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Abstract—Traditionally, DVFS has been the main mechanism to trade-
off performance and power. We observe that Deep Neural Network (DNN)
applications offer the possibility to trade-off performance, power, and
accuracy using both DVFS and numerical precision levels. Our proposed
approach, Power-Inference accuracy Trading (PIT), monitors the server’s
load, and accordingly adjusts the precision of the DNN model and the
DVFS setting of GPU to trade-off the accuracy and power consumption
with response time. At high loads and tight request arrivals, PIT leverages
INT8-precision instructions of GPU to dynamically change the precision
of deployed DNN models and boosts GPU frequency to execute the
requests faster at the expense of accuracy reduction and high power
consumption. However, when the requests’ arrival rate is relaxed and
there is slack time for requests, PIT deploys high precision version of
models to improve the accuracy and reduces GPU frequency to decrease
power consumption. We implement and deploy PIT on a state-of-the-art
server equipped with a Tesla P40 GPU. Experimental results demonstrate
that depending on the load, PIT can improve response time up to 11%
compared to a job scheduler that uses only FP32 precision. It also
improves the energy consumption by up to 28%, while achieving around
99.5% accuracy of sole FP32-precision.

Index Terms—Deep Neural Network, Hardware Accelerator, Power,
Accuracy, Response Time

I. INTRODUCTION

DEEP Neural Networks (DNNs) provide state-of-the-art results
in various areas such as computer vision [1] and speech

recognition [2]. Coupled with efficient GPGPU hardware and large
datasets, these modern neural networks use very large and deep
architectures to achieve state-of-the-art results. These modern DNNs
require enormous computational resources for both training and
inference.

To address the resource complexity, hardware manufactures such
as Nvidia and AMD offer reduced-precision arithmetic, which re-
quires less resources (memory, computation, and power), together
with software libraries. They can convert the models trained using
higher precision arithmetic to reduced-precision ones, while trying to
preserve the accuracy of the model [3]. This approach has been also
used in Google’s Tensor Processing Unit (TPU) [4]. It is suitable for
ML services that are interested in faster and more resource-efficient
approaches to improve their resource utilization and customer sat-
isfaction. Previous works try to improve the resource utilization,
performance, and energy efficiency of ML inference applications via
resource autoscaling or designing new hardware configurable units
[5], [6].

In this work, we aim to leverage the GPU computing units that
support reduced-precision and the various frequency levels of GPU
that lead to different amount of power consumption to improve the
balance between the latency of DNN inference, power consumption,
and classification accuracy. We observe that in addition to GPU
frequency, the GPU precision itself also affects the power consump-
tion. For example, the power consumption of INT8-precision is less
than the FP32-precision. Our proposed approach, Power-Inference
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accuracy Trading (PIT), monitors the system’s load, and accordingly
adjusts the precision and DVFS depending on the expected response
time and accuracy. Our contributions are as follows:

• We devise a runtime controller that monitors inference time
targets and accordingly adjusts DVFS and the DNN model
precision, leveraging the ability of modern GPUs that support
several precision arithmetic, in order to improve inference time
and energy consumption, while keeping the accuracy as high as
possible.

• It is commonplace to use the slack time to decrease DVFS, and
consequently, power consumption. However, our PIT controller
trades the slack time of requests with inference accuracy, in ad-
dition to power consumption, considering the status of requests
in the queue and server’s load.

• Using a high-end server, we implement and evaluate PIT on a
state-of-the-art DNN network architecture, ResNet, and demand-
ing test set, ImageNet. We compare our solution against other
standard scheduling techniques and quantify the improvement
in response time and power consumption of our methodology.

The organization of the rest of the paper is as follows. In Section
I-A, we motivate the problem. Section II describes our proposed
methodology. Next, in Section III, we provide the main results
obtained from evaluating our methodology. Finally, in Section V we
provide a summary of our main conclusions.

A. Motivation

To motivate our methodology, we use ResNet [7], to classify 50000
images from ImageNet dataset [8]. We use TensorRT to generate
two versions with different precision, float 32 (FP32) and integer
8 (INT8), of the native model, where the native precision is the
original precision used to train the model, which is double precision,
i.e., FP64. Then, we deploy the models on GPU for inference of
the aforementioned images. The inference time of images and power
and energy consumption under different precision for various GPU
frequencies is presented in Fig. 1. For inference accuracy, both top-1
and top-5 labels are considered. Since the accuracy is not affected by
GPU frequency, only one value per GPU precision is reported. As can
be seen from Fig. 1, changing the precision affects the runtime, power,
and energy significantly. Moreover, the various GPU frequency levels
also affect the aforementioned parameters dramatically. However, the
precision has negligible effect on the final accuracy of classification.
Considering the results illustrated in Fig. 1, we conclude that different
precision arithmetic, as well as GPU frequencies, can be used
as control knobs to improve the power/energy consumption, while
maintaining the response time, by sacrificing the accuracy as little
as possible.

II. METHODOLOGY

A. System Architecture

We present the overall system architecture in Fig. 2, where users
submit their requests to the DNN Inference service. This scenario
corresponds to system architecture of ML as a service platform
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Fig. 1. Inference time, power, energy, and accuracy using different precision and GPU frequency.
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Fig. 2. Proposed overall flow of system architecture

(MLaaS) [5]. Each request includes a batch of images that should be
processed and an expected response time as required by the service-
level agreement. In our work, we consider the expected response
time of request as the estimated runtime of the request under FP32-
precision at highest DVFS plus a slack time that is equal to estimated
runtime. But it can be considered differently for other scenarios and
our proposed approach can handle them as well.

Upon submission of a request, the system assigns a time stamp to
each request to save its submission time and stores it in the queue. The
response time window of a request starts from its submission time.
Based on previous profiling, or online profiling on a subset of images
for new models, the system administrator can estimate the average
execution time of a request for different precision (FP32, INT8) under
highest GPU frequency. Having this estimation and status of the
queue, our PIT controller decides on the precision of each request and
its scheduling. This initial estimation helps PIT decides the precision
that should be used for the request, since the precision cannot be
changed while the request is being executed by GPU. During runtime
of a request, PIT constantly monitors the power consumption of GPU
and determines its DVFS based on the elapsed time of the request and
its expected response time. The objective is to maintain the expected
response time and decrease the power consumption, while keeping
the accuracy of results as high as possible.

B. Power-Inference accuracy Trading (PIT)

The pseudo-code of PIT is presented in Algorithm 1 with summary
of acronyms in Table I. At the first step, PIT updates the time each
request has been spending in queue (Line 4). Since PIT aims to
keep the accuracy as high as possible, first it estimates the runtime
of requests assuming they are going to be executed using FP32-
precision. Then, it calculates the SLACK parameter, which is the time
left for the request before reaching the expected response time divided
by the estimated runtime (ETR), i.e., (ExRT−TQ)/ETR, and sets
their precision as FP32 (lines 5 to 7). After that, it checks to make
sure that all the requests can meet their ExRT (SLACK ≥ 1) with
FP32-precision in current state of queue. If so, it sorts the requests
according to their SLACK and selects the one with lowest value (i.e.,
the request with lowest slack time), schedules it for execution on the
GPU, calls the coordinatedDVFS routine that dynamically sets the

TABLE I
LIST OF THE PARAMETERS USED IN THE PAPER.

Parameter Description

NI Number of Images
ExRT Expected response time for a request
TQ Time in Queue for a request
ETR Estimated Runtime of a request
SLACK (ExRT-TQ)/ETR
ERFP32 Estimated runtime for one image using FP32-precision
ERINT8 Estimated runtime for one image using INT8-precision

GPU frequency, and waits for it to finish before choosing the next
request (lines 8 to 11).

If there are requests with SLACK < 1, PIT tries to increase the
value of their SLACK by employing more aggressive approximation,
i.e., INT8-precision. Accordingly, it updates the requests with SLACK
less than one (lines 15 to 18). Further approximations after INT8-
precision are not possible. Hence, PIT only sorts the requests based
on their current SLACK and sends the one at the head of the queue
to the GPU for execution.

After starting the execution of a request on GPU, PIT coordinates
GPU frequency by coordinatedDVFS routine. In this stage, PIT
considers the expected execution time of the request, which is the
difference between its expected response time (ExRT) and time spent
in queue (TQ). PIT starts from lowest possible level of frequency (for
the sake of power consumption) and processes a predefined number
of batch of images and save their execution time before changing
the frequency. Then, it calculates the average execution time of K
previous batches (K=10 in our experiments) and estimates the time
needed for processing the remaining batches with current pace. PIT
considers the average of K previous batches to avoid excessive change
of GPU frequency. Based on the sum of elapsed time from request
submission and estimated runtime of remaining batches, it decides to
either increase the frequency to the next level or decrease it, provided
that higher or lower frequency is available.

Algorithm 1 Power-Inference accuracy Trading
Input: N, ExRT, NI, ERFP32, ERINT8, TQ
Output: Sorted N with determined precision for each request

1: N: Set of requests in queue
2: while N is not empty do
3: for i ∈ N do
4: Update(TQi)
5: ETRi = NIi × ERFP32
6: SLACKi = (ExRTi − TQi)/ETRi
7: Set the precision of request as FP32
8: if ∀i ∈ N, SLACKi ≥ 1 then
9: Sort N in ascending order with respect to SLACK

10: Send N[1] to GPU with FP32-precision
11: coordinatedDVFS(ExRTi − TQi)
12: Go to 2
13: else //SLACK < 1 for some requests
14: for i ∈ N do
15: if SLACKi < 1 then
16: ETRi = NIi × ERINT8
17: SLACKi = (ExRTi − TQi)/ETRi
18: Set the precision of request as INT8
19: Sort N in ascending order with respect to SLACK
20: Send N[1] to GPU with its determined precision (FP32 or INT8)
21: coordinatedDVFS(ExRTi − TQi)
22: Go to 2



TABLE II
RESULTS STATISTICS FOR 10 WORKLOADS

Response Time (s) Accuracy (%) (Top-1, Top-5) Power (W) Energy (J)
SLURM SLURM DVFS PIT SLURM SLURM DVFS PIT SLURM SLURM DVFS PIT SLURM SLURM DVFS PIT

Average 1356.7 1762.6 1751.0 ( 70.65, 89.86) ( 70.65, 89.86) (70.17, 89.66) 92.12 71.09 62.69 68230.8 61639.4 54093.1
Min 901.0 826.2 1358.4 (70.65, 89.86) (70.65, 89.86) (69.75, 89.48) 91.65 61.21 57.51 67902.8 58270.0 48751.3
Max 1872.8 2414.5 2194.2 (70.65, 89.86) (70.65, 89.86) (70.52, 89.81) 92.65 81.80 66.24 68768.6 64837.7 58299.8
STD 361.5 491.2 287.5 0.00 0.00 ( 0.23, 0.10) 0.30 6.63 2.58 250.0 2248.0 2894.6

III. EXPERIMENTAL RESULTS

A. Experimental Setup

We run our experiments on a dual-socket Xeon server where
each of the E5-2680 v4 Xeon chips has 28 cores running at 2.4
GHz. The server has 128 GB of DDR4 memory. Ubuntu 16.04 with
kernel 4.4 is installed on the server with the python 2.7, CUDA
9.0, TensorFlow 1.10, and TensorRT 4.0. The server is equipped
with a Nvidia Tesla P40 GPU Accelerator. The Tesla P40 leverages
Nvidia Pascal architecture and has 3840 CUDA cores with 24 GB
GDDR5 memory. It supports INT8 arithmetic which is optimized for
deep learning inference [9]. The GPU has 79 DVFS levels, starting
from 544 MHz to 1531 MHz. Levels are very close to each other
and moving from one level to another has negligible effect on GPU
performance and power consumption. So, we chose 10 levels that
have more distance from each other, and consequently, their effect
is more significant: 544 MHz, 632 MHz, 734 MHz, 835 MHz, 949
MHz, 1063 MHz, 1189 MHz, 1303 MHz, 1430 MHz, and 1531 MHz.

Comparisons. Since there is no direct prior work similar to PIT,
we contrast PIT’s performance to SLURM [10] and a modified
versions of it that is DVFS aware. We compare PIT against SLURM
as a baseline scheduler to show the advantage of our techniques
compared to traditional schedulers. SLURM is a well-recognized
cluster management and job scheduling system that uses a best
fit algorithm that schedules the requests according to a defined
priority to minimize their response time. However, SLURM does
not leverage approximations by default. In SLURM, the priority of
each request is defined as the weighted sum of its age (time in
queue, TQ), size (number of images, NI) and expected response
time (ExRT). We implement two versions of it: 1) SLURM that
executes all the requests with FP32-precision, and does not leverage
DVFS and 2) SLURM DVFS is similar to SLURM, but leverages
DVFS to adjusts the GPU frequency. It uses the same routine as PIT
(coordinatedDVFS) for coordinating GPU frequency.

B. Results

We provide our results on workloads that calculate inference for
batch of images from ImageNet dataset [8], using the ResNet-v2-152
[7] network. For the first set of experiments, we have 10 workloads,
each of which has 10 inference requests with various arrival times.
Since the arrival times of requests are generated randomly, we have
considered 10 workloads to provide statistically conclusive results.
The arrival times of requests have exponential distribution with a
mean parameter (µ) proportional to estimated response time of the
requests in the workload. Our model is similar to arrival time model
considered for jobs in the 3Sigma model by Park et al. [11]. We
estimate the runtime of each request by multiplying the number of
images of a request by the inference time of FP32 model for one
image. The ExRT is an input to PIT which system administrator can
configure as desired. In our experiments, the ExRT of each request
is the sum of estimated runtime (by FP32-precision) plus a slack
time that is equal to estimated runtime (i.e., ExRT = 2× estimated
runtime). However, PIT works with any other definition for expected
response time as well.

To calculate the response time of a request, we add its time
spending in queue (TQ) to its runtime. To calculate the accuracy,
we compare the labels assigned to each image by each precision

against original ones provided by dataset. Finally, we use NVIDIA
System Management Interface (nvidia-smi) to coordinate the GPU
frequency and measure its power consumption.

The results are presented in Table II. Since SLURM does not
leverage DVFS, it uses the highest possible GPU frequency (i.e., 1531
MHz) for most of the time. Hence, we see that SLURM has relatively
better response time than PIT. However, this high GPU frequency of
SLURM leads to excessive power and energy consumption. Even in
workloads where response time of SLURM is higher than PIT, its
power/energy consumption is higher as well. In other words, SLURM
always sacrifices power consumption to obtain better response time.
The cost of reaching lower response time for SLURM is too much.
It increases power by around 46% (on average) compared to PIT, to
decrease the response time by 22% (on average). PIT, unlike SLURM,
tries to trade-off between response time and power consumption, and
hence, always obtains the lowest possible power/energy consumption,
while maintaining the response time.

To provide more details, we present the distribution of response
time of requests in Fig. 3. The results belong to all the 10 workloads.
However, we have normalized the response time of requests in each
workload to the maximum value of it over all the approaches in
the same workload. As expected, PIT’s performance stands between
SLURM and SLURM DVFS, so its response time is also less than
SLURM DVFS and relatively more than SLURM. The precision
selection and DVFS coordination under PIT for one of the workloads
is shown in Fig. 4. As can bee seen, PIT determines different pre-
cision for each request and dynamically changes the GPU frequency
to achieve its objectives, i.e., maintaining the response time and
decreasing power consumption.

C. PIT Sensitivity Analysis

For sensitivity analysis, we consider eight sensitivity traces (ST),
each of which with 10 inference requests, and change the arrival rate
of requests from tight (ST-1) to relaxed (ST-8). We change the value
of µ of exponential distribution in the random number generator from
2000 (ST-1) to 6000 (ST-8) to adjust the tightness of arrival times.
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Fig. 4. Dynamic behaviour of PIT regarding model precision and GPU
frequency for one of the workloads. Background color indicates the model
precision and the red line shows the GPU frequency
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TABLE III
NUMBER OF EACH MODEL PRECISION SELECTED BY PIT AND OBTAINED

ACCURACY PER SENSITIVITY TRACE.
Arrival Rate

µ FP32 INT8 Accuracy (Top-1, Top-5)
Tight arrival rate 2000 2 8 (69.626%, 89.429%)

2500 3 7 (69.754%, 89.483%)
3000 2 8 (69.626%, 89.429%)
4000 3 7 (69.754%, 89.483%)
4500 7 3 (70.266%, 89.698%)
5000 8 2 (70.394%, 89.752%)
5500 10 0 (70.65%, 89.86%)

Relaxed arrival rate 6000 10 0 (70.65%, 89.86%)

Fig. 5 shows the average response time and power consumption of
PIT for each trace. As can be seen, the response time decreases when
the arrival rate is relaxed. This result indicates that PIT is capable
of leveraging the inter-arrival time of requests to reduce the response
time. It also reduces the power consumption by using lower GPU
frequencies, when the inter-arrival time of requests is relaxed.

The accuracy of PIT and number of each model precision in each
trace is presented in Table III. When the arrival rate is relaxed, PIT
exploits this opportunity to improve the accuracy, while trying to
maintain the response time. Thus, we see that for relaxed traces PIT
tends to use more precise models, and hence, obtains more accurate
results.

D. Discussion

To show the relationship between precision and DVFS, and preci-
sion and accuracy, we employed eight additional image classification
networks to conduct more experiments. The results are presented in
Table IV. The computational complexity column shows the amount
of instructions (in Mega FLOPS) required for inference of one image.
Results indicate that as the computational complexity increases, the
effect of reduced precision on accuracy also increases. The maximum
difference between FP32 accuracy and INT8 accuracy is around
1% and 0.5% for Top-1 and Top-5 labels, respectively. We can
conclude that effect of INT8-precision depends on the size and
computational complexity of network, and it can provide results as
accurate as 99% of FP32, or even closer. The results in Table IV
also shows the difference between power consumption of networks
for highest DVFS (1531 MHz) and lowest one (544 MHz) under two
different precision. We see that for less computationally complex
networks, e.g., MobileNet-V1, precision has negligible effect on the
power consumption of different DVFS levels. However, for large
and complex networks, e.g., ResNet-V2-152, changing from FP32
to INT8 significantly reduces the gap between lowest and highest
DVFS level, and hence, we can conclude that impact of DVFS on
power consumption can be mitigated using lower precision.

IV. RELATED WORK

To show our contributions in this work, we discuss the difference
between our approach and previous ones concerning trading off

TABLE IV
EFFECT OF PRECISION ON ACCURACY AND POWER CONSUMPTION OF

DIFFERENT NETWORKS WITH RESPECT TO DVFS AND COMPUTATIONAL
COMPLEXITY OF EACH NETWORK.

Top-1
Accuracy (%)

Top-5
Accuracy (%)

Difference Between
Power of Min

and Max DVFS (%)

Computational
Complexity
(M-FLOPS)

FP32 INT8 FP32 INT8 FP32 INT8
MobNet-V1-025 38.56 38.58 63.14 63.15 19.28 19.52 0.93
MobNet-V1-05 56.51 56.51 79.62 79.63 20.24 20.09 2.64
MobNet-V1-1 69.38 69.37 88.92 88.93 23.44 23.10 8.42
Inception-V1 68.20 67.72 88.49 88.24 23.92 21.45 13.22
Inception-V2 72.64 72.25 90.95 90.79 26.05 22.85 22.34
Inception-V3 77.22 77.22 93.44 93.54 32.40 24.98 54.25
ResNet-V2-50 67.78 66.16 87.97 87.41 29.70 23.46 51.01
ResNet-V2-101 70.08 69.39 89.33 89.06 33.78 26.24 88.89
ResNet-V2-152 70.65 69.37 89.86 89.40 38.21 27.48 120.08

DNN computation requirement with quantization. A large body of
previous approaches that leverage quantization, focus on training
phase and apply quantization while training the network [12], [13].
For having different precision, and consequently, different accuracy,
power consumption, and runtime, the networks need to be retrained
using new parameters. It imposes significant overhead, and in some
cases such as ML as a service, it is almost impossible to ask users to
retrain their models with new parameters and resubmit them. Unlike
these approaches, PIT can use quantization dynamically during the
inference phase. So, the model is only needed to be trained once,
with highest possible precision. Other approaches such as [6], [14]
consider the lower precision for inference phase. However, they
do not consider the various DVFS levels provided by hardware
accelerators such as GPUs. Moreover, They consider one job at a
time and tune the precision and accuracy for that single job. But, PIT
considers a queue of jobs and decides on their precision according
to the state of other jobs in the queue.

V. CONCLUSION AND FUTURE WORK

Our proposed approach, PIT, aims to trade-off response time
with accuracy and power consumption by employing approximation,
scheduling, and DVFS. PIT leverages INT8-precision instructions,
that is supported by cutting-edge GPUs, to implement inference
approximation. Experiments show that PIT can significantly decrease
power consumption compared to a common cluster management
and scheduling system, while reducing the accuracy slightly and
considering response time.

In future works, we aim to employ GPUs equipped with INT16,
so we can evaluate the efficacy of this precision as well. PIT needs
the final frozen graph of a network, obtained from training, to
generate the reduced-precision versions for inference. So, currently,
we cannot use it for training. Modifying PIT to support training
phase can be an interesting direction for future works. In this work,
our focus was on the image classification networks, so we have
studied several networks proposed for this application (see Table
IV). However, studying other applications such as speech recognition
and handwriting recognition, which have different properties such as
different layers, is another direction for future works.
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