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Abstract— MapReduce and its open source implementation, 

Hadoop, are the prevailing platforms for big data processing. 

MapReduce is a simple programming model for performing large 

computational problems in large-scale distributed systems. This 

model consists of two major phases: Map and Reduce. Between 

these two main phases, partitioner part is embedded which 

distributes produced keys by Map tasks among Reduce tasks. 

When the amount of keys and their associated values, which are 

called intermediate data, is huge, this part has significant impact 

on execution time of Reduce tasks, and consequently, completion 

time of jobs. In this paper, we present a network and resource 

aware key partitioner to decrease the execution time of 

MapReduce jobs. Using sampling, our algorithm finds the 

distribution of keys in intermediate data. Then, considering 

aforementioned distribution, the amount of each key on each 

machine, the placement of Reduce tasks on machines and the 

network bandwidth between machines, our algorithm assigns 

keys to Reduce tasks to decrease the total execution time of job. 

Our experiments show that our approach can improve 

completion time of Reduce phase and job execution time by up to 

52% and 31% respectively compared with Hadoop default 

partitioner and can find the solution within 8% of ideal 

partitioner.  

Keywords— MapReduce; Hadoop; Big data; Partitioner; 

Performance 

I.  INTRODUCTION 

Recently, the volume of produced data in the world has 
been increasing significantly. Due to the increasing spread of 
Internet in everyday life, data production has become so simple 
because of the use of social networks, search engines and other 
similar reasons. For instance, in just one hour, users upload on 
average over 72 hours video on YouTube. According to the 
report of International Corporation on data, the volume of 
generated and copied data in 2011 was 1.8 ZB, and it will be 
doubled every two years [1]. 

This rapid growth in data production, led to invention of 
Big Data concept. To process Big Data, various frameworks 
and programing paradigms are proposed. MapReduce, which is 
a simple programming paradigm [2], is one of the prevailing 
options for processing Big Data in large-scale clusters. 

Apache Hadoop [3] is an open source implementation of 
this model and is a framework that makes processing of large 
amount of data on a cluster of servers possible. 

Breaking input data into small chunks and distributing these 
chunks in the cluster is the manner of Hadoop for processing 
large amount of data. Each Map task processes a chunk of data 
and produces intermediate data. Then, Reduce tasks process 

intermediate data to generate final result. Reduce is composed 
of three subsections; Shuffle, Sort and Reduce [4]. Shuffle is 
responsible for distributing generated key-value pairs by Map 
tasks among Reduce tasks. To do so, it uses a function called 
partitioner to assign key-value pairs to Reduce tasks [5].  

Since MapReduce executes several tasks simultaneously, if 
the execution time of tasks is uneven, some tasks act as 
stragglers [6] and elongate execution of jobs, which causes 
resource waste. To prevent this issue, it is desirable that 
execution time of tasks be as close as possible. Various reasons 
may cause late or early completion of a task, such as 
processing power of cluster’s nodes and their network 
bandwidth. The distribution of keys between tasks can also 
have a significant impact on completion time of Reduce tasks. 

If partitioner function assigns a huge amount of key-value 
pairs to one Reduce task without considering the computing 
resources and network bandwidth of machine that the task is 
placed on, task would take longer than others to complete, and 
hence, the total execution time of job will increase. Uneven 
distribution of key-value pairs among Reduce tasks that can 
lead to tasks with different execution time, is a well-known 
issue called data skew.  

Early Shuffling feature in Hadoop makes it possible for 
Shuffle phase to start before all the Map tasks are finished. In 
other words, it helps breaking the barrier between Map and 
Reduce phase and overlapping execution of Map and Reduce 
tasks, and consequently, improving the total completion time of 
jobs. Using slowstart parameter in Hadoop, one can determine 
the percentage of Map tasks that need to be finished before 
Shuffle phase can begin. Later in Related Work section, we 
will see that some of the current proposed approaches cannot 
support this feature and need all the Map tasks to be finished 
before Shuffle phase. Our proposed approach, however, can 
tackle this problem.   

Hadoop default partitioner (see section 3) is a blind 
algorithm that only uses a hash function to distribute key- 
values to Reduce tasks. Hence, it is possible that several key-
values with high frequency are assigned to one task while the 
other ones with negligible frequency are assigned to another.  

A large body of research [6-10] has tried to address the data 
skew problem. Some of them [8-9] have proposed new 
partitioning functions to mitigate the uneven distribution of 
key-value pairs among Reduce tasks. Other approaches are also 
proposed that consider the computing power of machines, in 
addition to distribution of key-value pairs, when assigning keys 
to Reduce tasks [6][10]. However, none of them has considered 



distribution of key-values, computing power of machines, and 
network bandwidth between machines simultaneously.   

In this paper we propose a new partitioner algorithm that 
considers locality, communication bandwidth and processing 
power of machines when distributing key-values among 
Reduce tasks. At the beginning, it uses a simple sampling 
method to estimate the distribution of keys in input data. Then, 
considering the placement of Map tasks and consequently the 
volume of key-value pairs generated on each machine, we 
calculate the execution and transfer time of each key in all the 
Reduce tasks considering the computing power and network 
bandwidth of machine that the Reduce task is placed on. The 
main objective of this algorithm is to make all the Reduce tasks 
to complete almost at the same time and avoid some of them 
act as stragglers and elongate the total completion time of job. 
Our major contributions in this work are as follows:  

• Considering network bandwidth and processing power 
of resources simultaneously to decrease execution time 
of Reduce tasks. 

• Including the locality of generated key-values on 
different machines when assigning keys to Reduce tasks 

• Being compatible with early shuffling feature in 
Hadoop 

The rest of the paper is organized as follows: Section 2 
discusses the related works. In Section 3 basic background 
information for following this paper and motivation beyond 
this research are provided. An illustrative example to show the 
proposed algorithm’s effectiveness and proposed approach are 
presented in Section 4 and 5. In section 6 we talk about 
simulation results. At last in section 7 of this paper we explain 
the conclusion of this paper. 

II. RELATED WORKS 

A large body of research has studied data skew [6-10]. 
LEEN approach introduced in [7] considers locality of key-
values to improve the performance of default Hadoop 
partitioner through reducing the amount of key-values 
transferred in shuffle phase. It makes decision when all the 
Map tasks are finished, and hence, early shuffling is not 
supported by this algorithm. Another disadvantage of this 
algorithm is that it considers only homogenous clusters. 
LARTS algorithm presented in [8] improves LEEN approach 
by introducing three different of localities: node locality which 
means to have keys and Reduce tasks on the same machine, 
rack locality which means to have keys and Reduce tasks on 
the different machines but on the same rack, and finally off 
locality to have keys and Reduce tasks on different machines in 
different racks. However, it has the same issues as LEEN such 
as not attention to processing power of machines, and not 
supporting heterogeneous clusters. If the Reduce task is a slow 
task, attention to locality decrease the transferring time but 
execution time increases. It means that there is always a 
tradeoff between heterogeneity and fairness [9]. Libra approach 
[6] addresses the shortages of LEEN and LARTS and supports 
early shuffle and heterogeneous clusters. However, it does not 
consider network bandwidth. Ignoring network bandwidth can 
degrade performance, especially in networks with high 
bandwidth fluctuation. In [10] SkewTune algorithm is 
presented. This algorithm identifies one task that takes longer 
than usual and transfers the remaining data to another node. 
When a node in the cluster becomes idle, SkewTune identifies 
the task with the greatest expected remaining processing time. 

The unprocessed input data of this straggling task is then 
proactively repartitioned in a way that fully utilizes the nodes 
in the cluster and preserves the ordering of the input data so 
that the original output can be reconstructed by concatenation. 

Our proposed method considers locality, network 
bandwidth and processing power to make more efficient 
decision. Moreover, our proposed approach can support early 
shuffling because it does an offline profiling before beginning 
of job, and hence, further improve total job completion time. 

III. BACKGROUND AND MOTIVATION 

A. MapReduce  

As we mentioned before, MapReduce is a programming 
paradigm [11] for implementing problems related to Big Data 
processing in large scale distributed systems. This model has 
been proved to gain high performance in distributed computing 
and Big Data processing [12]. This paradigm is consists of two 
main phases: Map and Reduce which we describe them blow. 

Map. When Hadoop copies the input data to its file system 

(Hadoop Distributed File System, HDFS), it splits the data into 

data chunks or data blocks with same size (default size in 

Hadoop 1 is 64MB and in Hadoop 2 is 128MB). After that, for 

processing data blocks, Hadoop creates Map tasks. Each Map 

task is responsible for processing one data block. Hence, the 

number of Map tasks is equal to the number of data blocks. 

The output of each Map tasks is key-value pairs that are called 

intermediate data. Generated intermediate data by each Map 

task is stored on the local machine that executed that Map task.  

Reduce. The duty of Reduce phase is merging the intermediate 
data and producing final result. As we mentioned before, this 
phase has three sub phases; Shuffle, Sort and Reduce.  

Shuffle. In shuffling phase intermediate data is transferred 
to the defined Reduce task. This act is done by using an 
algorithm that is called partitioner [13]. Partitioner is an 
algorithm that assigns each key to a certain Reduce task. 

Partitioner. As we mentioned earlier, distributing keys and 
values is the duty of partitioner. In Hadoop, the default 
partitioner is called hash partitioner that uses a hash function as 
below: 

Reduce task number = h(Key) % R 

That h is a hash function and R is the number of Reduce 
tasks. In this algorithm the Reduce task that should process a 
certain key is determined by hash function. Although, this 
partitioner does not need much time to respond, it distributes 
the keys regardless of the size and number of keys passed to a 
task. Hence, it may result in some Reduce tasks with heavy 
load which increases the key transfer and execution time of 
tasks and ultimately increases the overall run time.  Moreover, 
this hash function completely ignores the computing power and 
network bandwidth of machines, and hence, is unable to tackle 
issues arisen by heterogeneous clusters.  

Sort. This phase sorts the intermediate data in each Reduce 
task [14]. 

Reduce. At the third sub phase, Reduce tasks read the 
intermediate data and user defined Reduce algorithm is 
performed on them to produce final result [14]. 



 

Fig. 1. WordCount program execution in MapReduce programming model 

In figure 1, the execution flow of a WordCount program 
using MapReduce is shown. At first step, the input data is 
received and divided into equal parts. Then, in the Map phase, 
map function processes input data and generates intermediate 
data. Then shuffle step is executed. It should be noted that all 
key-value pairs with same key must be assigned to the same 
Reduce task. Finally, the output data of Reduce tasks are 
merged to give final result. 

B. Motivation 

As mentioned before, partitioner has a significant effect on 
processing time of Reduce phase. In the absence of proper 
distribution of key-values, data skew problem happens and 
performance of cluster will be dropped significantly in term of 
execution time and throughput and processing resources may 
be wasted. In figure 2, execution time of Reduce tasks for word 
count application in a cluster consists of 130 Reduce tasks is 
shown. Each vertical line represents the execution time of a 
Reduce task.  

As you can see, in this example the time of execution for 
Reduce task with maximum run time is about 5 times greater 
than execution time of Reduce task with minimum run time. 
This figure indicates that partitioner must consider the key 
distribution and processing power in intermediate data. The 
lack of attention to this fact may cause latency in execution of 
application and wasting of resources. 
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Fig. 2. Difference in the execution time of Reduce Tasks in Hadoop 

IV. ILLUSTRATIVE EXAMPLE  

In this section, we provide an example to illustrate the 
necessity of a resource and network aware partitioner. Suppose 
that processing power and network bandwidth for four 
machines that execute the Reduce tasks is as table 1. Also 
assume that there is just one Reduce task on each machine. 

TABLE I.  PROCESSING POWER AND TRANSFER TIME OF EACH MACHINE FOR 

SAMPLE KEYS 

Machine 

number 

Processing power in 

time unit 

Communication time in 

time unit 

M1 1 Key-Value 1 Key-Value 

M2 2 Key-Value 2 Key-Value 

M3 2 Key-Value 3 Key-Value 

M4 3 Key-Value 1 Key-Value 
 

Now suppose that the input data includes keys K1 to K7 
with the specifications provided in table 2. The two right 
columns in Table 2 shows the machines proposed for each key 
by two methods: our approach and default partitioner of 
Hadoop. 

TABLE II.  SAMPLE KEYS AND THEIR PARTITIONING TO MACHINES 

Key Number Local Keys 

Result of 

proposed 

partitioner 

Result of 

default 

partitioner 

K1 4 
1 Key: M1, 
1Key: M2, 

2 Key: M3 

M3 M1 

K2 1 1 Key: M2 M2 M2 

K3 2 2 Key: M1 M1 M3 

K4 2 2 Key: M3 M3 M1 

K5 3 
2 Key: M2, 
1 Key M3 

M2 M4 

K6 1 1 Key: M4 M4 M1 

K7 3 
1 Key: M1, 

2 Key M4 
M4 M1 

 
The result of this example is provided in table3. As you can 

see, when we use default partitioner task No. 1 takes much 
more time than other tasks and act as a straggler. However, our 
approach prevents the straggler by proper distribution of keys 
among tasks. As you can see, our method assigns just K3 to 
Reduce task No. 1 while default partitioner assigns K1, K4, K6 
and K7 to this task.   This distribution decreases the execution 
time of this task from 16 units to 3 units. 

TABLE III.  EXECUTION TIME OF TASKS USING PROPOSED AND DEFAULT 

PARTITIONERS 

Task 

(Machine) 

Task finishing time using 

Hadoop default partitioner 

Task finishing time using 

proposed partitioner 

1 16 time units 3 time units 

2 1 time unit 2.5 time units 

3 1.67 time units 2 time units 

4 4 time units 2 time units 
 

In this paper we propose a new network and resource aware 
partitioner. This algorithm considers the network bandwidth,   



locality and processing power in heterogeneous environments. 
We do not try to just decrease the volume of transferred data in 
shuffle phase, but to balance and decrease the time of 
computation and communication through efficient key 
partitioning. 

V. ALGORITHM DEFINITION 

The workflow of proposed method is shown in Figure 3. As 
can be seen, we need a new part of processing called sampling. 
After getting sample of whole data, sample data is uploaded to 
HDFS. This action makes algorithm to have less overhead 
compared with preprocessing. In execution time of main 
algorithm, the same algorithm will be run on sample data. 
Then, some intermediate data is generated. Partition manager, 
by considering this data and the given algorithm, makes a 
decision for all keys.  

The larger size of sample makes the better and more 
accurate estimation of distribution of keys. However, sampling 
time and running time will be increased for larger samples. 
Appropriate amount for sampling is 10% of volume of 
processing data according to [6]. Our sampling strategy in this 
paper is getting one megabyte of each 10 megabytes of data.  

 

 

Fig. 3. Workflow of processing 

After processing sample data and estimating distribution of 
keys in intermediate data for each machine, we make decision 
about key-value assignment to Reduce tasks. Our final goal is 
assigning the keys to Reduce tasks by considering the 
execution and transfer time, as well as locality of key-values, 
so that all the Reduce tasks will finish in about the same time. 
Inputs of our algorithm are as follows: set of existing keys on 
sample data on each machine, bandwidth of machines, 
processing rate for each machine (explained in next paragraph).  

Processing rate is the relative number which determines the 
number of keys can be processed in time unit by a machine 
divided by the number of keys can be performed by the 
weakest machine in the cluster. For example, if the weakest 
machine takes one unit of time to perform Reduce algorithm on 
100 keys, and other machine is able to execute them in 0.8 of 
time unit, the processing rate for the weakest machine is 1 and 
for the other machine is 1.25. 

Then, we need to find processing unit. Processing unit is a 
number that shows the least number of keys in each range of 
keys that must be assigned to Reduce tasks. First we select the 
most repetitive key as processing unit. If this number is less 
than the 1/(Number of Reduce Task) of summation of all keys 

we select 1/(Number of Reduce Task) of summation of all keys 
as processing units. This action prevents from having huge 
number of ranges for partitioner phase. Multiplication of this 
number by processing rate of each machine (which is earned in 
previous step) shows the number of keys which must be 
performed by each machine and it makes sure if this number of 
keys is given to all machines, all machines will finish 
performing on those keys almost at the same time. Below 
algorithm is repeated until all the keys are assigned (you can 
see the pseudo-code in Algorithm 1): 

• Select keys for each machine from sorted list of 
available keys. The summation of selected keys must be 
less than or equal to the multiplication of processing 
rate of each machine by processing unit (Line 6 of 
Algorithm 1).   

• Then we calculate the amount of time required for 
executing and transferring all Reduce task according to 
the line 7-11 of Algorithm 1. Please note that 
transferring time is only for those keys which are not on 
this machine and should be transferred using network 
(locality). Then, in line 11 transferring time is 
calculated using network bandwidth. 

• Now, according to the obtained information, we select a 
machine to assign selected keys to it. We select a 
machine that its current runtime plus the execution and 
transfer time of selected keys would be less than or 
equal of runtime of other machines. If there is no such 
machine, we select the one with minimum current 
runtime (Lines 12 – 17 of algorithm 1). 

• Update the runtime of selected machine and delete 
selected keys from available keys list. Also assign this 
range of keys to selected machine.  

Assuming that each Reduce task is assigned to one 
machine, the algorithm divides the keys into several ranges and 
assigns each range to a Reduce task. If we show the number of 
keys with N, and number of Reduce tasks with R, then the time 
complexity of our algorithm would be O(N*R). 

Algorithm 1 shows the pseudo code of proposed algorithm. 
Also in table 4 abbreviations which are used in algorithm 1 are 
explained.  

TABLE IV.  ABBREVIATIONS USED IN PSEUDO CODE   

Explanation Variable 

Execution time of Reduce task on jth machine ETj 

Processing rate in time unit on jth machine EPj 

Number of keys in sample data N 

Number of Reduce tasks R 

Set of keys on ith machine Keysi 

Set of all keys All_Keys 

Network bandwidth of  jth machine NBj 

Transferring time to the jth machine TTj 

Volume of ith key that must be transferred to 

machine m 
Vim 

Execution and transferring time on jth machine EATj 

Busy time of ith machine Totali 

Set of keys and assigned Reduce Task number Res 



Algorithm1. Network and resource aware partition algorithm 

1: Input: EP, N , NB, Keys, All_Keys 

2: Output: Res = {(k1,k2,m) | Key K1 is beginning,K2  

               is end of range and m is assigned machine}  

3: while available_keys is not empty: 

4:    for m in machines:  

5:       machine_capacity = processing_ratem * processing_unit 

6:        Selected_key = select the first machine_capacity 
                        keys of available list        

7:        for k in selected_key: 

8:           ETm += Nk/EPm 

9:           Vkm = (1-keym(k))/All_Keys(k) 
10:         TTm += vkm / NBm 

11:      end for 
12:      for m in machines: 

13:       EATm = ETm + TTm 

14:       Tempi = EATij + Totali 

15:        end for 

16:     m = Select the minimum Temp as selected   machine for this list  

          of  keys, if there are some Temp with  minimum number, select   

          machine with minimum cuurent runtime 

17:     Totalm = EATm + Totalm 

18:     del delected_key from available_key 
19:     first_key = selected_keyfirst_element 

20:     last_key = selected_keylast_element 

21:    Add (first_key,last_key,m) to Res 

22: end for 

23: return Res 
 

 

VI. SIMULATION RESULTS 

In this section we report the results of our simulations based 
on real world dataset. The test scenario contains 100 processing 
nodes. Network bandwidth of nodes has been chosen randomly 
from 10 to 100 Mb/s with step of 10 Mb/s. For sampling 
purpose, we choose 10% of input data and use it to find the 
distribution of keys in input data.   

To evaluate the performance of our proposed algorithm, we 
have compared it with Hadoop default partitioner and Best 
performance algorithm. Best performance algorithm knows the 
distribution of all keys in whole input data (not only sample 
input data) and also knows the locality of each key in all 
servers. To know the complete distribution of keys, first we 
need to process all the input data. It is obvious that it is not 
efficient to use and implement this algorithm. But this 
algorithm is a good reference to evaluate other algorithm 
because it gives the best possible answer. Because our method 
distributes keys considering their distribution and number of 
associated values, as well as the processing power, locality and 
network bandwidth of nodes, it can surpass the default hash 

partitioner and obtain near Best performance solutions. The 
results show that our method decreases Reduce tasks’ runtime 
up to 38% compared with Hadoop default partitioner. We have 
used four well-known applications as our benchmarks;  

 WordCount: it counts the number of each key in the 
file and produces an output file contains all keys and 
the number of their repetition in input file. 

 Inverted Index: this application maps words or 
numbers, to their locations in a document or a set of 
documents. This application is used in the most of the 
text searching systems. 

 Grep: an algorithm for finding a key in allover the 
file. In other words, it finds matching strings from text 
files and counts their repetition.  

 TeraSort: This application is used for sorting files. 
The goal of this application is to sort a file as fast as 
possible.  

Our data set for this experiment is 10 Gigabyte of English 
Comments of twitter [15]. This data set contains numerous 
twitter posts from millions of users all around the world. 

Figure 4 presents the total time of Reduce tasks, the Reduce 
phase execution time, and shuffle execution time of 
applications under different algorithms. Our proposed method 
improves the total execution time in Reduce phase compared 
with default hash partitioner by 32%, 52%, 36%, and 17% for 
Word Count, TeraSort, Inverted Index, and Grep, respectively. 
TeraSort has experienced the most improvement while Grep 
have had the least amount of improvement; because TeraSort 
produces more intermediate data compared to Grep, and hence, 
can benefit most from our proposed approach. We can 
conclude that the higher the volume of intermediate data of an 
application is, the more it can benefit from our approach. Also, 
our proposed method improves total execution time of jobs, 
contains Map and Reduce Time, by 18%, 31%, 14% and 4% 
for WordCount, TeraSort, InvertedIndex and Grep, 
respectively. 

The different between our proposed algorithm and Best 
performance algorithm regarding total execution time of 
Reduce phase is 5%, 8%, 5%, and 0% for Word Count, 
TeraSort, Inverted Index, and Grep applications respectively. It 
shows that our algorithm can find near optimal solutions and 
even optimal solution e.g., in Grep application. 
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Fig. 4. Normalized finishing time of Reduce tasks for four benchmark (Left: Total Reduce Time, Center: Reduce Execution Time, Right: Shuffle Time) 
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Fig. 5. Normalized finishing time of Reduce tasks when partitioner algorithm is Hadoop default partitioner                                                                                    

(Left: Default partitioner, Center: Proposed Method, Right: Best performance) 

Figure 5 depicts the execution time of all the Reduce tasks 
for WordCount application under different partitioning 
algorithm. Since the default partitioner is data skew-oblivious, 
we see significant gap between execution time of different 
Reduce tasks such that the execution time of the longest task is 
three times of the shortest one.  

On the other hand, Best performance partitioner distributes 
the keys as efficient as possible between the tasks, and hence, 
the execution time of all the tasks is almost the same. Please 
note that as we mentioned earlier, the Best performance 

algorithm sampling overhead is too much, and hence, its 
implementation is not efficient and we use it to only show the 
distance of our approach from best solution.  

Finally, our approach stands between default hash 
partitioner and Best performance, and does it best to balance 
the execution time of Reduce tasks. The variation of execution 
time of Reduce tasks in our approach is 5.15 %, while it is 
24.76%, and 1.01% for default hash partitioner and Best 
performance approaches, respectively.  

VII. CONCLUSION 

In this paper we have proposed a simple and efficient 
partitioning algorithm to decrease the execution time of Reduce 
phase in MapReduce applications. Our approach uses sampling 
to determine the distribution of keys in input data. This 
approach considers the network bandwidth and processing 
power of nodes. We have simulated our algorithm in a Hadoop 
cluster composed of 100 nodes. Results show that our approach 
can decrease the time of Reduce phase by up to 52% compared 
with original Hash partitioner of Hadoop and provide results 
within 8% of the optimal solution. 
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