects accuracy of later

estimations. Our Smart Configuration Selection (SCS) scheme

chooses better representatives from among all configurations by

once-off analysis of given performance figures of the benchmarks

so as to increase the accuracy of estimations of missing values,

and consequently, to more accurately choose the configuration

providing the highest performance. The results show that the

SCS choice of sample configurations is very close to the best

choice, and can reduce estimation error to 7.11% from the

original 16.02% of random configuration selection. Furthermore,

this more accurate performance estimation saves 24.3% energy

on average.

Keywords— Performance Estimation; Energy Efficiency;

Big Data Analysis; MapReduce Applications; Matrix Completion

I. INTRODUCTION

With the proliferation of data centers, their energy
consumption has become a main concern. The energy
consumption of data centers grows up about 15% annually and
the energy cost is about 42% of total operational cost of data
centers [1]. The approaches to reduce the energy consumption
in data centers can be categorized as structural improvements
mainly for cooling efficiency, power improvements to lower
power loss, VM consolidation to operate the servers in more
energy efficient states as well as to turn off unused resources,
and finally application-level optimizations where custom
solutions are proposed based on application features.

Since the cooling system and power distribution units
consume up to 35% of energy in data centers [2] , various types
of structural and power improvements are presented [3-5] to
reduce their share of energy consumption. The emergence of

virtualization technology and Infrastructure as a Service (IaaS)
cloud services provided this opportunity to improve the poor
utilization of servers [6] and make them energy proportional by
VM consolidation [7-9].

Application-level optimizations dive into details of the
application in question to improve processes such as resource
allocation to consequently reduce the energy consumption. For
example [10-14] consider the specifications of MapReduce
applications (as the common framework for Big Data analysis)
when allocating resources or scheduling jobs.

A common challenge in this last category in the case of
resource allocation for MapReduce jobs is that estimation is
needed on the execution time or performance of the application
on available VM configurations. The common framework used
in most these works is shown in Fig. 1: the Estimation Phase
provides an estimate of the processing time of each VM
configuration per unit data volume, measured in seconds per
GB, s/GB; then the Resource Allocation Phase chooses the
best configuration and the number of VM instances required to
process the whole big data while adhering to the given
deadline. Obviously, overestimation of the VM configuration
performance results in losing the deadline, and underestimation
results in overbooking of resources and waste of energy and
money. Thus, accurate and low-cost estimation methods are
required to avoid both these cases. Note that for ease of
management, usually the same VM configuration is used for all
VM instances, and hence, the system is homogeneous.

One common method to address this estimation challenge
is profiling. In complete profiling, the application is executed
on all the accessible configurations for a short period of time (a
few minutes) to estimate performance of each configuration. If
the state space of the problem is small (i.e., few number of
available configurations) this approach will be suitable.
Otherwise, when the number of selectable choices is high,
which is usually the case with today and anticipated growth in
cloud computing providers, running the application on all of
them means using a lot of resources that needs lots of money
and leads to waste of energy and time. Thus, complete profiling
is usually not acceptable.

This research is supported by grant number G930826 from Sharif
University of Technology. We are grateful for their support.

Fig. 1. Common framework in resource allocation for MapReduce jobs in

clouds.

In partial profiling, only a small subset of the state space

(i.e., a few configurations) are actually profiled per new
application, and then results are extended to the whole state
space based on the results of prior complete profiling of a few
representative benchmarks. In [15], the authors first run some
applications on all the available configurations (Offline
Training), and then, when a new application arrives, its
performance is measured on two sample configurations for a
short period of time, and then by a reconstruction technique
called Matrix Completion [16], the values for other
configurations is predicted. Consequently, the Offline Training
Phase (see Fig. 2) serves several future applications, and less
time and resources are used for the Usage Phase per new
application.

Reference [15] chooses the two sample configurations
randomly. However, our results in section 2 show that the
accuracy of predicting the missing values is widely dependent
on the choice of these sample configurations.

In this paper, we propose Smart Configuration Selection
(SCS) method to leverage the power of matrix completion by
carefully choosing the sample configurations. We apply our
method on a set of VM configurations that are already offered
by various cloud providers such as Amazon EC2 [17] and
Microsoft Azure[18]. We show that this method can increase
the accuracy of missing values prediction by more than 2x
compared with random selection.

The rest of the paper is organized as follows. Section 2

gives an example to show the motivation beyond this work

and discusses it. Section 3 introduces the SCS approach and

its mathematical background. Section 4 represents the

experimental results. Finally, the paper is concluded and

future works are provided in section 5.

Fig. 2. Overall flow of performance estimation using matrix completion.

II. MOTIVATION

In this section, we employ an example to show motivation
behind our research. We ran eight MapReduce applications
from PUMA suite [19] on nine VM configurations with
different amount of resources (e.g., RAM and CPU). VM
configurations are the same as some of the instances from [17]
and [18]. We also used datasets from [19] as the input of
MapReduce applications. The numbers in TABLE I indicate
the execution time of each application on the various
configurations (in seconds) for 3GB of data.

TABLE I

EXECUTION TIME OF MAPREDUCE APPLICATIONS ON DIFFERENT

CONFIGURATIONS

1 2 3 4 5 6 7 8 9

7
G

 -
 4

C

3
.5

G
 -

 2
C

7
.2

G
 -

 8
C

7
G

 -
 7

C

4
G

 -
 4

C

1
4
G

 -
 8

C

1
5
G

 -
 4

C

3
.7

5
G

 -
 1

C

7
.5

G
 -

 2
C

Classification 84 151 100 96 118 53 89 266 146

Grep 67 126 44 48 92 43 71 207 117

Histogram_Movies 79 141 89 96 111 50 84 243 134

Histogram_Ratings 167 310 115 117 175 98 174 508 306

Inveted_Index 205 374 169 165 218 121 218 663 364

Kmean 198 303 195 198 254 110 160 436 252

Sequence_Count 339 536 362 339 500 185 283 843 489

Word_Count 194 359 156 152 208 111 196 626 350M
ap

R
ed

u
ce

 A
p

p
lic

at
io

n
s

fr
o

m
 P

U
M

A
 S

u
it

e

VM Configurations (G : RAM (Gigabyte), C : Number of Cores)

Before presenting the results, we depict the overall flow of
experiments and define necessary concepts for pursuing the
rest of paper. Fig. 2 illustrates the flow from training phase to
usage phase. First, some applications are executed on all the
available configurations. These applications are training set
and information obtained from their execution is used for next
steps. This step is offline and just need to be done once
(Training Phase). After this phase, the new application is
introduced to system which we want estimate its performance
on configurations. Next, a subset of configurations is employed
and the new application is executed on them. From now on this
subset is called sample configurations. Finally, from
information of training phase and executing the new
application on sample configurations, the matrix completion
approach estimates the performance of new application on the
rest of configurations which we call missing values. This step
is done online (Usage Phase).

For showing that selecting the sample configurations
randomly might lead to imprecise estimation of missing values,
we conducted a set of experiments for each application in
TABLE I. In each set, we selected one application and
assumed it as the new app we want to sample on configurations
and there is no information about it. The other applications are
considered as training set that we want to predict the missing
values of new application based on their information. Then, we
chose a pair of configurations randomly as known samples,
which the execution time of application is known on them. The
seven left ones are considered as missing values. Finally, we
applied matrix completion program from [20] on the matrix
with missing values and observed the results. This process
repeated ten times for each application and in different
iterations we chose a different pair of random sample
configurations. Approximation error (the difference between
estimated value and actual value) of matrix Completion
regarding missing values for each of ten iterations in all the
eight applications is demonstrated in Fig. 3. As this figure
reveals, the amount of error differs significantly from one
sampling pair to the other. Therefore, it can be concluded that
the selected sample configurations can affect the outcome of
matrix completion remarkably. So, it is essential to choose the
sample configurations wisely in order to have an accurate
prediction of missing values.

Fig. 3. Approximation Error of Matrix Completion for ten sample

configurations.

III. SMART CONFIGURATION SAMPLING (SCS)

In this section, we present the SCS approach. The main
goal of SCS is to select the sample configurations in a way that
leads to more accurate prediction of missing values in matrix
completion process. First, the mathematical background of
SCS, including correlation coefficient and its variants is
explained and then the approach itself is expanded.

A. Mathematical Background

Correlation Coefficient indicates the linear relationship
between two variables and also shows the strength and
direction of this relationship. Various versions of correlation
coefficient are available such as Pearson and Kendal.

Kendal Rank Correlation Coefficient (KRCC) [21]
indicates the portion of ranks that match between two data sets.
The proposed method in [22] uses KRCC to evaluate the
similarity between users of cloud services and based on that
estimates the missing values (response time of cloud services
for users who have not used the service yet).

Unlike [22], where the missing values and present ones are
not determined by the algorithm because they cannot force
users to use specific services, in our work we have this
freedom to choose the present values by running the
application on counterpart configurations. So, we use the
Pearson Correlation Coefficient (PCC). For two variables x and
y, the PCC is a value between -1 and +1. +1 and -1 shows that
the variables are strongly related to each other. Zero value
means that there is no kind of relationship between two
variables. The PCC of two variables can be calculated as (1) (N
is the total Number of attributes):

2 2

2 2

(,)

() ()
()()

x y
xy

N
PCC x y

x y
x y

N N





 

 


 
 

(1)

Equation (1) can be summarized as (2) for population:

cov(x, y)
(,)

x y

PCC x y
 

 (2)

Where cov stands for covariance and σ stands for standard
deviation. We use this form of PCC in our approach to
measure the correlation between configurations.

B. SCS Approach

Considering TABLE I, we perceive that configurations one
and six (7G – 4C and 14G – 8C) have strong relationship with
each other (PCC (1, 6) = 0.998). So, what if we choose these
two as sample configurations? The results have been shown in
Fig. 4 and compared with the average of ten random samples.
It shows the approximation error is too high and we can say it
is an inauspicious choice. But, what is the reason? The answer

Fig. 4. Impact of PCC on approximation error

is that since these two configurations are correlated to each
other, they cannot represent the diversity of all configurations.
Hence the estimation leads to poor results. From this
observation, we can conclude that the two selected samples
must demonstrate the assortment of configurations in order to
obtain a precise prediction. From this conclusion, we present
the SCS approach which concentrates on finding dichotomy
between configurations and picking the two bests that can
represent it. This approach is offline and need to be applied just
once in Sample Configuration Selection part in Fig. 2.

SCS first calculates the PCC for each two configurations
(columns in TABLE I) where N stands for all the
configurations.

(,)
, , (,)

i j

Cov i j
i j N PCC i j

 
   (3)

Then, it calculates the total amount of correlation be-tween
each configuration and other ones. TCC stands for Total
Correlation Coefficient.

()

1

, (,)

N j i

i

j

i N TCC PCC i j





    (4)

After that, the first configuration that will be chosen is the one
with least amount of TCC because the one with least TCC
shows the most diversity with other configurations.

 1 | (), 1...
i j

Config i TCC Min TTC j N   (5)

Finally, for second configuration, the one must be chosen that
has the least PCC with first selected configuration. In this way,
the too selected configurations have: 1) minimum correlation
so are different from each other and 2) at least one of them has
the least possible correlation with other configurations and can
represent diversity among them.

 2 | PCC ((, 1), 1...
i

Config i Min PCC i Config i N   (6)

SCS method is simple, yet very effective because it can
quickly distinguish the two most proper configurations for
sampling by doing a few calculations. The selected
configurations are different from each other regarding PCC and
they also can represent the diversity among whole set of
available configurations.

IV. EXPERIMENTAL RESULTS

Hence the state space of problem in our example (TABLE
I) is small enough to be explored completely; we have
calculated the amount of approximation error of matrix
completion for all the possible pairs of sample configurations
for all applications. Fig. 5 illustrates the results. As can be
seen, for all the applications there is a wide gap between
minimum and maximum error. These observations further
prove the necessity for careful selection of sample
configurations. In upcoming subsections, we first present the
effectiveness of SCS for improving estimation accuracy of
applications performance on different configurations. Then, we
further explore the problem and depict the impact of estimation
accuracy on meeting/missing applications deadline and
resource utilization.

A. Impact of SCS on Estimation Accuracy

We ran the SCS for TABLE I and the configurations that
are selected by SCS are configurations 4 and 8 (7G – 7C &
3.75G – 1C). The TCC for configuration 4 is 7.3808 and PCC
(4, 8) = 0.8481. The comparison between SCS, Average of all
possible pairs of sample configurations (all states) and best pair
and worst pair of sample configurations per application are
depicted in Fig. 6. The average error of SCS over eight
applications is 7.11% while the average of worst case is
34.99%, average of best case is 5.46% and average of all states
is 16.02%. It shows that while SCS obtains far better
approximation than worst case, it answers are near the best
case ones. However, SCS cannot always provide the best
answer for any application, in average it outperforms any other
sample configurations and hence it can be considered as an
effective solution for sample configuration selection.

B. Estimation Accuracy Effect on Resource Management

In this section, we want to examine how the estimation
accuracy can affect the resource management. Two important
factors that are measured in this section are application
deadline and energy consumption. For this reason, we compare
the results from the SCS approach and four random sample
configuration selections. For two applications word count and
histogram rating, which are of different classes and have
different input datasets, we want to select a configuration and
process 30GB of data on that configuration. The desired
deadline is 1800 seconds. The results of matrix completion for
these two applications with respect to information from
TABLE I under four different random sample configuration
selections and SCS approach are presented in TABLE II. The
gray cells are the sample configurations which are considered
known and matrix completion is done based on them. The real
values are also presented in the first two rows so a clear
comparison between estimated values and real values can be
possible.

Fig. 5. Scattering of approximation error for all the possible sample

configurations.

After the matrix completion is done, it is time for choosing

the best configuration for executing the applications, based on
estimated performances. A pseudo-linear relationship
between volume of data and execution time is considered.
Hence, a suitable configuration that can execute the 30GB of
data in less than or equal to 1800 seconds, must be able to
execute the 3GB of it in less than or equal to 180 seconds. So,
the candidate configurations are the ones that have execution
time of less than 180 seconds in each row of TABLE II. After
finding the candidate configurations, it is time for choose the
best one. The main factor for choosing the best configuration is
number of cores. The less the number of cores, the better the
configuration in terms of resource usage and consequently
energy consumption. If two candidate configurations have the
same number of cores, then the tie breaker will be amount of
memory.

According to aforementioned mechanism for choosing the
best configuration, configurations with bold number are
selected. For example, based on sample configuration (2, 4) in
Random 1 and consequently estimated values by it,
configuration 7 is suggested for word count application and
configuration 1 is suggested for histogram rating application.
After that, a real input dataset with size of 30GB for each of
applications is executed on selected configurations. The results
of execution times are shown in Fig. 7.

Fig. 7 (a) shows that for word count application, the
suggested configuration by all the four random ones has missed
the deadline, whereas SCS meets the deadline. The reason is
that random scenarios overestimated the performance of
configurations that considered them faster than they really are.
Consequently, their selected configurations couldn’t meet the
deadline.

On the other hand, in Fig. 7 (b), in addition to SCS, Random 1

also had been able to meet the deadline. But, if we look at the

selected configurations by SCS and Random 1, we can see

that selected configuration by Random 1 (configuration 1) has

more resources than selected one by the SCS approach

(configuration 5). Hence, while both of the configurations can

Fig. 6. Comparison of SCS with other sample configurations.

meet the deadline, the one selected by Random 1 uses more
resources and consequently suffer from resource waste. In fact,
Random_1 has underestimated the performance of
configuration.

Regarding energy consumption, the SCS again outperforms
the random sample configurations. The results are depicted in
Fig. 8. As can be seen, the more accurate estimation yield by
the SCS approach is able to reduce energy consumption up to
41% compared with worst case (Random_3 in (a)) and 24.3%
in average of all the configurations in both applications.

We can conclude from these results that both
underestimation as well as overestimation can cause
undesirable results in terms of meeting deadline and energy
consumptions. So, an accurate estimation of performance
would be of interest.

TABLE II

RESULTS OF MATRIX COMPLETION FOR DIFFERENT SAMPLE CONFIGURATIONS

7G-4C 3.5G-2C 7.2G-8C 7G-7C 4G-4C 14G-8C 15G-4C 3.75G-1C 7.5G -2C

1 2 3 4 5 6 7 8 9

wordcount 194 359 156 152 208 111 196 626 350

hist-rat 167 310 115 117 175 98 174 508 306

wordcount 198 359 155 152 227 112 178 500 298

hist-rat 167 310 126 117 185 95 146 443 255

wordcount 143 242 135 138 208 85 196 382 219

hist-rat 99 159 101 117 134 98 89 235 133

wordcount 127 200 131 129 208 111 105 292 170

hist-rat 112 178 115 114 175 98 96 261 151

wordcount 194 239 156 141 197 80 114 331 193

hist-rat 167 201 115 109 157 66 101 277 166

wordcount 188 347 161 152 221 112 202 626 343

hist-rat 149 279 125 117 169 87 160 508 281
SCS

Real

Values

Random

1

Random

2

Random

3

Random

4

V. CONCLUSION

In full profiling, the application is run on all the available
configurations. This process is accurate to choose the best case
but costly and time and energy consuming. An alternative
solution is to run the application on a few number of

Fig. 7. Impact of estimation accuracy on deadline and resource usage

configurations and then using various prediction methods such
as matrix completion to estimate the missing values. The
prediction method can be very effective but its accuracy is a
great concern. To improve the accuracy, we presented SCS
method which uses Pearson Correlation Coefficient to select
the most suitable sample configurations. This improves the
accuracy of predicted missing values which will lead to better
configuration selection for applications and consequently
increases the energy efficiency.

The results in Fig. 6 reveal that while SCS provides the best
pair of configurations for all the applications on average, it
cannot supply the best answer for each specific application.
This is a motive for further work in this area because obtaining
the best choice per application can further improve the
accuracy of estimation and lead to more precise decisions
based on this knowledge.

Fig. 8. Energy consumption of different selected configurations.

REFERENCES

[1] J. Hamilton, "Cooperative expendable micro-slice servers (CEMS): low

cost, low power servers for internet-scale services," in Conference on
Innovative Data Systems Research (CIDR09), 2009.

[2] L. A. Barroso, J. Clidaras, and Urs Hölzle. "The datacenter as a
computer: An introduction to the design of warehouse-scale machines."
Synthesis lectures on computer architecture 8.3, pp. 1-154, 2013.

[3] A. Faraz, and T. N. Vijaykumar. "Joint optimization of idle and cooling
power in data centers while maintaining response time." In ACM
Sigplan Notices, vol. 45, no. 3, pp. 243-256. ACM, 2010.

[4] V. K. Arghode and Y. Joshi, "Modeling Strategies for Air Flow Through
Perforated Tiles in a Data Center," IEEE Trans. on Components,
Packaging and Manufacturing Technology, vol. 3, pp. 800-810, 2013.

[5] V. Kontorinis and et al., "Managing distributed UPS energy for effective
power capping in data centers," in 39th Annual International Symposium
on Computer Architecture (ISCA), pp. 488-499, 2012.

[6] L. A. Barroso and U. Hölzle, "The case for energy-proportional
computing," IEEE Computer, pp. 33-37, 2007.

[7] I. Takouna, E. Alzaghoul, and C. Meinel, "Robust Virtual Machine
Consolidation for Efficient Energy and Performance in Virtualized Data
Centers," in IEEE Conference on IoT, Green Comput. and Communic.,
and Cyber, Physical and Social Computing, pp. 470-477, 2014.

[8] Y. Kejiang and et al., "Profiling-Based Workload Consolidation and
Migration in Virtualized Data Centers," IEEE Trans. on Parallel and
Distributed Systems, vol. 26, pp. 878-890, 2015.

[9] A. Varasteh and M. Goudarzi, "Server Consolidation Techniques in
Virtualized Data Centers: A Survey," IEEE Systems Journal, in press.

[10] M. Cardosa, A. Singh, H. Pucha, and A. Chandra, "Exploiting Spatio-
Temporal Tradeoffs for Energy-Aware MapReduce in the Cloud," IEEE
Trans. on Computers, vol. 61, pp. 1737-1751, 2012.

[11] N. Maheshwari, R. Nanduri, and V. Varma, "Dynamic energy efficient
data placement and cluster reconfiguration algorithm for MapReduce
framework," Fut. Gene. Computer Systems, vol. 28, pp. 119-127, 2012.

[12] L. Mashayekhy, M. Nejad, D. Grosu, Q. Zhang, and W. Shi, "Energy-
aware Scheduling of MapReduce Jobs for Big Data Applications," ,
IEEE Trans. on Parallel and Distributed Systems, in press.

[13] Z. Zhang, L. Cherkasova, and B. T. Loo, "Exploiting Cloud
Heterogeneity to Optimize Performance and Cost of MapReduce
Processing," SIGMETRICS Perfor. Eval. Rev., vol. 42, pp. 38-50, 2015.

[14] M. Malekimajd, D. Ardagna, M. Ciavotta, A. M. Rizzi, and M.
Passacantando, "Optimal Map Reduce Job Capacity Allocation in Cloud
Systems," SIGMETRICS Perform. Eval. Rev., vol. 42, pp. 51-61, 2015.

[15] C. Delimitrou and C. Kozyrakis, "The Netflix Challenge: Datacenter
Edition," Computer Architecture Letters, vol. 12, pp. 29-32, 2013.

[16] E. J. CandÃ¨s and B. Recht, "Exact matrix completion via convex
optimization," Foun. of Comput. Math., vol. 9, pp. 717-772, 2009.

[17] Amazon EC2, http://aws.amazon.com/ec2/. Accessed Sept. 17th 2015.

[18] Mircrosoft Azure, https://azure.microsoft.com/en-us/. Accessed Sept.
17th 2015

[19] F. Ahmadand, S. Lee, M. Thottethodi, and T. Vijaykumar, "PUMA:
Purdue MapReduce Benchmarks Suite," Technical Report Purdue ECE
Tech Report TR-12-112012.

[20] S. R. Becker, E. J. CandÃ¨s, and M. C. Grant, "Templates for convex
cone problems with applications to sparse signal recovery,"
Mathematical Programming Computation, vol. 3, pp. 165-218, 2010.

[21] J. I. Marden, Analyzing and modeling rank data: CRC Press, 1996.

[22] Z. Zibin, W. Xinmiao, Z. Yilei, M. R. Lyu, and W. Jianmin, "QoS
Ranking Prediction for Cloud Services," , IEEE Trans. on Parallel and
Distributed Systems, vol. 24, pp. 1213-1222, 2013.

http://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us/

