
A Novel Key Partitioning Schema for Efficient

Execution of MapReduce Applications

Saeed Nasehi Basharzad

Computer Department

Sharif University of Technology

Tehran, Iran

saeednasehi@ce.sharif.edu

Seyed Morteza Nabavinejad

Computer Department

Sharif University of Technology

Tehran, Iran

Nabavinejad@ce.sharif.edu

Maziar Goudarzi

Computer Department

Sharif University of Technology

Tehran, Iran

Goudarzi@sharif.edu

Abstract— MapReduce and its open source implementation,

Hadoop, are the prevailing platforms for big data processing.

MapReduce is a simple programming model for performing large

computational problems in large-scale distributed systems. This

model consists of two major phases: Map and Reduce. Between

these two main phases, partitioner part is embedded which

distributes produced keys by Map tasks among Reduce tasks.

When the amount of keys and their associated values, which are

called intermediate data, is huge, this part has significant impact

on execution time of Reduce tasks, and consequently, completion

time of jobs. In this paper, we present a network and resource

aware key partitioner to decrease the execution time of

MapReduce jobs. Using sampling, our algorithm finds the

distribution of keys in intermediate data. Then, considering

aforementioned distribution, the amount of each key on each

machine, the placement of Reduce tasks on machines and the

network bandwidth between machines, our algorithm assigns

keys to Reduce tasks to decrease the total execution time of job.

Our experiments show that our approach can improve

completion time of Reduce phase and job execution time by up to

52% and 31% respectively compared with Hadoop default

partitioner and can find the solution within 8% of ideal

partitioner.

Keywords— MapReduce; Hadoop; Big data; Partitioner;

Performance

I. INTRODUCTION

Recently, the volume of produced data in the world has
been increasing significantly. Due to the increasing spread of
Internet in everyday life, data production has become so simple
because of the use of social networks, search engines and other
similar reasons. For instance, in just one hour, users upload on
average over 72 hours video on YouTube. According to the
report of International Corporation on data, the volume of
generated and copied data in 2011 was 1.8 ZB, and it will be
doubled every two years [1].

This rapid growth in data production, led to invention of
Big Data concept. To process Big Data, various frameworks
and programing paradigms are proposed. MapReduce, which is
a simple programming paradigm [2], is one of the prevailing
options for processing Big Data in large-scale clusters.

Apache Hadoop [3] is an open source implementation of
this model and is a framework that makes processing of large
amount of data on a cluster of servers possible.

Breaking input data into small chunks and distributing these
chunks in the cluster is the manner of Hadoop for processing
large amount of data. Each Map task processes a chunk of data
and produces intermediate data. Then, Reduce tasks process

intermediate data to generate final result. Reduce is composed
of three subsections; Shuffle, Sort and Reduce [4]. Shuffle is
responsible for distributing generated key-value pairs by Map
tasks among Reduce tasks. To do so, it uses a function called
partitioner to assign key-value pairs to Reduce tasks [5].

Since MapReduce executes several tasks simultaneously, if
the execution time of tasks is uneven, some tasks act as
stragglers [6] and elongate execution of jobs, which causes
resource waste. To prevent this issue, it is desirable that
execution time of tasks be as close as possible. Various reasons
may cause late or early completion of a task, such as
processing power of cluster’s nodes and their network
bandwidth. The distribution of keys between tasks can also
have a significant impact on completion time of Reduce tasks.

If partitioner function assigns a huge amount of key-value
pairs to one Reduce task without considering the computing
resources and network bandwidth of machine that the task is
placed on, task would take longer than others to complete, and
hence, the total execution time of job will increase. Uneven
distribution of key-value pairs among Reduce tasks that can
lead to tasks with different execution time, is a well-known
issue called data skew.

Early Shuffling feature in Hadoop makes it possible for
Shuffle phase to start before all the Map tasks are finished. In
other words, it helps breaking the barrier between Map and
Reduce phase and overlapping execution of Map and Reduce
tasks, and consequently, improving the total completion time of
jobs. Using slowstart parameter in Hadoop, one can determine
the percentage of Map tasks that need to be finished before
Shuffle phase can begin. Later in Related Work section, we
will see that some of the current proposed approaches cannot
support this feature and need all the Map tasks to be finished
before Shuffle phase. Our proposed approach, however, can
tackle this problem.

Hadoop default partitioner (see section 3) is a blind
algorithm that only uses a hash function to distribute key-
values to Reduce tasks. Hence, it is possible that several key-
values with high frequency are assigned to one task while the
other ones with negligible frequency are assigned to another.

A large body of research [6-10] has tried to address the data
skew problem. Some of them [8-9] have proposed new
partitioning functions to mitigate the uneven distribution of
key-value pairs among Reduce tasks. Other approaches are also
proposed that consider the computing power of machines, in
addition to distribution of key-value pairs, when assigning keys
to Reduce tasks [6][10]. However, none of them has considered

distribution of key-values, computing power of machines, and
network bandwidth between machines simultaneously.

In this paper we propose a new partitioner algorithm that
considers locality, communication bandwidth and processing
power of machines when distributing key-values among
Reduce tasks. At the beginning, it uses a simple sampling
method to estimate the distribution of keys in input data. Then,
considering the placement of Map tasks and consequently the
volume of key-value pairs generated on each machine, we
calculate the execution and transfer time of each key in all the
Reduce tasks considering the computing power and network
bandwidth of machine that the Reduce task is placed on. The
main objective of this algorithm is to make all the Reduce tasks
to complete almost at the same time and avoid some of them
act as stragglers and elongate the total completion time of job.
Our major contributions in this work are as follows:

• Considering network bandwidth and processing power
of resources simultaneously to decrease execution time
of Reduce tasks.

• Including the locality of generated key-values on
different machines when assigning keys to Reduce tasks

• Being compatible with early shuffling feature in
Hadoop

The rest of the paper is organized as follows: Section 2
discusses the related works. In Section 3 basic background
information for following this paper and motivation beyond
this research are provided. An illustrative example to show the
proposed algorithm’s effectiveness and proposed approach are
presented in Section 4 and 5. In section 6 we talk about
simulation results. At last in section 7 of this paper we explain
the conclusion of this paper.

II. RELATED WORKS

A large body of research has studied data skew [6-10].
LEEN approach introduced in [7] considers locality of key-
values to improve the performance of default Hadoop
partitioner through reducing the amount of key-values
transferred in shuffle phase. It makes decision when all the
Map tasks are finished, and hence, early shuffling is not
supported by this algorithm. Another disadvantage of this
algorithm is that it considers only homogenous clusters.
LARTS algorithm presented in [8] improves LEEN approach
by introducing three different of localities: node locality which
means to have keys and Reduce tasks on the same machine,
rack locality which means to have keys and Reduce tasks on
the different machines but on the same rack, and finally off
locality to have keys and Reduce tasks on different machines in
different racks. However, it has the same issues as LEEN such
as not attention to processing power of machines, and not
supporting heterogeneous clusters. If the Reduce task is a slow
task, attention to locality decrease the transferring time but
execution time increases. It means that there is always a
tradeoff between heterogeneity and fairness [9]. Libra approach
[6] addresses the shortages of LEEN and LARTS and supports
early shuffle and heterogeneous clusters. However, it does not
consider network bandwidth. Ignoring network bandwidth can
degrade performance, especially in networks with high
bandwidth fluctuation. In [10] SkewTune algorithm is
presented. This algorithm identifies one task that takes longer
than usual and transfers the remaining data to another node.
When a node in the cluster becomes idle, SkewTune identifies
the task with the greatest expected remaining processing time.

The unprocessed input data of this straggling task is then
proactively repartitioned in a way that fully utilizes the nodes
in the cluster and preserves the ordering of the input data so
that the original output can be reconstructed by concatenation.

Our proposed method considers locality, network
bandwidth and processing power to make more efficient
decision. Moreover, our proposed approach can support early
shuffling because it does an offline profiling before beginning
of job, and hence, further improve total job completion time.

III. BACKGROUND AND MOTIVATION

A. MapReduce

As we mentioned before, MapReduce is a programming
paradigm [11] for implementing problems related to Big Data
processing in large scale distributed systems. This model has
been proved to gain high performance in distributed computing
and Big Data processing [12]. This paradigm is consists of two
main phases: Map and Reduce which we describe them blow.

Map. When Hadoop copies the input data to its file system

(Hadoop Distributed File System, HDFS), it splits the data into

data chunks or data blocks with same size (default size in

Hadoop 1 is 64MB and in Hadoop 2 is 128MB). After that, for

processing data blocks, Hadoop creates Map tasks. Each Map

task is responsible for processing one data block. Hence, the

number of Map tasks is equal to the number of data blocks.

The output of each Map tasks is key-value pairs that are called

intermediate data. Generated intermediate data by each Map

task is stored on the local machine that executed that Map task.

Reduce. The duty of Reduce phase is merging the intermediate
data and producing final result. As we mentioned before, this
phase has three sub phases; Shuffle, Sort and Reduce.

Shuffle. In shuffling phase intermediate data is transferred
to the defined Reduce task. This act is done by using an
algorithm that is called partitioner [13]. Partitioner is an
algorithm that assigns each key to a certain Reduce task.

Partitioner. As we mentioned earlier, distributing keys and
values is the duty of partitioner. In Hadoop, the default
partitioner is called hash partitioner that uses a hash function as
below:

Reduce task number = h(Key) % R

That h is a hash function and R is the number of Reduce
tasks. In this algorithm the Reduce task that should process a
certain key is determined by hash function. Although, this
partitioner does not need much time to respond, it distributes
the keys regardless of the size and number of keys passed to a
task. Hence, it may result in some Reduce tasks with heavy
load which increases the key transfer and execution time of
tasks and ultimately increases the overall run time. Moreover,
this hash function completely ignores the computing power and
network bandwidth of machines, and hence, is unable to tackle
issues arisen by heterogeneous clusters.

Sort. This phase sorts the intermediate data in each Reduce
task [14].

Reduce. At the third sub phase, Reduce tasks read the
intermediate data and user defined Reduce algorithm is
performed on them to produce final result [14].

Fig. 1. WordCount program execution in MapReduce programming model

In figure 1, the execution flow of a WordCount program
using MapReduce is shown. At first step, the input data is
received and divided into equal parts. Then, in the Map phase,
map function processes input data and generates intermediate
data. Then shuffle step is executed. It should be noted that all
key-value pairs with same key must be assigned to the same
Reduce task. Finally, the output data of Reduce tasks are
merged to give final result.

B. Motivation

As mentioned before, partitioner has a significant effect on
processing time of Reduce phase. In the absence of proper
distribution of key-values, data skew problem happens and
performance of cluster will be dropped significantly in term of
execution time and throughput and processing resources may
be wasted. In figure 2, execution time of Reduce tasks for word
count application in a cluster consists of 130 Reduce tasks is
shown. Each vertical line represents the execution time of a
Reduce task.

As you can see, in this example the time of execution for
Reduce task with maximum run time is about 5 times greater
than execution time of Reduce task with minimum run time.
This figure indicates that partitioner must consider the key
distribution and processing power in intermediate data. The
lack of attention to this fact may cause latency in execution of
application and wasting of resources.

Rank

0 10 20 30 40 50 60 70 80 90 100 110 120 130

R
u

n
tim

e
 (

se
co

n
d

s)

0

5000

10000

15000

20000

25000

30000

35000

Fig. 2. Difference in the execution time of Reduce Tasks in Hadoop

IV. ILLUSTRATIVE EXAMPLE

In this section, we provide an example to illustrate the
necessity of a resource and network aware partitioner. Suppose
that processing power and network bandwidth for four
machines that execute the Reduce tasks is as table 1. Also
assume that there is just one Reduce task on each machine.

TABLE I. PROCESSING POWER AND TRANSFER TIME OF EACH MACHINE FOR

SAMPLE KEYS

Machine

number

Processing power in

time unit

Communication time in

time unit

M1 1 Key-Value 1 Key-Value

M2 2 Key-Value 2 Key-Value

M3 2 Key-Value 3 Key-Value

M4 3 Key-Value 1 Key-Value

Now suppose that the input data includes keys K1 to K7
with the specifications provided in table 2. The two right
columns in Table 2 shows the machines proposed for each key
by two methods: our approach and default partitioner of
Hadoop.

TABLE II. SAMPLE KEYS AND THEIR PARTITIONING TO MACHINES

Key Number Local Keys

Result of

proposed

partitioner

Result of

default

partitioner

K1 4
1 Key: M1,
1Key: M2,

2 Key: M3

M3 M1

K2 1 1 Key: M2 M2 M2

K3 2 2 Key: M1 M1 M3

K4 2 2 Key: M3 M3 M1

K5 3
2 Key: M2,
1 Key M3

M2 M4

K6 1 1 Key: M4 M4 M1

K7 3
1 Key: M1,

2 Key M4
M4 M1

The result of this example is provided in table3. As you can

see, when we use default partitioner task No. 1 takes much
more time than other tasks and act as a straggler. However, our
approach prevents the straggler by proper distribution of keys
among tasks. As you can see, our method assigns just K3 to
Reduce task No. 1 while default partitioner assigns K1, K4, K6
and K7 to this task. This distribution decreases the execution
time of this task from 16 units to 3 units.

TABLE III. EXECUTION TIME OF TASKS USING PROPOSED AND DEFAULT

PARTITIONERS

Task

(Machine)

Task finishing time using

Hadoop default partitioner

Task finishing time using

proposed partitioner

1 16 time units 3 time units

2 1 time unit 2.5 time units

3 1.67 time units 2 time units

4 4 time units 2 time units

In this paper we propose a new network and resource aware
partitioner. This algorithm considers the network bandwidth,

locality and processing power in heterogeneous environments.
We do not try to just decrease the volume of transferred data in
shuffle phase, but to balance and decrease the time of
computation and communication through efficient key
partitioning.

V. ALGORITHM DEFINITION

The workflow of proposed method is shown in Figure 3. As
can be seen, we need a new part of processing called sampling.
After getting sample of whole data, sample data is uploaded to
HDFS. This action makes algorithm to have less overhead
compared with preprocessing. In execution time of main
algorithm, the same algorithm will be run on sample data.
Then, some intermediate data is generated. Partition manager,
by considering this data and the given algorithm, makes a
decision for all keys.

The larger size of sample makes the better and more
accurate estimation of distribution of keys. However, sampling
time and running time will be increased for larger samples.
Appropriate amount for sampling is 10% of volume of
processing data according to [6]. Our sampling strategy in this
paper is getting one megabyte of each 10 megabytes of data.

Fig. 3. Workflow of processing

After processing sample data and estimating distribution of
keys in intermediate data for each machine, we make decision
about key-value assignment to Reduce tasks. Our final goal is
assigning the keys to Reduce tasks by considering the
execution and transfer time, as well as locality of key-values,
so that all the Reduce tasks will finish in about the same time.
Inputs of our algorithm are as follows: set of existing keys on
sample data on each machine, bandwidth of machines,
processing rate for each machine (explained in next paragraph).

Processing rate is the relative number which determines the
number of keys can be processed in time unit by a machine
divided by the number of keys can be performed by the
weakest machine in the cluster. For example, if the weakest
machine takes one unit of time to perform Reduce algorithm on
100 keys, and other machine is able to execute them in 0.8 of
time unit, the processing rate for the weakest machine is 1 and
for the other machine is 1.25.

Then, we need to find processing unit. Processing unit is a
number that shows the least number of keys in each range of
keys that must be assigned to Reduce tasks. First we select the
most repetitive key as processing unit. If this number is less
than the 1/(Number of Reduce Task) of summation of all keys

we select 1/(Number of Reduce Task) of summation of all keys
as processing units. This action prevents from having huge
number of ranges for partitioner phase. Multiplication of this
number by processing rate of each machine (which is earned in
previous step) shows the number of keys which must be
performed by each machine and it makes sure if this number of
keys is given to all machines, all machines will finish
performing on those keys almost at the same time. Below
algorithm is repeated until all the keys are assigned (you can
see the pseudo-code in Algorithm 1):

• Select keys for each machine from sorted list of
available keys. The summation of selected keys must be
less than or equal to the multiplication of processing
rate of each machine by processing unit (Line 6 of
Algorithm 1).

• Then we calculate the amount of time required for
executing and transferring all Reduce task according to
the line 7-11 of Algorithm 1. Please note that
transferring time is only for those keys which are not on
this machine and should be transferred using network
(locality). Then, in line 11 transferring time is
calculated using network bandwidth.

• Now, according to the obtained information, we select a
machine to assign selected keys to it. We select a
machine that its current runtime plus the execution and
transfer time of selected keys would be less than or
equal of runtime of other machines. If there is no such
machine, we select the one with minimum current
runtime (Lines 12 – 17 of algorithm 1).

• Update the runtime of selected machine and delete
selected keys from available keys list. Also assign this
range of keys to selected machine.

Assuming that each Reduce task is assigned to one
machine, the algorithm divides the keys into several ranges and
assigns each range to a Reduce task. If we show the number of
keys with N, and number of Reduce tasks with R, then the time
complexity of our algorithm would be O(N*R).

Algorithm 1 shows the pseudo code of proposed algorithm.
Also in table 4 abbreviations which are used in algorithm 1 are
explained.

TABLE IV. ABBREVIATIONS USED IN PSEUDO CODE

Explanation Variable

Execution time of Reduce task on jth machine ETj

Processing rate in time unit on jth machine EPj

Number of keys in sample data N

Number of Reduce tasks R

Set of keys on ith machine Keysi

Set of all keys All_Keys

Network bandwidth of jth machine NBj

Transferring time to the jth machine TTj

Volume of ith key that must be transferred to

machine m
Vim

Execution and transferring time on jth machine EATj

Busy time of ith machine Totali

Set of keys and assigned Reduce Task number Res

Algorithm1. Network and resource aware partition algorithm

1: Input: EP, N , NB, Keys, All_Keys

2: Output: Res = {(k1,k2,m) | Key K1 is beginning,K2

 is end of range and m is assigned machine}

3: while available_keys is not empty:

4: for m in machines:

5: machine_capacity = processing_ratem * processing_unit

6: Selected_key = select the first machine_capacity
 keys of available list

7: for k in selected_key:

8: ETm += Nk/EPm

9: Vkm = (1-keym(k))/All_Keys(k)
10: TTm += vkm / NBm

11: end for
12: for m in machines:

13: EATm = ETm + TTm

14: Tempi = EATij + Totali

15: end for

16: m = Select the minimum Temp as selected machine for this list

 of keys, if there are some Temp with minimum number, select

 machine with minimum cuurent runtime

17: Totalm = EATm + Totalm

18: del delected_key from available_key
19: first_key = selected_keyfirst_element

20: last_key = selected_keylast_element

21: Add (first_key,last_key,m) to Res

22: end for

23: return Res

VI. SIMULATION RESULTS

In this section we report the results of our simulations based
on real world dataset. The test scenario contains 100 processing
nodes. Network bandwidth of nodes has been chosen randomly
from 10 to 100 Mb/s with step of 10 Mb/s. For sampling
purpose, we choose 10% of input data and use it to find the
distribution of keys in input data.

To evaluate the performance of our proposed algorithm, we
have compared it with Hadoop default partitioner and Best
performance algorithm. Best performance algorithm knows the
distribution of all keys in whole input data (not only sample
input data) and also knows the locality of each key in all
servers. To know the complete distribution of keys, first we
need to process all the input data. It is obvious that it is not
efficient to use and implement this algorithm. But this
algorithm is a good reference to evaluate other algorithm
because it gives the best possible answer. Because our method
distributes keys considering their distribution and number of
associated values, as well as the processing power, locality and
network bandwidth of nodes, it can surpass the default hash

partitioner and obtain near Best performance solutions. The
results show that our method decreases Reduce tasks’ runtime
up to 38% compared with Hadoop default partitioner. We have
used four well-known applications as our benchmarks;

 WordCount: it counts the number of each key in the
file and produces an output file contains all keys and
the number of their repetition in input file.

 Inverted Index: this application maps words or
numbers, to their locations in a document or a set of
documents. This application is used in the most of the
text searching systems.

 Grep: an algorithm for finding a key in allover the
file. In other words, it finds matching strings from text
files and counts their repetition.

 TeraSort: This application is used for sorting files.
The goal of this application is to sort a file as fast as
possible.

Our data set for this experiment is 10 Gigabyte of English
Comments of twitter [15]. This data set contains numerous
twitter posts from millions of users all around the world.

Figure 4 presents the total time of Reduce tasks, the Reduce
phase execution time, and shuffle execution time of
applications under different algorithms. Our proposed method
improves the total execution time in Reduce phase compared
with default hash partitioner by 32%, 52%, 36%, and 17% for
Word Count, TeraSort, Inverted Index, and Grep, respectively.
TeraSort has experienced the most improvement while Grep
have had the least amount of improvement; because TeraSort
produces more intermediate data compared to Grep, and hence,
can benefit most from our proposed approach. We can
conclude that the higher the volume of intermediate data of an
application is, the more it can benefit from our approach. Also,
our proposed method improves total execution time of jobs,
contains Map and Reduce Time, by 18%, 31%, 14% and 4%
for WordCount, TeraSort, InvertedIndex and Grep,
respectively.

The different between our proposed algorithm and Best
performance algorithm regarding total execution time of
Reduce phase is 5%, 8%, 5%, and 0% for Word Count,
TeraSort, Inverted Index, and Grep applications respectively. It
shows that our algorithm can find near optimal solutions and
even optimal solution e.g., in Grep application.

Total Reduce Time

W
ord C

ount

Tera sort

Inverte
d In

dex
Grep

N
o

rm
a

liz
e

d
 t

im
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Reduce Execution Time

W
ord C

ount

Tera sort

Inverte
d In

dex
Grep

N
o
rm

a
liz

e
d

 t
im

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Shuffle Time

W
ord C

ount

Tera sort

Inverte
d In

dex
Grep

N
o

rm
a

liz
e

d
 t

im
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 4. Normalized finishing time of Reduce tasks for four benchmark (Left: Total Reduce Time, Center: Reduce Execution Time, Right: Shuffle Time)

Default Partitioner

0 10 20 30 40 50 60 70 80 90 100

E
xe

c
u
ti
o
n

 T
im

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Proposed Method

0 10 20 30 40 50 60 70 80 90 100

E
xe

c
u
ti
o
n

 T
im

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Best Performance

0 10 20 30 40 50 60 70 80 90 100

E
xe

c
u
ti
o
n

 T
im

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 5. Normalized finishing time of Reduce tasks when partitioner algorithm is Hadoop default partitioner

(Left: Default partitioner, Center: Proposed Method, Right: Best performance)

Figure 5 depicts the execution time of all the Reduce tasks
for WordCount application under different partitioning
algorithm. Since the default partitioner is data skew-oblivious,
we see significant gap between execution time of different
Reduce tasks such that the execution time of the longest task is
three times of the shortest one.

On the other hand, Best performance partitioner distributes
the keys as efficient as possible between the tasks, and hence,
the execution time of all the tasks is almost the same. Please
note that as we mentioned earlier, the Best performance

algorithm sampling overhead is too much, and hence, its
implementation is not efficient and we use it to only show the
distance of our approach from best solution.

Finally, our approach stands between default hash
partitioner and Best performance, and does it best to balance
the execution time of Reduce tasks. The variation of execution
time of Reduce tasks in our approach is 5.15 %, while it is
24.76%, and 1.01% for default hash partitioner and Best
performance approaches, respectively.

VII. CONCLUSION

In this paper we have proposed a simple and efficient
partitioning algorithm to decrease the execution time of Reduce
phase in MapReduce applications. Our approach uses sampling
to determine the distribution of keys in input data. This
approach considers the network bandwidth and processing
power of nodes. We have simulated our algorithm in a Hadoop
cluster composed of 100 nodes. Results show that our approach
can decrease the time of Reduce phase by up to 52% compared
with original Hash partitioner of Hadoop and provide results
within 8% of the optimal solution.

REFERENCES

[1] Dai, Wei, and Mostafa Bassiouni. “An improved task assignment
scheme for Hadoop running in the clouds.” Journal of Cloud Computing:
Advances, Systems and Applications 2.1, 2013.

[2] Ranger, Colby, et al. "Evaluating MapReduce for multi-core and
multiprocessor systems." IEEE 13th International Symposium on High
Performance Computer Architecture, 2007.

[3] http://hadoop.apache.org/

[4] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri,
“Practical skew handling in parallel joins,” in Proc. of the International
Conference on Very Large DataBases (VLDB), 1992.

[5] “HashPartitioner,https://hadoop.apache.org/docs/r1.2.1/api/org/apache/h
adoop/Mapred/lib/HashPartitioner.html”.

[6] Chen, Qi, Jinyu Yao, and Zhen Xiao. "Libra: Lightweight data skew
mitigation in MapReduce." IEEE Transactions on Parallel and
Distributed Systems 26.9, 2015.

[7] Ibrahim, Shadi, et al. "Leen: Locality/fairness-aware key partitioning for
MapReduce in the cloud." Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on. IEEE,
2010.

[8] Hammoud, Mohammad, and Majd F. Sakr. "Locality-aware Reduce task
scheduling for MapReduce." Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on. IEEE,
2011.

[9] Hanif, Muhammad, and Choonhwa Lee. "An efficient key partitioning
scheme for heterogeneous MapReduce clusters." 2016 18th International
Conference on Advanced Communication Technology (ICACT). IEEE,
2016.

[10] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune: Mitigating
skew in MapReduce application,” in Proc. of the ACM SIGMOD
International Conference on Management of Data, 2012.

[11] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters.” Commun. ACM, vol. 51, January 2008.

[12] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: a flexible data
processing tool." Communications of the ACM 53.1, 2010.

[13] Seo, Sangwon, et al. "HPMR: Prefetching and pre-shuffling in shared
MapReduce computation environment." 2009 IEEE International
Conference on Cluster Computing and Workshops. IEEE, 2009.

[14] Yang, Hung-chih, et al. "MapReduce-merge: simplified relational data
processing on large clusters." Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. ACM, 2007

[15] https://snap.stanford.edu/data/twitter7.html

