
1

BayesTuner: Leveraging Bayesian Optimization
For DNN Inference Configuration Selection

Seyed Morteza Nabavinejad and Sherief Reda, Senior Member, IEEE

Abstract—Deep learning sits at the core of many applications and products deployed on large-scale infrastructures such as data
centers. Since the power consumption of data centers contributes significantly to operational costs and carbon footprint, it is essential
to improve their power efficiency. To this end, both the hardware platform and application should be configured properly. However,
identifying the best configuration automatically for a wide range of available options with affordable search cost is challenging (e.g.,
DNN batch size, number of cores, and amount of memory allocated to the application). Employing an exhaustive approach to test all
the possible configurations is unfeasible. To tackle this challenge, we introduce BayesTuner that employs Bayesian Optimization to
estimate the performance model of deep neural network inference applications under different configurations with a few test runs.
Having these models, BayesTuner is able to differentiate the optimal or near-optimal configurations from the rest of options. Using a
realistic setup with various DNNs, we show how efficiently BayesTuner can explore the huge state space of possible control
configurations, and minimize the power consumption of the system, while meeting the throughput constraint of different DNNs.

Index Terms—Deep Neural Network, Power, Throughput, Bayesian Optimization

F

1 INTRODUCTION

VARIOUS systems are designed and implemented for exe-
cuting DNN inference. While these systems are based on

different hardware platforms, the deployment of DNN infer-
ence applications on them has the similar structure: placing the
pre-trained model on the system, allocating a specific amount
of resources (e.g., CPU, RAM), and adjusting the DNN-side
control knobs such as batch size, which defines how many
inputs should be processed at a time in the form of a batch.

Finding and selecting the right configuration (e.g., batch
size, number of cores, allocated memory) is essential for im-
proving performance and power efficiency of the system. Qual-
ity of service and customer satisfaction have a direct rela-
tionship with the performance. Moreover, power consumption
has a significant share in the operational costs of data centers
and determines their carbon footprint [1]. The impact of the
configuration is especially important for recurrent jobs that
deploy similar DNN inference applications periodically on the
infrastructure, or the long-running jobs that process a large
input dataset.

We conclude that it is challenging to find the proper config-
uration for various objectives, e.g., maximizing the throughput
or minimizing the power consumption, because of the complex-
ity of building performance models in the presence of various
control knobs. Since the control knobs have complex relation-
ship with performance and power, it is hard to use common
methods to accurately model this relationship. Moreover, using
an exhaustive search method to find the right configuration
imposes significant overhead, and hence, is unfeasible. For
instance, the size of state space (all the possible configurations)
in this work is 7168 configurations. In a realistic setup, running
test samples to understand the behavior of application regard-
ing different control knobs is very expensive, and hence, the
number of test samples is very limited.

• Seyed Morteza Nabavinejad is with the School of Computer Science,
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
E-mail: nabavinejad@ipm.ir

• Sherief Reda is with the School of Engineering, Brown University, Provi-
dence, RI. S. Reda work is partially supported by NSF grant 1814920 and
DoD ARO grant W911NF-19-1-0484. E-mail: sherief reda@brown.edu

To address the aforementioned challenges, we present
BayesTuner, a low-overhead adaptive approach for diverse set
of recurring and long-running DNN inference applications that
can find the optimal or near-optimal configuration, such that
the power consumption of the hardware platform is minimized,
while the throughput of the application is not less than a
predefined constraint. For the CPU-based hardware platforms,
the configuration includes the number of cores and amount of
memory allocated to the job. We also consider batch size, as
batching is widely used in previous works for increasing the
throughput of DNN inference [2], [3].

The key idea of BayesTuner is identifying near-optimal
configurations. Therefore, it needs a performance model with
enough accuracy that can distinguish the near-optimal con-
figurations from the rest of configurations. This feature helps
BayesTuner to achieve low overhead as finding the near-optimal
configuration needs fewer sample runs. To build this accurate
enough performance model, BayesTuner leverages Bayesian Op-
timization (BO). BO is able to optimize black-box functions, and
hence, it does not need application-specific insights such as the
architecture of DNN (number of layers, type of layer, etc.) or
low-level profiling of hardware platform (cache, memory, etc).
It is especially important as there is a trend toward application-
agnostic optimization approaches in data centers due to secu-
rity and privacy concerns [1]. We use 8 DNNs from different
domains and a CPU-based hardware platform to evaluate the
efficacy of BayesTuner. The results indicate that BayesTuner can
yield up to 25% and 39% improvement in power consumption
in the presence of a throughput constraint, compared with two
other approaches that do not leverage BO. It also can find
solutions as close as 1.4% to optimal ones on average, when
compared with Exhaustive Search.

1.1 Motivation

We select three DNNs from different domains (DeepSpeech
from speech recognition, DeePVS from video saliency, and
Inception from image classification) to study the impact of a
set of diverse configurations on their power and throughput.
We consider the number of cores allocated to the DNN and



2

220

240

260

280

300

4 8 12 16 20 24 28
Number of Cores

P
ow

er
 (

W
)

DeepSpeech
DeePVS
Inception

(a)

230

240

250

260

270

4 8 12 16 20 24 28 32
Batch Size

P
ow

er
 (

W
)

DeepSpeech
DeePVS

Inception

(c)

5

10

15

20

4 8 12 16 20 24 28
Number of Cores

T
hr

ou
gh

pu
t

DeepSpeech
DeePVS
Inception

(b)

10

20

30

4 8 12 16 20 24 28 32
Batch Size

T
hr

ou
gh

pu
t

DeepSpeech
DeePVS
Inception

(d)

Fig. 1. Impact of number of cores and batch size on the power and
throughput of three selected DNNs.

the Batch Size (BS) as control knobs. We consider a baseline
configuration and change each of the control knobs separately.
When changing the BS, we consider the number of cores a fixed
value (14 cores using cgroups feature of Linux), and when we
change the number of cores, we consider BS as fixed value of 16.
The power consumption and throughput of DNNs is presented
in Fig. 1. The throughput for DeepSpeech is the number of
audio files to process per second, for DeePVS is the number
of video frames per second, and for Inception is the number of
images to classify per second.

We observe that a proper configuration can help signif-
icantly reduce the power consumption to achieve a certain
throughput. For example, in Fig. 1.(c) and (d), both BS = 4 and
and BS = 20 can reach almost the same throughput, 13.8 and
14.2 respectively. But one with power consumption of 86 W (BS
= 4) and the other with power consumption of 115 W (BS = 20).
Therefore, wrong configuration selection can waste 33% power,
without achieving higher throughput. It is especially important
for recurring jobs, where similar workloads are repeated pe-
riodically, or long-running jobs where a huge amount of data
should be processed. Our approach is suitable for these kind
of jobs as the resource and time overhead of searching for the
near-optimal configurations can be amortized over the course
of time.

2 BAYESTUNER

Our knowledge of the vast state space of configurations is
limited to a few ones that we can explore in test runs, which
are very costly. Hence, instead of trying to build an accurate
performance model for each DNN to find the best configura-
tion, we aim to estimate a model that is accurate enough to
help us identify the optimal or near-optimal configurations.

2.1 Problem Statement
For a given DNN and a hardware platform, find the best config-
uration (i.e. the combination of control knobs provided by DNN
and platform) to minimize the power consumption subject
to a performance requirement. In this work, we consider the
throughput as the performance metric. The throughput T(BS,
core, memory) and power consumption P(BS, core, memory)
depend on the DNN application and hardware platform control
knobs, i.e., batch size, number of cores, and amount of memory.
Our ultimate objective is to find the best configuration that
minimizes the power consumption, while having throughput
greater than or equal to a predefined throughput threshold Tth:

Minimize P (BS, core,memory)

S.t. T (BS, core,memory) ≥ Tth

(1)

By testing all the configurations, we can have
T(BS,core,memory) and P(BS,core,memory) for all of them
and easily solve Equation (1); but, it is extremely costly. Using
BO, BayesTuner can find an approximate solution for Equation
(1) by testing a much smaller subset of configurations that
are selected dynamically, and hence, significantly decrease the
search cost.

2.2 Bayesian Optimization Principals

BO models the unknown function, e.g., P(BS, core, memory),
with a stochastic process (called Prior function) and tries to
estimate it by the help of samples taken at different points of
that unknown function. After taking each sample, the estimated
model and the confidence interval that shows the difference
between the estimated model and the actual model are updated
by BO. For selecting the next sample point wisely, BO relies
on a pre-defined acquisition function. The acquisition function
determines the sample that can yield the highest expected
improvement of the estimated model, such that the confidence
interval is became narrower. The illustrative example in Fig. 2
shows how BO works.

For the Prior function (i.e., the stochastic process to estimate
the objective function and constraint models based on), we use
the Gaussian process, as it is a common and accepted option
for BO [4]. This choice means that we assume the unknown
function(s) is a sample from Gaussian process. The Gaussian
process estimates the actual function f with a surrogate model
f’. In f’, for each input (i.e., configuration) the output is defined
by a random variable, instead of an actual value. This random
variable tells what is the possible value for function f (i.e.,
power consumption and throughput in our work) for a certain
input configuration. At the beginning, the degree of uncertainty
is high, which mean the estimated output for a certain input
has a wide confidence interval. As more samples are taken,
the uncertainty is decreased and confidence interval becomes
tighter, means that the estimated output of input configurations
is more accurate. Flexibility of this non-parametric process
allows to come close to the actual function by taking enough
samples. The number of samples need to be taken to reach to
the actual function depends on the similarity of that function
with Gaussian process. Closer functions need fewer numbers
of samples to be accurately estimated. It is possible to find
better prior functions than Gaussian process for specific DNNs
by having knowledge about them. However, it renders the
generality of that prior function for broader range of DNNs
low [5].

For the acquisition function, which determines the next
sample point to take, we use Expected Improvement (EI) which
selects the sample point that might maximize the expected
improvement over the current best result. The EI method is
the most popular option over the other possible options and
does not require self-tuning [4]. The EI takes into account
the estimated model (f’) yielded by the Gaussian process up
to this point. It also considers the best (lowest in our work)
value obtained for objective function until now from the actual
samples taken. Then, it examines the remaining configurations
in the state space by the estimated model and obtains the
objective value for each of them. Then it selects the one that
can improve the objective function the most compared with
the best value identified until now. This new configuration is
selected as the next test sample and is executed to find the real
value of objective function for it. Then, this new test sample and
its objective value is fed to Gaussian process, along with the
previous test samples and their values, to update the estimated



3

Fig. 2. Illustrative example to show how BO works (adapted with modi-
fication from [6]). EI finds the configuration corresponding as global ex-
tremum (minimum in this sample) and selects that as the next example.

BayesTuner

Hardware Platform

BS = 1

BS = 16

Configuration Controller and Monitor

BO Framework

DNNBatch Size

Prior Function Acquisition Function

Sample Point Objective + Constraint(s)

Control knobs
 (e.g., batch size, #cores, memory)

Metrics of interest
(e.g., power, throughput)

Fig. 3. Overall flow of BayesTuner

model. This loop is repeated until we reach the maximum
number of test samples.

2.3 Methodology

The overall flow of BayesTuner is shown in Fig. 3. It consists of
two modules which we discuss in the following: Configuration
Controller and Monitor and BO Framework.
Configuration Controller and Monitor. This module interacts
with BO framework, hardware platform, and the application,
and orchestrates the entire process of setting the values of
control knobs of hardware platform and application, launching
test runs for sample points determined by BO framework, as
well as monitoring the objective function and constraints for
sample points and sending them to the BO framework. The user
supplies this module with the DNN model of the inference ap-
plication, and the desired objective and constraints (e.g., power
consumption, throughput, execution time, etc.). For the DNN
inference application, this module sets the batch size based
on the value received from BO framework. For adjusting the
control knobs of hardware platform (e.g., number of cores and
amount of memory), it uses control groups (cgroups) feature
of Linux. For other hardware platforms with specific features,

TABLE 1
Specifications of Jobs Used in the Experiments.

DNN Dataset Domain Throughput
Constraint

DeepSpeech [8] Sentiment140 [9] Speech Recognition 6 audio/sec
DeePVS [10] LEDOV [10] Video Saliency 4 frame/sec

TextAnalysis [11] LibriSpeech [12] NLP 5000
sentence/sec

PNASNet [13] Imagenet [14] Image Classification 4 image/sec
NASNet [15] Imagenet Image Classification 3 image/sec

InceptionV3 [16] Imagenet Image Classification 20 image/sec
ResNetV2 [17] Imagenet Image Classification 10 image/sec
MobileNet [18] Imagenet Image Classification 50 image/sec

other parameters and control knobs can be adjusted by this
module.
BO Framework. For Bayesian Optimization framework, we
leverage Spearmint [7] which is implemented in Python and
supports both the Gaussian process for prior function and EI
approach for the acquisition function. For taking a sample, BO
submits the specifications of the selected configuration to the
Configuration Controller and Monitor module. After comple-
tion of test run, BO receives the desired metrics for objective
function (power) and constraint (throughput) from the same
module.

3 EVALUATION

3.1 Experimental Setup
Hardware platform. We run our experiments on a dual-socket
Xeon server where each of the E5-2680 v4 Xeon chips has 14
cores running at 2.4 GHz. The server has 128 GB of DDR4
memory. Ubuntu 16.04 with kernel 4.4 is installed on the server
with the python 2.7, CUDA 11.0, and TensorFlow 1.15.
DNN jobs. To show the adaptive nature of our approach, we
use DNNs from different domains. The selected DNNs cover
a wide range of applications, as well as DNN types: from
CNNs to RNNs, to LSTMs. The jobs used in the experiments
are shown in Table 1
Objective and constraint. The objective function is defined
as minimizing the power consumption of the DNN inference
application under a throughput constraint. By default, we con-
sider a loss throughput constraint for each DNN, so there is
more room to explore the state space.
Systems compared. We compare BayesTuner with three strate-
gies: 1) Exhaustive Search, that tests all the possible configura-
tions to find the best one. 2) BatchSizer [2], that uses the DNN
control knob (batch size) to manage the power consumption
and throughput. It does not consider the hardware platform
control knobs, and hence, uses the entire system resources. 3)
Simulated Annealing (SA) is a meta-heuristic approach that
approximates the global optimum of problems with large state
space. It explores the state space by probabilistically deciding
to move to a neighbor configuration. SA does not estimate
a performance model for objective and constraint and hence,
generally converge slower than BO.
State space. The hardware platform, as mentioned, has 28 cores.
While the available memory of this server is 128 GBs, our
observations show that none of the DNNs consume more than
8 GBs of RAM. Hence, to moderate the size of state space, we
consider 8 GBs of RAM, which can be changed by steps of 1
GBs. We use cgroups feature of Linux to manage amount of
memory. Considering the batch size for DNNs as a number
between 1 to 32, the total number of possible configurations
that we can select from is 28 × 8 × 32 = 7168. For comparing
BayesTuner against SA and BatchSizer, we consider this state
space. But, for comparing BayesTuner against Exhaustive Search
approach, we consider a smaller version of state space where
the number of cores and batch size can be set with steps of
4 (e.g, 4, 8, 12) and the amount of memory can be set with



4

120

160

200

240

DeepSpeech

DeePVS

TextAnalysis

PNASNet

NASNet

InceptionV3

ResNetV2

MobileNet

P
ow

er
 (

W
)

BayesTuner Exhaustive Search

2.5%

0% 2.3%

0.8% 3.5%
0.9% 1.38%

0%

Fig. 4. Comparing the results of BayesTuner against optimal solution
for power consumption. The red numbers on top of the bars indicate
the difference between BayesTuner and optimal solution. The number of
test samples for BayesTuner is 20 and for Exhaustive search is 224.

steps of 2 (e.g, 2, 4, 6). In this way, the number of all possible
configurations would be 7×4×8 = 224. The internal controller
of the CPUs control Dynamic Voltage Frequency Scaling (DVFS)
and we do not apply any changes on it, nor using any control
approach.

3.2 Results

BayesTuner can find near optimal solutions with less search
cost. BayesTuner can find solutions similar to the optimal one.
In Fig. 4, the power consumption of optimal solution (achieved
by Exhaustive Search) and BayesTuner is depicted for all the
DNNs. The average difference between optimal solution and
BayesTuner is 1.4%. It clearly shows the success of BayesTuner
at finding optimal and near-optimal solutions with test cost
remarkably lower than that of Exhaustive Search. BayesTuner
only selects 20 test samples from the state space (9% of the
configurations), while Exhaustive Search tests all the 224 con-
figurations. The total search time of BayesTuner and Exhaustive
Search is shown in Table 2. BayesTuner can dramatically reduce
search time (up to 96% and 88% on average) compared with
Exhaustive Search. These results can emphasize the efficacy of
using BO to reduce the search cost, while achieving optimal
or near-optimal solutions. Furthermore, we have estimated
the sampling time of Exhaustive Search for the original state
space with 7168 configurations (multiplying the sampling time
of each job in small state space by 7168

224
). Comparing them

with sampling time of BayesTuner clearly shows how using BO
becomes more prominent as the state space expands.
BayesTuner can significantly improve the objective function
with the same search budget as SA. The power consump-
tion results of BayesTuner, SA, and BatchSizer for the same
number of test samples (20) is depicted in Fig. 5. BayesTuner
improves the power consumption by up to 25% (7% on average)
compared with SA. It emphasizes the power of BayesTuner in
selecting the sample points wisely, in contrast to SA that can
be trapped in local minimums. The acquisition function of our
BO framework can successfully guide the sampling process to
the right direction, in order to select better sample points and
build a more accurate performance model for the application.
The slower convergence problem of SA shows itself in the form
of higher power consumption in the results, as it needs more
test samples to approach the optimal solution.
BayesTuner leverages all the control knobs of both hardware
platform and the application, and hence, achieves better so-
lutions than the approach that only leverage the application-
side control knob. The BatchSizer only tunes batch size to
find a solution. Therefore, it misses the opportunity to explore
the entire state space, and hence, its ability to find optimal or
near-optimal solutions is seriously degraded. The strength of

150

200

250

300

DeepSpeech

DeePVS

TextAnalysis

PNASNet

NASNet

InceptionV3

ResNetV2

MobileNet

P
ow

er
 (

W
)

BayesTuner BatchSizer Simulated Annealing

Fig. 5. Comparing the results of BayesTuner against Random Search
and BatchSizer with the same number of test samples.

TABLE 2
Sampling Time (seconds) of Different Approaches.

Small State Space Large State Space

BayesTuner Exhaustive BayesTuner Exhaustive
(Estimated)

DeepSpeech 1137 8521 3936 272659
DeePVS 203 6181 663 197778
TextAnalysis 398 4968 861 158966
PNASNet 807 5520 1147 176636
NASNet 758 5249 1234 167972
InceptionV3 664 4327 1026 138475
ResNetV2 404 3036 642 97150
MobileNet 355 2565 546 82076

our approach, however, is that it can leverage the cross-stack
control knobs to better navigate the state space and find better
solutions. The maximum power consumption improvement of
BayesTuner over BatchSizer is around 39% and the average
improvement is 26%.

3.3 Detailed Analysis of BayesTuner
In this section, we explore the behavior of BayesTuner in more
details. In Table 3, the 20 sample points selected by BayesTuner
for MobilenetV2 DNN is listed and in Fig. 6, the power and
throughput of those points is depicted. The horizontal line
in Fig. 6 indicates the throughput constraint of this DNN.
BayesTuner can find a solution that meets the throughput at
test sample 2. However, it tries to find another valid solution,
but with less power consumption in the following. In its ex-
ploration, it aims to identify the control knob that has more
effect on power and throughput, and hence, it tests different
values for number of cores, amount of memory, and batch
size. at the first few samples, it explores the edges of the state
space. Eventually, the sample points selected by BayesTuner are
closer to the throughput constraint, because it realizes that to
minimize the power consumption, the throughput should be
close to the constraint. It stops after reaching the maximum
number of samples (20) is reached.

Earlier in Section 1.1, we mentioned that in addition to
recurrent jobs, the long-running jobs can also benefit from
choosing right configuration. Considering the sampling time
of BayesTuner shown in Table 2, even jobs that do not belong to
the aforementioned categories, but are long enough compared
to sampling time, can also benefit from results of BayesTuner.
The size of sample input directly affects the sampling time.
Therefore, choosing small inputs that are able to capture the
characteristics of jobs (e.g., power, throughput), can help to
reduce the sampling time, and hence, employ BayesTuner for
a wider range of jobs with shorter runtime. In this case,
BayesTuner can be even used for scenarios where the QoS (e.g.,
throughput constraint) of jobs changes dynamically during
runtime. The new configuration with respect to new QoS can
be found by the help of BO, provided that the job can tolerate



5

TABLE 3
The specifications of 20 test samples selected by BayesTuner for

MobilenetV2 DNN (BS: Batch Size).
Test

Sample # Core Mem (GB) BS Test
Sample # Core Mem (GB) BS

1 1 1 1 11 6 8 29
2 14 4 16 12 19 2 1
3 1 8 32 13 18 1 1
4 28 1 4 14 12 1 1
5 9 8 1 15 19 8 1
6 4 1 32 16 5 1 9
7 27 8 1 17 4 1 3
8 28 7 1 18 4 2 1
9 3 2 1 19 22 5 1
10 23 8 32 20 19 8 1

3 1

9
7
151913208
12

18
6 17

14
16

5 11
2

4

10

200

240

280

50 100
Throughput (Image/Second)

P
ow

er
 (

W
)

4Throughput
Constraint

BayesTuner
Solution

Fig. 6. Detailed behavior of BayesTuner for MobilenetV2 DNN.

the QoS violation for a certain period, until finding the new
configuration.

4 RELATED WORK

Improving throughput and power-efficiency of DL systems
via fine-tuning application/framework-side control knobs has
been studied in previous works. A large body of research uses
batch size as a control knob to increase the throughput or
improve the power-efficiency, while meeting a certain latency
constraint. These works use mechanisms such as binary search
[2] or additive-increase-multiplicative-decrease (AIMD) [19] to
find the proper batch size. auto-tuning framework parameters
(e.g., number of operators to execute in parallel) is the focus
of another group of previous works [20], [21]. These works
do not consider tuning the hardware platform control knobs,
simultaneously with application and framework parameters,
to manage throughput/power consumption. Reagen et al. [22]
also employ BO for designing a hardware accelerator for train-
ing phase of DNNs, in contrast to our work that uses BO for
inference phase on CPU-based hardware platform. Bayesian
Optimization (BO) has been leveraged to find the proper virtual
machine (VM) configuration for big data jobs in Cherrypick [5].
CLITE [23] also employs BO to find the proper configuration
for co-locating several latency-critical jobs with background
jobs. RAMBO [24] also uses BO to find the Pareto-front of
microservices by solving a multi-objective problem. All these
approaches only consider the hardware platform control knobs
(e.g., number of CPUs, memory bandwidth, etc.) and ignore
application-side control knobs. Unlike the prior approaches
discussed in this section, BayesTuner incorporates both hard-
ware and application control knobs in BO to achieve better
results. Simultaneous coordination of both application and
hardware control knobs lead to a larger configuration space
with more number of configurations, and consequently, cause
BO to spend more time exploring it for finding suitable test
samples. However, it provides this opportunity to find optimal
or near optimal solutions that otherwise would not be possible
to obtain due to non inclusion some control knobs.

5 CONCLUSION

We presented BayesTuner, an automated configuration selec-
tion framework for DNN inference applications leveraging
Bayesian Optimization. Using a real-world setup with several
DNNs and a high-end hardware platform, we showed that
BayesTuner can efficiently explore the state space of configu-
rations and find optimal or near optimal solutions that min-
imize the power consumption, while meeting the throughput
constraint. BayesTuner can be extended to cover various types
of hardware platforms, such as GPU clusters, in addition to the
CPU-based platform used in this paper.

REFERENCES

[1] K. Kaffes, D. Sbirlea, Y. Lin, D. Lo, and C. Kozyrakis, “Leveraging application
classes to save power in highly-utilized data centers,” in SoCC, 2020, pp.
134–149.

[2] S. M. Nabavinejad, S. Reda, and M. Ebrahimi, “Batchsizer: Power-
performance trade-off for dnn inference,” in ASP-DAC, 2021, pp. 819–824.

[3] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: machine learning inference
serving on serverless platforms with adaptive batching,” in SC. IEEE
Computer Society, 2020, pp. 972–986.

[4] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization
of machine learning algorithms,” arXiv preprint arXiv:1206.2944, 2012.

[5] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and M. Zhang,
“Cherrypick: Adaptively unearthing the best cloud configurations for big
data analytics,” in NSDI, 2017, pp. 469–482.

[6] L. L. Grado, M. D. Johnson, and T. I. Netoff, “Bayesian adaptive dual control
of deep brain stimulation in a computational model of parkinson’s disease,”
PLoS computational biology, vol. 14, no. 12, 2018.

[7] Spearmint. [Online]. Available: https://github.com/HIPS/Spearmint
[8] D. Amodei and et al., “Deep speech 2: End-to-end speech recognition

in english and mandarin,” in International conference on machine learning.
PMLR, 2016, pp. 173–182.

[9] Sentiment140. [Online]. Available: http://help.sentiment140.com/
[10] L. Jiang, M. Xu, T. Liu, M. Qiao, and Z. Wang, “Deepvs: A deep learning

based video saliency prediction approach,” in ECCV, 2018, pp. 602–617.
[11] Y. Kim, “Convolutional neural networks for sentence classi-

fication,” CoRR, vol. abs/1408.5882, 2014. [Online]. Available:
http://arxiv.org/abs/1408.5882

[12] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an asr
corpus based on public domain audio books,” in ICASSP. IEEE, 2015, pp.
5206–5210.

[13] C. Liu and et al., “Progressive neural architecture search,” in ECCV, 2018,
pp. 19–34.

[14] J. Deng and et al., “Imagenet: A large-scale hierarchical image database,” in
CVPR. Ieee, 2009, pp. 248–255.

[15] B. Zoph and et al., “Learning transferable architectures for scalable image
recognition,” in CVPR, 2018, pp. 8697–8710.

[16] C. Szegedy and et al., “Rethinking the inception architecture for computer
vision,” in CVPR, 2016, pp. 2818–2826.

[17] K. He and et al., “Identity mappings in deep residual networks,” in ECCV.
Springer, 2016, pp. 630–645.

[18] M. Sandler and et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in CVPR, 2018, pp. 4510–4520.

[19] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica,
“Clipper: A low-latency online prediction serving system,” in NSDI, 2017,
pp. 613–627.

[20] N. Hasabnis, “Auto-tuning tensorflow threading model for cpu backend,”
in MLHPC. IEEE, 2018, pp. 14–25.

[21] Y. E. Wang, C.-J. Wu, X. Wang, K. Hazelwood, and D. Brooks, “Exploiting
parallelism opportunities with deep learning frameworks,” TACO, vol. 18,
no. 1, pp. 1–23, 2020.

[22] B. Reagen, J. M. Hernández-Lobato, R. Adolf, M. Gelbart, P. Whatmough,
G.-Y. Wei, and D. Brooks, “A case for efficient accelerator design space
exploration via bayesian optimization,” in ISLPED’17, 2017, pp. 1–6.

[23] T. Patel and D. Tiwari, “Clite: Efficient and qos-aware co-location of multiple
latency-critical jobs for warehouse scale computers,” in HPCA, 2020, pp. 193–
206.

[24] Q. Li, B. Li, P. Mercati, R. Illikkal, C. Tai, M. Kishinevsky, and C. Kozyrakis,
“Rambo: Resource allocation for microservices using bayesian optimiza-
tion,” IEEE CAL, vol. 20, no. 1, pp. 46–49, 2021.


