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Abstract— An important issue for efficient execution of 

MapReduce jobs on a cloud platform is selecting the best fitting 

virtual machine (VM) configuration(s) among the miscellany of 

choices that cloud providers offer. Wise selection of VM 

configurations can lead to better performance, cost and energy 

consumption. Therefore, it is crucial to explore the available 

configurations and choose the best one for each given 

MapReduce application. Executing the given application on all 

the configurations for comparison is a costly, time and energy 

consuming process. An alternative is to run the application on a 

subset of configurations (sample configurations) and estimate its 

performance on other configurations based on the obtained 

values on those sample configurations. We show that the choice 

of these sample configurations highly affects accuracy of later 

estimations. Our Smart Configuration Selection (SCS) scheme 

chooses better representatives from among all configurations by 

once-off analysis of given performance figures of the benchmarks 

so as to increase the accuracy of estimations of missing values, 

and consequently, to more accurately choose the configuration 

providing the highest performance. The results show that the 

SCS choice of sample configurations is very close to the best 

choice, and can reduce estimation error to 7.11% from the 

original 16.02% of random configuration selection. Furthermore, 

this more accurate performance estimation saves 24.3% energy 

on average. 

Keywords— Performance Estimation; Energy Efficiency;      

Big Data Analysis;  MapReduce Applications; Matrix Completion 

I. INTRODUCTION 

With the proliferation of data centers, their energy 
consumption has become a main concern. The energy 
consumption of data centers grows up about 15% annually and 
the energy cost is about 42% of total operational cost of data 
centers [1]. The approaches to reduce the energy consumption 
in data centers can be categorized as structural improvements 
mainly for cooling efficiency, power improvements to lower 
power loss, VM consolidation to operate the servers in more 
energy efficient states as well as to turn off unused resources, 
and finally application-level optimizations where custom 
solutions are proposed based on application features. 

Since the cooling system and power distribution units 
consume up to 35% of energy in data centers [2] , various types 
of structural and power improvements are presented [3-5] to 
reduce their share of energy consumption. The emergence of 

virtualization technology and Infrastructure as a Service (IaaS) 
cloud services provided this opportunity to improve the poor 
utilization of servers [6] and make them energy proportional by 
VM consolidation [7-9]. 

Application-level optimizations dive into details of the 
application in question to improve processes such as resource 
allocation to consequently reduce the energy consumption. For 
example [10-14] consider the specifications of MapReduce 
applications (as the common framework for Big Data analysis) 
when allocating resources or scheduling jobs. 

A common challenge in this last category in the case of 
resource allocation for MapReduce jobs is that estimation is 
needed on the execution time or performance of the application 
on available VM configurations. The common framework used 
in most these works is shown in Fig. 1: the Estimation Phase 
provides an estimate of the processing time of each VM 
configuration per unit data volume, measured in seconds per 
GB, s/GB; then the Resource Allocation Phase chooses the 
best configuration and the number of VM instances required to 
process the whole big data while adhering to the given 
deadline. Obviously, overestimation of the VM configuration 
performance results in losing the deadline, and underestimation 
results in overbooking of resources and waste of energy and 
money. Thus, accurate and low-cost estimation methods are 
required to avoid both these cases. Note that for ease of 
management, usually the same VM configuration is used for all 
VM instances, and hence, the system is homogeneous. 

One common method to address this estimation challenge 
is profiling. In complete profiling, the application is executed 
on all the accessible configurations for a short period of time (a 
few minutes) to estimate performance of each configuration. If 
the state space of the problem is small (i.e., few number of 
available configurations) this approach will be suitable. 
Otherwise, when the number of selectable choices is high, 
which is usually the case with today and anticipated growth in 
cloud computing providers, running the application on all of 
them means using a lot of resources that needs lots of money 
and leads to waste of energy and time. Thus, complete profiling 
is usually not acceptable. 

This research is supported by grant number G930826 from Sharif 
University of Technology. We are grateful for their support. 



 
Fig.  1.  Common framework in resource allocation for MapReduce jobs in 

clouds. 

 
In partial profiling, only a small subset of the state space 

(i.e., a few configurations) are actually profiled per new 
application, and then results are extended to the whole state 
space based on the results of prior complete profiling of a few 
representative benchmarks. In [15], the authors first run some 
applications on all the available configurations (Offline 
Training), and then, when a new application arrives, its 
performance is measured on two sample configurations for a 
short period of time, and then by a reconstruction technique 
called Matrix Completion [16], the values for other 
configurations is predicted. Consequently, the Offline Training 
Phase (see Fig. 2) serves several future applications, and less 
time and resources are used for the Usage Phase per new 
application. 

Reference [15] chooses the two sample configurations 
randomly. However, our results in section 2 show that the 
accuracy of predicting the missing values is widely dependent 
on the choice of these sample configurations. 

In this paper, we propose Smart Configuration Selection 
(SCS) method to leverage the power of matrix completion by 
carefully choosing the sample configurations. We apply our 
method on a set of VM configurations that are already offered 
by various cloud providers such as Amazon EC2 [17] and 
Microsoft Azure[18]. We show that this method can increase 
the accuracy of missing values prediction by more than 2x 
compared with random selection. 

The rest of the paper is organized as follows. Section 2 

gives an example to show the motivation beyond this work 

and discusses it. Section 3 introduces the SCS approach and 

its mathematical background. Section 4 represents the 

experimental results. Finally, the paper is concluded and 

future works are provided in section 5. 

 
Fig.  2.  Overall flow of performance estimation using matrix completion. 

II. MOTIVATION 

In this section, we employ an example to show motivation 
behind our research. We ran eight MapReduce applications 
from PUMA suite [19] on nine VM configurations with 
different amount of resources (e.g., RAM and CPU). VM 
configurations are the same as some of the instances from [17] 
and [18]. We also used datasets from [19] as the input of 
MapReduce applications. The numbers in TABLE I indicate 
the execution time of each application on the various 
configurations (in seconds) for 3GB of data. 
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EXECUTION TIME OF MAPREDUCE APPLICATIONS ON DIFFERENT 

CONFIGURATIONS  
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Before presenting the results, we depict the overall flow of 
experiments and define necessary concepts for pursuing the 
rest of paper. Fig. 2 illustrates the flow from training phase to 
usage phase. First, some applications are executed on all the 
available configurations. These applications are training set 
and information obtained from their execution is used for next 
steps. This step is offline and just need to be done once 
(Training Phase). After this phase, the new application is 
introduced to system which we want estimate its performance 
on configurations. Next, a subset of configurations is employed 
and the new application is executed on them. From now on this 
subset is called sample configurations. Finally, from 
information of training phase and executing the new 
application on sample configurations, the matrix completion 
approach estimates the performance of new application on the 
rest of configurations which we call missing values. This step 
is done online (Usage Phase). 

For showing that selecting the sample configurations 
randomly might lead to imprecise estimation of missing values, 
we conducted a set of experiments for each application in 
TABLE I. In each set, we selected one application and 
assumed it as the new app we want to sample on configurations 
and there is no information about it. The other applications are 
considered as training set that we want to predict the missing 
values of new application based on their information. Then, we 
chose a pair of configurations randomly as known samples, 
which the execution time of application is known on them. The 
seven left ones are considered as missing values. Finally, we 
applied matrix completion program from [20] on the matrix 
with missing values and observed the results. This process 
repeated ten times for each application and in different 
iterations we chose a different pair of random sample 
configurations. Approximation error (the difference between 
estimated value and actual value) of matrix Completion 
regarding missing values for each of ten iterations in all the 
eight applications is demonstrated in Fig. 3. As this figure 
reveals, the amount of error differs significantly from one 
sampling pair to the other. Therefore, it can be concluded that 
the selected sample configurations can affect the outcome of 
matrix completion remarkably. So, it is essential to choose the 
sample configurations wisely in order to have an accurate 
prediction of missing values. 

 

Fig.  3.  Approximation Error of Matrix Completion for ten sample 

configurations. 

III. SMART CONFIGURATION SAMPLING (SCS) 

In this section, we present the SCS approach. The main 
goal of SCS is to select the sample configurations in a way that 
leads to more accurate prediction of missing values in matrix 
completion process. First, the mathematical background of 
SCS, including correlation coefficient and its variants is 
explained and then the approach itself is expanded. 

A. Mathematical Background 

Correlation Coefficient indicates the linear relationship 
between two variables and also shows the strength and 
direction of this relationship. Various versions of correlation 
coefficient are available such as Pearson and Kendal. 

Kendal Rank Correlation Coefficient (KRCC) [21] 
indicates the portion of ranks that match between two data sets. 
The proposed method in [22] uses KRCC to evaluate the 
similarity between users of cloud services and based on that 
estimates the missing values (response time of cloud services 
for users who have not used the service yet). 

Unlike [22], where the missing values and present ones are 
not determined by the algorithm because they cannot force 
users to use specific services, in our work we have this 
freedom to choose the present values by running the 
application on counterpart configurations. So, we use the 
Pearson Correlation Coefficient (PCC). For two variables x and 
y, the PCC is a value between -1 and +1. +1 and -1 shows that 
the variables are strongly related to each other. Zero value 
means that there is no kind of relationship between two 
variables. The PCC of two variables can be calculated as (1) (N 
is the total Number of attributes): 
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Equation (1) can be summarized as (2) for population: 

cov(x, y)
( , )

x y

PCC x y
 

  (2) 

Where cov stands for covariance and σ stands for standard 
deviation. We use this form of PCC in our approach to 
measure the correlation between configurations. 

B. SCS Approach 

Considering TABLE I, we perceive that configurations one 
and six (7G – 4C and 14G – 8C) have strong relationship with 
each other (PCC (1, 6) = 0.998). So, what if we choose these 
two as sample configurations? The results have been shown in 
Fig. 4 and compared with the average of ten random samples. 
It shows the approximation error is too high and we can say it 
is an inauspicious choice. But, what is the reason?   The answer  

 



 
Fig.  4.  Impact of PCC on approximation error 

 
is that since these two configurations are correlated to each 
other, they cannot represent the diversity of all configurations. 
Hence the estimation leads to poor results. From this 
observation, we can conclude that the two selected samples 
must demonstrate the assortment of configurations in order to 
obtain a precise prediction. From this conclusion, we present 
the SCS approach which concentrates on finding dichotomy 
between configurations and picking the two bests that can 
represent it. This approach is offline and need to be applied just 
once in Sample Configuration Selection part in Fig. 2. 

SCS first calculates the PCC for each two configurations 
(columns in TABLE I) where N stands for all the 
configurations. 

( , )
, , ( , )

i j

Cov i j
i j N PCC i j

 
    (3) 

Then, it calculates the total amount of correlation be-tween 
each configuration and other ones. TCC stands for Total 
Correlation Coefficient. 
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After that, the first configuration that will be chosen is the one 
with least amount of TCC because the one with least TCC 
shows the most diversity with other configurations. 

 1 | ( ), 1...
i j

Config i TCC Min TTC j N    (5) 

Finally, for second configuration, the one must be chosen that 
has the least PCC with first selected configuration. In this way, 
the too selected configurations have: 1) minimum correlation 
so are different from each other and 2) at least one of them has 
the least possible correlation with other configurations and can 
represent diversity among them. 

 2 | PCC ( ( , 1), 1...
i

Config i Min PCC i Config i N    (6) 

SCS method is simple, yet very effective because it can 
quickly distinguish the two most proper configurations for 
sampling by doing a few calculations. The selected 
configurations are different from each other regarding PCC and 
they also can represent the diversity among whole set of 
available configurations. 

IV. EXPERIMENTAL RESULTS 

Hence the state space of problem in our example (TABLE 
I) is small enough to be explored completely; we have 
calculated the amount of approximation error of matrix 
completion for all the possible pairs of sample configurations 
for all applications. Fig. 5 illustrates the results. As can be 
seen, for all the applications there is a wide gap between 
minimum and maximum error. These observations further 
prove the necessity for careful selection of sample 
configurations. In upcoming subsections, we first present the 
effectiveness of SCS for improving estimation accuracy of 
applications performance on different configurations. Then, we 
further explore the problem and depict the impact of estimation 
accuracy on meeting/missing applications deadline and 
resource utilization. 

A. Impact of SCS on Estimation Accuracy 

We ran the SCS for TABLE I and the configurations that 
are selected by SCS are configurations 4 and 8 (7G – 7C & 
3.75G – 1C). The TCC for configuration 4 is 7.3808 and PCC 
(4, 8) = 0.8481. The comparison between SCS, Average of all 
possible pairs of sample configurations (all states) and best pair 
and worst pair of sample configurations per application are 
depicted in Fig. 6. The average error of SCS over eight 
applications is 7.11% while the average of worst case is 
34.99%, average of best case is 5.46% and average of all states 
is 16.02%. It shows that while SCS obtains far better 
approximation than worst case, it answers are near the best 
case ones. However, SCS cannot always provide the best 
answer for any application, in average it outperforms any other 
sample configurations and hence it can be considered as an 
effective solution for sample configuration selection. 

B. Estimation Accuracy Effect on Resource Management 

In this section, we want to examine how the estimation 
accuracy can affect the resource management. Two important 
factors that are measured in this section are application 
deadline and energy consumption. For this reason, we compare 
the results from the SCS approach and four random sample 
configuration selections. For two applications word count and 
histogram rating, which are of different classes and have 
different input datasets, we want to select a configuration and 
process 30GB of data on that configuration. The desired 
deadline is 1800 seconds. The results of matrix completion for 
these two applications with respect to information from 
TABLE I under four different random sample configuration 
selections and SCS approach are presented in TABLE II. The 
gray cells are the sample configurations which are considered 
known and matrix completion is done based on them. The real 
values are also presented in the first two rows so a clear 
comparison between estimated values and real values can be 
possible. 



 

Fig.  5.  Scattering of approximation error for all the possible sample 

configurations. 

 
After the matrix completion is done, it is time for choosing 

the best configuration for executing the applications, based on 
estimated performances. A pseudo-linear relationship   
between volume of data and execution time is considered. 
Hence, a suitable configuration that can execute the 30GB of 
data in less than or equal to 1800 seconds, must be able to 
execute the 3GB of it in less than or equal to 180 seconds. So, 
the candidate configurations are the ones that have execution 
time of less than 180 seconds in each row of TABLE II. After 
finding the candidate configurations, it is time for choose the 
best one. The main factor for choosing the best configuration is 
number of cores. The less the number of cores, the better the 
configuration in terms of resource usage and consequently 
energy consumption. If two candidate configurations have the 
same number of cores, then the tie breaker will be amount of 
memory. 

According to aforementioned mechanism for choosing the 
best configuration, configurations with bold number are 
selected. For example, based on sample configuration (2, 4) in 
Random 1 and consequently estimated values by it, 
configuration 7 is suggested for word count application and 
configuration 1 is suggested for histogram rating application. 
After that, a real input dataset with size of 30GB for each of 
applications is executed on selected configurations. The results 
of execution times are shown in Fig. 7. 

Fig. 7 (a) shows that for word count application, the 
suggested configuration by all the four random ones has missed 
the deadline, whereas SCS meets the deadline. The reason is 
that random scenarios overestimated the performance of 
configurations that considered them faster than they really are. 
Consequently, their selected configurations couldn’t meet the 
deadline. 

On the other hand, in Fig. 7 (b), in addition to SCS, Random 1 

also had been able to meet the deadline. But, if we look at the 

selected configurations by SCS and Random 1, we can see 

that selected configuration by Random 1 (configuration 1) has 

more resources than selected one by the SCS approach 

(configuration 5). Hence, while both of the configurations can 

 
Fig.  6.  Comparison of SCS with other sample configurations. 

 
meet the deadline, the one selected by Random 1 uses more 
resources and consequently suffer from resource waste. In fact, 
Random_1 has underestimated the performance of 
configuration. 

Regarding energy consumption, the SCS again outperforms 
the random sample configurations. The results are depicted in 
Fig. 8. As can be seen, the more accurate estimation yield by 
the SCS approach is able to reduce energy consumption up to 
41% compared with worst case (Random_3 in (a)) and 24.3% 
in average of all the configurations in both applications. 

We can conclude from these results that both 
underestimation as well as overestimation can cause 
undesirable results in terms of meeting deadline and energy 
consumptions. So, an accurate estimation of performance 
would be of interest. 

TABLE II 

RESULTS OF MATRIX COMPLETION FOR DIFFERENT SAMPLE CONFIGURATIONS 

 
7G-4C 3.5G-2C 7.2G-8C 7G-7C 4G-4C 14G-8C 15G-4C 3.75G-1C 7.5G -2C

1 2 3 4 5 6 7 8 9

wordcount 194 359 156 152 208 111 196 626 350

hist-rat 167 310 115 117 175 98 174 508 306

wordcount 198 359 155 152 227 112 178 500 298

hist-rat 167 310 126 117 185 95 146 443 255

wordcount 143 242 135 138 208 85 196 382 219

hist-rat 99 159 101 117 134 98 89 235 133

wordcount 127 200 131 129 208 111 105 292 170

hist-rat 112 178 115 114 175 98 96 261 151

wordcount 194 239 156 141 197 80 114 331 193

hist-rat 167 201 115 109 157 66 101 277 166

wordcount 188 347 161 152 221 112 202 626 343

hist-rat 149 279 125 117 169 87 160 508 281
SCS

Real 

Values

Random 

1

Random 

2

Random 

3

Random 

4

 
 

V. CONCLUSION 

In full profiling, the application is run on all the available 
configurations. This process is accurate to choose the best case 
but costly and time and energy consuming. An alternative 
solution is to run the application on a few number of  



 

Fig.  7. Impact of estimation accuracy on deadline and resource usage 

configurations and then using various prediction methods such 
as matrix completion to estimate the missing values. The 
prediction method can be very effective  but  its  accuracy  is  a 
great concern. To improve the accuracy, we presented SCS 
method which uses Pearson Correlation Coefficient to select 
the most suitable sample configurations. This improves the 
accuracy of predicted missing values which will lead to better 
configuration selection for applications and consequently 
increases the energy efficiency. 

The results in Fig. 6 reveal that while SCS provides the best 
pair of configurations for all the applications on average, it 
cannot supply the best answer for each specific application. 
This is a motive for further work in this area because obtaining 
the best choice per application can further improve the 
accuracy of estimation and lead to more precise decisions 
based on this knowledge. 

 

Fig.  8.  Energy consumption of different selected configurations. 
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