
1

Communication-Awareness for Energy-

Efficiency in Datacenters
Seyed Morteza Nabavinejad, Maziar Goudarzi

Energy Aware Systems Lab

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

mnabavi@ce.sharif.ir, goudarzi@sharif.ir

Abstract- With the Proliferation of Cloud Computing concept, the datacenters, as the basic

infrastructure for Cloud Computing, have gained an ever growing attention during the last decade.

Energy consumption in datacenters is one of the several features of them that have been the target of

various researches. Two major consumers of energy in datacenters are the cooling system and IT

equipment. Computing resources e.g. servers and communicating ones e.g. switches constitute a great

portion of IT equipment. Among these two major players, the servers have been considered more than

networking equipment. Making servers energy proportional or server consolidation are two essential

approaches regarding reduction of servers’ energy consumption. However, some researches indicate

that 10% to 20% of energy consumption of IT equipment goes to network equipment and hence they

must also be considered en route to better energy consumption in datacenters. The focus of this

chapter is energy consumption of network equipment in datacenters and conducted researches in this

area. First, a quick summary about network energy consumption in datacenters is presented. After

that, related state of the art approaches and techniques are categorized, reviewed and discussed.

Finally, the chapter is concluded with presentation of recent original work of authors and its details.

Keywords: Virtualized datacenter, VM consolidation, inter-VM communication, Energy Efficiency.

Table of abbreviations used in this chapter

Abbreviation Original Term

IT Information Technology

mailto:mnabavi@ce.sharif.ir
mailto:goudarzi@sharif.ir

2

PUE Power Usage Effectiveness

VM Virtual Machine

PM Physical Machine

 NIC Network-Interface Card

MPI Message Passing Interface

VDC Virtual DataCenter

IRA Integrated Resource Allocator

TEA Traffic aware Embedding Algorithm

FFLM First-Fit virtual Link Mapping

VC Virtual Cluster

CS Communication Skeleton

TOP-VCM Topology-aware partial VC mapping

VMM Virtual Machine Manager

QoS Quality of Service

CIVSched communication-aware inter-VM scheduling

BCN Bidimensional Compound Network

HCN Hierarchical irregular Compound Network

NPE Network Power Effectiveness

SaaS Storage as a Service

SDN software defined network

NS2 Network Simulator 2

SABVMP Simulated Annealing Based VM Placement

CAVMP Communication-Aware VM Placement

ILP Integer Linear Programming

SCAVP Structural Constraint-Aware Virtual Machine Placement

3

1. Introduction

Energy consumption is a critical concern for operators of datacenters and there are several

factors that affect this energy consumption. Various parts such as IT equipment, cooling and power

distribution consume power in datacenters. One measure of power efficiency in datacenters is the

Power Usage Effectiveness (PUE) metric which is the ratio of total power consumption over IT

equipment power consumption [1]. Many works have traditionally reduced the PUE by mostly

considering the cooling power consumption [2-5].These efforts have led to very notable PUEs such as

1.12 for Google [1] or 1.07 for Facebook[6] by reducing total power consumption in the PUE

definition. More recent works focus on improving power consumption of the IT equipment. Between

severs and switches which are the major IT equipment that consume power, many works have been

done to reduce the energy consumption of servers so as to make them energy proportional [7-10]. A

study [11] on various kinds of web servers shows that the average utilization of servers varies

between 11% and 50%. Virtualization has improved utilization of today datacenters by allowing

consolidating several virtual machines (VM) on a single physical machine (PM) server. Since most

today servers are not energy proportional [12], this consolidation helps operate the servers in their

more energy-efficient operating regions. Virtualized datacenters enable a datacenter to service more

requests per unit time and energy compared to non-virtualized ones which results in a greener

datacenter with smaller carbon footprint. The amount of energy reduction by VM consolidation highly

depends on the VM placement algorithm employed in the datacenter. Many different VM

consolidation techniques have been presented [13-19] and each of them considers different parameters

to reduce the number of ON PMs and to place VMs on them.

Aforementioned references indicate the importance of servers in datacenters, however,

measurement reports reveal that about 10% to 20% of power consumption of IT equipment goes to

network equipment [20]. A case study on Google datacenters also indicates that when the server

utilization is 100%, the network infrastructure consumes around 20% of total IT equipment power,

but when the server utilization drops down to 15%, the network share increases to 50% and even

higher when energy-proportional servers are employed [21] (see Fig. 1). These observations

demonstrate the significance of network power consumption and its need for more attention.

4

Fig. 1. Impact of energy proportionality of network on total power consumption[21]

 This chapter surveys various aspects of network power consumption in datacenters and

reviews state of the art approaches and mechanisms. In section 2, power consumption of components

that constitute the datacenter networks are presented and discussed. Section 3 is dedicated to

categorization of numerous techniques that are presented for energy reduction of network in

datacenters. The remaining sections of chapter are dedicated to the recent approach of authors toward

reducing energy consumption of datacenters with respect to communication.

2. Power Consuming Components in Networks

There are two parts in the networking infrastructure that consume power: switches and the

Network-Interface Cards (NIC) of servers. According to [22], NICs consume only about 5% of total

power in servers; thus, the network switches are the main target when addressing power consumption

in networks. In Fig. 2 the share of each component in total power consumption of IT equipment is

demonstrated. As can be seen, the share of switches is way more than NICs in servers.

Fig. 2 Distribution of power consumption in IT equipment[20, 22]

5

For a better understanding of the power consumption mechanism in network switches note that each

switch consists of a chassis containing a mainboard with one or more linecards connected to it, and

each linecard has several ports. The power consumption of ports varies with their bit rate. Depending

on the equipment, bit-rate of ports can be individually set and they can even be turned off if not

connected or not needed. Similarly, each linecard can be separately turned on or off. In general, we

can say that Energy consumption of a switch depends on the following factors: (a) type of switch, (b)

number of ports, (c) port transmission rates, and (d) employed cabling solutions [18]. Thus total

power consumption of a network switch can be formulated as equation 1[23]:

𝑃 = 𝑃 + 𝑛 ∗ 𝑃 + ∑𝑛 ∗ 𝑃

(1)

Where𝑃 is the amount of power the switch consumes when turned ON, regardless of

other parameters. The 𝑛 parameter indicates the number of linecards in chassis and 𝑃

is the power consumption of an active linecard. Finally, 𝑛 is the number of ports in switch and 𝑃

corresponds to power consumed by an active port (transmitter) running at the rate r.

3. Power reduction Techniques

As Eq. 1 shows, power consumption of network switches can be reduced in several ways.

For classification purposes, we divide these approaches into three categories: use better equipment,

better use of equipment, and reduce use of equipment. The first category deals with ways to reduce

the constant values in Eq. 1 so that the network equipment is more energy-proportional; i.e., their

power consumption is effectively reduced to near zero when not in use. The second category, better

use of equipment, deals with static and dynamic techniques that help turn-off more linecards to save

power. These two categories do not affect total communication volume transmitted over the network,

but try to do it in a more efficient way by actually reducing power consumption of the equipment. The

third category, which comprises more sophisticated and more recent techniques, represents various

approaches that influence total volume of data to be transmitted by the network so that total operating

6

time of equipment is reduced. In other words, these techniques reduce total energy consumption of the

network equipment by reducing the time factor. Obviously, one needs to simultaneously apply these

three categories of techniques to obtain the most effective power reduction outcomes, but for

classification purposes, we present each of them separately in the following subsection.

3.1 Use Better Equipment

Eq. 1 practically covers most popular network switches in widespread use today. The constant

values, such as the power consumption of the mainboard or the base power of each linecard, plays an

important role in total power consumption; even when there is no activity in the network, these

constant values are consumed to operate the switch. Reducing these constants is one important way to

make switches energy-proportional. Moreover, the channels in many current switches are always ON

regardless of transmission rate (even when there is no packet to transmit). More advanced switches,

such as Dynamic InfiniBand switches, can be adapted to transmission rate and save power [24-26].

Use of other technologies, such as optical cables and networks, is another way for energy-

proportionality [27-29]. For example, above Infiniband switches along with optical links make it

possible for links to operate with fewer lanes and at a lower data rate to reduce the power

consumption [21].

3.2 Better Use of Equipment

In this category, the components of a switch such as ports or linecards are considered and the

main concern is to reduce the power consumption of them in order to reduce the energy consumption

of switches, and consequently, reducing the network energy consumption. For example, in [30] the

behavior of ports in switches is studied and a number of techniques is proposed as below: the simplest

technique suggests disabling unused ports since some of them are never used or used just for short

periods of time. This technique is inexpensive to implement statically, but if the communication

requirements change dynamically, turning on-off should also be dynamic which is harder to

implement. Port rate adaptation is another technique they suggest that can be useful for ports with low

and almost constant utilization, but not for ones with fluctuating utilization. The third technique

proposes aggregating the entire set of active ports on as few linecards as possible. It makes it possible

7

to shut down the unused linecards to save the energy. Finally, the linecards can also similarly be

consolidated across fewer switches. It provides the opportunity to reduce the number of active

switches and save energy. These works [31-35] have used one or more of aforementioned techniques.

However, moving ports from sparse switches to crowded ones needs significantly rewiring the

network.

3.3 Reducing the Usage of Equipment

These techniques are more focused on concepts like communication time, communication

volume or communication scheduling in datacenter network. Each of the aforementioned concepts can

affect the energy consumption of datacenter network. For example, if one can decrease the amount of

data that transfers among the network, the usage of switches will decrease and consequently they

consume less energy. In the following subsections we will categorize these kinds of approaches and

give more examples and explanation about each subcategory. In Fig. 3 you can see an overview of

subcategories

Fig. 3 Overview of Power Reduction Techniques

8

3.3.1 Enhancing Profiling Effectiveness

These kinds of works are the first ones in the area of communication-aware task placement

algorithms and are the base for many algorithms that are proposed for datacenters and clouds. Ref.

[36] is one of the primitive works that considers the communication when trying to balance the load in

a cluster that runs parallel workloads. COM-aware is designed to handle a wide variety of applications

by mean of an application behavioral model that includes load of CPU, disk and network generated by

application.

For constructing this model, a profiling step is needed. The profiling can be either offline or

online. This model then will be used to calculate the load impact of each application on cluster. The

model considers several phases for a process of application and for each phases, the total execution

time of that phase is broken down to communication time, disk I/O time and CPU time. The below

equation shows this break down by this assumption that there are N phases:

 𝑜 𝑛 =
 +

 +

After that, the Communication, Disk and CPU requirements are estimated as below:

 = ∑

 = ∑

 = ∑

The profiling step that mentioned earlier is responsible for obtaining the
 times. This

information then will be used to do communication-aware load balancing.

For evaluating the proposed schema, a 32 node cluster is simulated and a variety of workloads

are used to evaluate its performance. The performance metrics that are used for evaluating are:

Turn-around time: it is a common metric for evaluating the job performance and measures as the

elapsed time between job submission and job completion.

Slowdown: it can be calculated as
 ⁄ where the

 is the turn-around time of job in a none

dedicated system and is turn-around time in the same system but this time the resources are

dedicated to the job and there is no resource sharing.

Communication pattern which consists of three key attributes (volume, spatial and temporal) is

a useful resource for perceiving the communication behavior of parallel applications and is extracted

from communication trace. Before [37], the parallel applications must be run on whole cluster in order

9

to produce communication trace but this process has two main weaknesses: it uses lots of resources

and takes a long time. This work proposes a new method for producing communication trace by less

resources and time, but by sacrificing the temporal attribute of communication pattern. It uses the MPI

program and analyzes it to find the critical parts and then uses them to generate reliable

communication trace. This work is also one of the first works that are done for communication

awareness and later are applied to clouds and datacenters.

3.3.2 VDC Placement

For service providers who deploy their services on the cloud, sole VMs without considering

their communication overhead cannot guaranty the desired performance. Instead they expect an entity

that considers computing and communication elements simultaneously. For satisfying such demands,

the Virtual DataCenter (VDC) concept emerged. A VDC is a set of VMs, switches and routers that are

connected through virtual links and each virtual link is characterized by its bandwidth and delay. The

VDCs can address the performance issue since they are kind of isolated regarding network and hence

can better guaranty network resources availability.

Mapping the VDC resources onto physical infrastructure resources efficiently is a problem that

several works are proposed to address it. Ref [38] proposes an approach for placing VDCs that aims

to achieve two goals: allocating the computing and networking resources to each VDC and

maximizing the number of placed VDCs and guarantying their performance. Since the available

bandwidth for each VDC can affect the performance of running tasks on it, it is important to consider

the network bandwidth in VDC placement. This work tries to reduce the inter-VDC bandwidth in

order to increase the performance. It first proves that the problem of clustering the VMs of a VDC in

order to reduce the inter-cluster bandwidth is NP hard. After that, the three-phase integrated resource

allocator, IRA, is introduced that exploits the min-cut algorithms to form the VM clusters. Finally,

another version of IRA, called B-IRA, is proposed that uses approximation algorithms and explores a

smaller space for solution. Three phases of IRA can be seen in Fig. 4

10

Fig. 4 Three Phases of IRA

The first phase of IRA is only applied when the resource requirement of VDC is more than one

server-cluster. All the servers in a server-cluster are attached to the same edge-switch. Therefore,

when more than one server-cluster is required it means that there will be communication between

clusters. Because of the high cost of this kind of communication compared with intra-cluster one, the

IR tries to cluster the VMs of VDC in a way that inter-cluster is as low as possible. It is obvious that

when the VDC can be fit in a single server-cluster, there is no need for VM-clustering. The second

phase tries to find a valid mapping for each VDC on physical resources. The process of mapping for

each VDC is successful if: first, there is at least one sever-cluster for each VM-cluster of VDC that

can satisfies the resource demand of the VM-cluster and second, there is enough bandwidth among

the selected server-clusters that can handle the communication between VM-clusters. Finally in the

third phase, when the two previous phases are done successfully, the allocation routine places the

VM-clusters onto corresponding server-clusters.

For evaluating the proposed technique, a set of simulations is conducted. The physical

infrastructure considered is a three-tier hierarchal architecture with 192 server-clusters and 9216

servers. Regarding the number of switches, there are eight core switches, 32 aggregation switches and

192 edge-switches and each edge-switch represents a server-cluster. For evaluating the performance,

three metrics are selected:

Percentage of accepted VDCs: how many of requested VDCs are accepted and placed on

11

infrastructure

Cost: here the cost is the inter-cluster communication. When a VDC is split into several VM-clusters,

the amount of communication between these parts is the cost of VDC placement.

Partition size: by changing the size of VDCs, the effect of VM-clustering is observed.

The main assumption in [39] is that network switches are the bottleneck in datacenter network

and that the datacenter network topology is fat-tree. They have designed two algorithms called traffic

aware embedding algorithm (TAE) and first fit virtual link mapping (FFLM) to map the requests for

VDC on the physical infrastructure. They claim that proposed approach can increase the chance of

placing VDCs and reduce the network cost.

Virtual Clusters (VC) are entities like VDCs that provide isolated resources for a job and are

configured per job in runtime. A job that runs on VC has several sub-jobs and each of them runs on a

VM in VC. The proposed approach in [40]first extracts the communication pattern among the VMs in

VC and makes Communication Skeleton (CS). It then tries to place the VC on infrastructure by

considering the resource demand of VMs as well as derived CS in order to increase resource (CPU

and network) utilization. For reaching this goal, they introduce partial VC mapping which is in

contrast to full VC mapping. They claim the former can lead to better resource utilization and less

placement complexity and Topology-aware partial VC mapping (TOP-VCM) algorithm is designed to

fulfill the concept. TOP-VCM tries to map VMs and Virtual Links between them on physical

resources and links in order to increase resource utilization. It also leads to decrease in response time

of tasks which are processed by job that is running on VC due to better communication performance.

The majority of works done just has considered the case where there is one infrastructure and

distributed infrastructures are not considered. So Ref. [41] tries to solve the VDC embedding problem

in the case of distributed infrastructures by considering energy efficiency and environmental impacts.

The proposed solution comprises two phases: VDC partitioning and partition embedding. VDC

partitioning phase splits the VDC to several partitions such that bandwidth between partitions is

minimized. The partition embedding phase then lists the datacenters that are able to host the partition

and chooses the best one based on constraints such as cost and location.

12

3.3.3 Hypervisor Enhancement

Virtualization technology has a promising effect on resource utilization in datacenters. Since

the main concern at the time of designing current hypervisors such as Xen was the computing-

intensive applications so they suffer from poor network I/O performance. For example, Single-root

I/O virtualization, which is the current standard for network virtualization, is based on interrupt and

since handling each interrupt is costly, the performance of network virtualization depends on the

resource allocation policy in each hypervisor.

For conquering aforementioned problem, [42] proposes a packet aggregation mechanism that

can handle the transfer process in a more efficient and rapid manner. However, the aggregation step

itself introduces a new source of delay and must be addressed. Hence, the queuing theory has been

used to model and dynamically tune the system in order to achieve the best tradeoff between delay

and throughput.

Regarding the resource allocation policy problem the Credit-Based scheduler, the de facto

resource scheduler in Xen hypervisor, cannot handle the I/O-intensive workloads properly since it is

not aware of different behavior of various VMs and handle all of them in the same way. So, the I/O-

intensive VMs don’t earn enough credit for handling network interrupts and hence retrieve the data in

a slow manner that leads to high latency and response time.

To tackle the mentioned problem and eliminate the bottleneck which is caused by scheduler,

[43] introduces a workload-aware network virtualization model that monitors the behavior of VMs

and divides them based on their behavior in two categories: I/O-intensive and CPU-intensive and then

handles them by Shared Scheduling and Agile Credit Allocation. When an I/O-intensive VM faces

burst traffic, the shared scheduling gives it more credit so it could be able to handle the traffic and

agile credit allocation is responsible for adjusting the total credit based on number of I/O-intensive

VMs in order to reduce the wait time for each I/O-intensive VM.

Ref [44] first introduces a semantic gap that exists between VMM and VMs. The gap is that

VMM is unaware of processes inside VMs so it cannot schedule the VMs efficiently. As an example,

when a VM sends a request to another co-located VM, the co-located VM must earn vCPU so it can

process the request and provide the response ASAP but the current scheduling in VMM doesn’t

13

consider this matter. As a result, the response latency increases and it may lead to QoS violation.

Moreover, it gets worsen when the co-located VMs are CPU or IO intensive because the competition

for CPU increases dramatically. Fig. 5 illustrates the mechanism of inter-VM communication in

current Hypervisors.

Fig. 5 Inter-VM communication in VMMs

 To resolve the problem, they propose the CIVSched algorithm which is aware of

communication among co-located VMs. CIVSched monitors the packets that are send through the

network and identifies the target VM and schedules the VM in a way to reduce response latency. The

CIVSched prototype is implemented on Xen Hypervisor.

For each DomU guest (VM) there is a virtual front-end driver that VM sends the requests for

I/O operations to it. Then these requests are sent to back-end driver which is in Dom0 guest. And

finally, the back-end driver sends the captured requests to real device driver and returns the responses

to the front-end driver. As an example, Fig. 6 depicts the way of a packet sent by any VM through the

Xen hypervisor in standard manner.

Fig. 6 Xen I/O Overview

14

The CIVSched must abide by two design principles: low latency for inter-VM and low latency

for the inner-VM process. These two design principles help CIVSched to decrease the inter-VM

latency. For realizing the two above mentioned requirements, the CIVSched adds five modules to the

Xen I/O mechanism. The AutoCover (Automatic Discovery) module finds the co-located VMs and

stores their MAC address and IDs in a mapping table. The CivMonitor checks all the packets

transmitted by VMs and when finds an inter-VM packet, informs the CivScheduler about it. Then,

CivScheduler gives more credit to target VM so it can handle the packet as fast as possible. Until now,

the first design principle (low latency for inter-VM) is satisfied but the other one still needs attention.

Regarding the second principl, CivMonitor identifies the process of target VM that will receive the

packet via TCP/UDP port number within the packet and passes the information to the target VM.

Finally, PidScheduler and PidTrans modules inside the guest VM schedule the target process with

respect to decreasing latency. Fig. 7 illustrates the added modules by CIVSched to the Xen

hypervisor.

Physical Hardware

Xen Hypervisor

DomUDom0

Apps

Front-end
Driver

Bridge

NIC
Driver

Back-end Driver

PidScheduler

PidTransCivMonitor

PidTrans

AutoCover

Fig. 7 Overview of CIVSched

For evaluating the CIVSched, it has been implemented on Xen hypervisor version 4.1.2 and is

compared with XenandCo [45] scheduler (another proposed scheduler for Xen) and Credit scheduler

which is the base scheduler in Xen. For comparing the Network latency, experiments consist of a

ping-pong test, a simulation test and a real world we application scenario but with synthetic

15

benchmarks. Fairness Guarantees is also evaluated because the fairness of scheduler directly affects

the fairness of CPU resources allocated to each VM. The UnixBench suite 4.1.0 is adopted for

evaluating the performance overhead of CIVSched on host’s performance. Performance overhead is

measured at two levels: when there are just two VMs on the host (light consolidation) and when there

are seven VMs running simultaneously on the host (heavy consolidation)

3.3.4 Topology Enhancement

There are two major categories for datacenters network architecture: switch-centric and

server-centric. In server-centric architectures the servers not only act as computing resources, but

also have the responsibility for packet forwarding. In switch-centric architectures however, the packet

forwarding and communication is guaranteed by switches and servers do not have any role in packet

delivery.

Among the switch-centric architectures, 3-level fat tree topology is the most common one. In

this topology, there are several paths between two nodes so in the case of link failure there are

alternative routing ways. One dominant problem by fat tree is that the number of nodes that can be

connected is restricted. If one needs to connect more nodes, there are two way for that: replacing the

switches with bigger ones that need to reconfigure the whole connections which is costly or increasing

the number of levels that leads to increase in network diameter. For solving the mentioned problems,

[46] proposes a new approach for constructing large datacenter networks with fixed size switches.

They first construct hyper graphs using the hyper graph theory and then convert them to indirect

hyper graphs. This approach makes it possible to connect more nodes together with fixed size

switches compared with fat tree topology.

In server-centric architectures, the delay of a server-to-server direct hop and a server-to-server-

via-a-switch hop is considered equal; however with the fast growing capabilities of servers for packet

forwarding, this assumption might be invalid in the future. Moreover, until today, it is believed that

BCN [47] can connect the most number of dual port servers for a fixed number and size of switches,

while the authors claim that DPillar [48] architecture can connect more servers than BCN under the

same configuration.

16

Regarding two aforementioned points, [49] proposes three new server-centric architectures for

dual port servers. The architectures try to answer this question: “what is the maximum number of dual-

port servers that any architecture can accommodate at most, given network diameter d, and switch

port number n” [49] and approximate the upper bound of possible dual port servers.

The first architecture, based on generalized hypercube [50], is called SWCube. Under different

conditions, this architecture either can connect more servers than DPrill or less. The two other

architectures, SWKautz and SWdBrujin, which are based on Kautz graph [51]and de Brujin graph

[52]respectively, always proper better answers compared with DPrill.

With the help of dual port servers, [47] proposes two new server-centric network structures

called Hierarchical irregular Compound Network (HCN) and Bidimensional Compound Network

(BCN) for datacenters which are of server degree 2. These structures have low diameter and high

bisection and can be expanded easily. Fig. 8 and Fig. 9 depict these two new structures and more

details about them will be presented in the following.

Fig. 8 Structure of HCN (4,1) [47]

17

Fig. 9 BCN Network Architecture in the first dimension [47]

A level-h HCN is denoted as HCN(n,h). Here n stands for number of dual-port servers in the

smallest module and number of ports in miniswitch that connects the servers together in that module.

A HCN(n,h) consists of n of HCN(n,h-1) modules that are connected via a complete graph. Here the

second port of servers is used to connect the smallest modules together (the first port is connected to

miniswitch). The smallest module is denoted as HCN(n,0). Generally, we can say that: 𝑜

 (𝑛) 𝑜 𝑚 𝑛 (𝑛)

α stands for number of master servers and β determines the number of slave servers in

BCN(α,β,h) where h shows the level of BCN in the first dimension. The sum of α and β denotes the

number of dual-port servers and number of ports in miniswitch again in smallest module or building

block like HCN. A general BCN is denoted by BCN (α,β,h,γ) and γ stands for level of BCN in the

second dimension. It worth to mention that there is really no master/slave relation between servers

and these names are just for simplifying the presentation of structure. The master servers, black ones

in Fig. 9,are used to expand the BCN from outer section or first dimension and slave servers, white

servers in Fig. 9, make it possible to expand the BCN from inner section or second dimension.

Since good support for one-to-one traffic routing leads to good all-to-one and one-to-all

support, two algorithms are presented for routing one-to-one traffic in BCN. First, the single path

routing without failure is studied and then it has extended to parallel multipath routing. Finally, the

failures are also considered and addressed by using multipath between servers. Network order

18

(number of servers in network), bisection width and path diversity are the parameters that BCN and

HCN are compared with FiConn based on them. The results show that BCN can surpass the FiConn

and yield better performance regarding aforementioned parameters.

Network Power Effectiveness (NPE) indicates the tradeoff between power consumption and

throughput of a network and also shows the bit-per-second per watt (bps per watt) for a network. This

parameter is important in today’s datacenters since the main concern of recent proposed architectures

for datacenter network is throughput and power consumption is rarely considered, however the

network consumes a big portion of overall power in a typical datacenter. Ref [53] does a

comprehensive study on dominant advanced network architectures in datacenters like Fat-tree and

BCube regarding their NPE. It also studies the effect of different parameters such as traffic load,

power-aware routing, traffic pattern and topology size on the NPE and compares the switch-centric

architectures (which that try to propose a new architecture based on switches or improve tree

architecture) like VL2 and Fat-tree against server-centric architectures (that use servers with multiple

NICs and each server is involve in the packet forwarding flow) like DCell [54]and FiConn [55].

3.3.5 Traffic & Flow Engineering

Various methods are proposed that aim to reduce just energy consumption of network. Ref [56]

aims to reduce power consumption of core network in distributed cloud for different kind of

applications. For content delivery services, they design a mixed integer linear programming model.

Based on this model, they conclude that replicating popular content on different clouds can reduce

power consumption significantly compared to centralized content delivery model because of power

reduction of network switches. For storage as a service (SaaS), they suggest that migrating content

based on its access frequency can be beneficial. And finally, for VM placement, they propose to break

the large VMs into several smaller VMs and place them on different clouds to facilitate the access of

users from different locations and reduce the power consumption of network.

Despite the common approaches that try to optimize the network performance and energy via

sole traffic-engineering, [57] tries to consider both traffic-engineering as well as network features

such as topology and end-to-end connectivity. The proposed approach deeply explores both

19

application characteristics and network features and then based on these observations does the VM

assignment. This assignment will lead to favorable conditions in datacenter network that will be used

for next step which is traffic-engineering.

One common way for reducing the power consumption of switches is to reduce the number of

active switches by flow aggregation and then put the rest of them in “sleep on idle” state. Although

the flow aggregation works fine for application-limited flows, where the amount of data that need to

be transmitted is low and one network link can be shared between several flows to transmit their data,

it cannot handle the network-limited flows like MapReduce applications. In network-limited flows,

the application produces lots of data in a short period of time and then the capacity of network as well

as the number of flows that compete on the bottleneck link determines the throughput for each flow.

Consequently, however the number of active switches is reduced by aggregation technique, their

uptime increases due to limited capacity for each flow.

Ref [58] addresses above issue by modeling the problem and considering both reducing the

number of active switches as well as deadline and size of each flow. They design “willow” which uses

software defined network (SDN) technique and schedules the flows in terms of energy consumption.

For achieving online scheduling, a greedy approximation algorithm is presented. This algorithm tries

to use all the idle ports in a switch and then reduce the number of active switches until the running

duration of network is not increased.

Example in Fig. 10 shows that current techniques for scheduling flows, that just consider either

minimizing the number of active switches or maximizing the network throughput, are not suitable for

network-limited flows regarding energy efficiency. In this example, there are two flows: f1 from

server 1 to server 3 and f2 from server 2 to server 4. Here, the following assumptions are considered:

size of each flow = Z, the capacity of each link = B, power consumption of each switch = P and

deadline of each flow =
(∗)

.

20

b c d

e f g

a

h i

1 2 3 4

b c d

e f g

a

h i

1 2 3 4

b c d

e f g

a

h i

1 2 3 4

b c d

e f g

a

h i

1 2 3 4

(1) (2)

(1) (2)

(a)

(b)

Flow 1 (f1) Flow 2 (f2) Link Aggregated Flow

Fig. 10 Illustrative example for showing performance of different flow scheduling algorithms

The scheduling algorithm in (1)(a) aims to maximize the network throughput so routes the

flows as is depicted. Here, four switches are active for Z/B time, so the total network energy

consumption is (4*Z*P)/B. meanwhile, the scheduling algorithm in right side tries to minimize the

number of active switches. the result is three active switches with (2*Z)/B uptime and hence the

network energy consumption is (6*Z*P)/B. as can be seen, while the second algorithm use one less

switch compared with first one, it uses more energy than that of first one. However, in this scenario

both scheduling schemas meet the deadline.

In scenario B, it is assumed that links h-g and e-i are faulty and out of service. Again, the left

side figure illustrates the path that flow scheduling maximizing throughput selects and the energy

consumption of network for such routing would be (8*Z*P)/B. The energy consumption of network

for path that second algorithm i.e. minimizing the active switches, chooses is (6*Z*P)/B. we can see

that despite the first scenario where the maximizing throughput gave better energy consumption, in

this scenario minimizing the number of active switches is more successful regarding network energy

21

consumption. This example clearly demonstrates that considering either network throughput or

number of active switches is not sufficient and both of them must be considered simultaneously in

order to achieve a successful scheduling under various conditions and the Willow algorithm is

proposed to do it.

There are three basic ideas behind willow design and it has been developed based on them.

SDN based Flow Scheduling: willow uses SDN framework to collect information about flows

such as their size and deadline or computing the routing path for each of them.

Routing Path Selection: willow is not topology-dependent and can work with different

topologies such as fat-tree or Bcube.

Differentiation between Elephant Flows and Mice Flows: since the elephant flows dominate the

traffic in datacenter networks [59], willow focuses on them and first schedules them, then reuses the

computed paths for elephant flows in a random way for mice flows.

For evaluating Willow regarding network energy consumption reduction, simulation and

testbed experiments are conducted. In the simulation setup, for network topology both fat-tree and

blocking fat-tree are used. The MapReduce computation trace from 50 mappers and 20 reducers is

considered for workload trace. The evaluation metric for comparing willow against rival algorithms

i.e. simulated annealing and particle swarm optimization is network energy ration. For evaluating

willow in a real setup, a testbed with 16 servers in a fat-tree network is considered.

3.3.6 Communication-aware Consolidation

As the amount of PUE goes down by using advanced approaches for reducing the non-IT

equipment power consumption, the power consumption of IT equipment (servers and switches)

becomes dominant in datacenters. A wide variety of techniques and algorithms are proposed until now

for reducing the quota of servers in power consumption [13-15, 19, 60-63] but there are lots of

opportunities for decreasing the switches’ power consumption [58].

Joint approaches like [64, 65] consider both inter VMs communication as well as VM

consolidation. However, these works suffer from too simplistic and inaccurate models of

communication time and its effect on application runtime and energy consumption. They have tried to

22

group the VMs that communicate with each other and then place them on one or more servers to

reduce network traffic, but did not take into account VMs communication inside a group, and more

importantly, did not consider the communication structure among the servers.

To address the aforementioned issues regarding joint approaches, we have developed a new

approach and will describe it here.

One of our contributions in this work is that we consider all inter-VM communication even

inside a group and place VMs based on them so the network traffic is less compared to other

approaches. Another advantage of our work is that we compute the communication time for each VM

using a detailed network simulator, NS2, which improves the accuracy of results. A number of other

communication-aware VM consolidation techniques exist, but they optimize only based on either the

communication volume [66] or network congestion [18], both of which are relevant but indirect and

inaccurate indicators of the actual communication time on the network. As an example, consider a

unit volume of data communicated between two servers; it takes different amounts of time if the two

servers are in the same rack compared to when they are in different racks, and even more if in

different clusters. Thus, the distribution of communications endpoints as well as the structure of racks

and clusters, in addition to communication volume, play important roles to determine communication

time, and hence, communication energy consumption. We improve state of the art by showing this

shortcoming in existing approaches and their resulting sub-optimal placement, and by providing an

approach to accurately consider network communication time.

An important contribution of our approach over prior works is that we consider the structure of

the datacenter, in terms of placement of servers in racks as well as racks in clusters, when placing the

VMs. Prior art have only concentrated on consolidating VMs on servers without paying attention to

the reality that most, if not all, cloud computing implementations take advantage of a datacenter in the

backend, and hence, the actual place and connection structure of those servers is an important factor

in total communication time, and the final energy consumption. We show and quantify the

significance of this point by our experiments in Section 6.

Another contribution of ours is revealing the inaccuracies in prior work by considering actual

network structure and elements when evaluating the energy consumption and VM consolidation

23

outcome. To evaluate our as well as rival techniques, we use NS2 simulator for real-world network

simulation, which is far more accurate than approaches that abstract out most network properties and

only count the number of switches between servers, such as [67] where a switch can become host

spot, and consequently, the actual communication time is effectively more than they estimate. We

prove superiority of our proposal by comprehensive experiments in this elaborate simulation

environment. Experimental results show that our approach reduces the amount of communication up

to 71.9% in synthetic benchmarks, and 77% in a real world benchmarks compared to an improved

version of our closest rival. Consequently, the overall energy consumption is improved by up to

17.8% in synthetic benchmarks, and 79% in the real world benchmark, by our technique compared to

that improved rivals.

4. Our Approach

In this section we first show the flow of our work. Since pure VM placement problem is similar

to the bin-packing problem in computer science, we use one of corresponding algorithms, the first-fit

algorithm, as a baseline algorithm to compare to.

4.1 Our Optimization and Evaluation Flow

Fig. 11 gives an overview of our optimization and evaluation flow. First we use a VM

placement algorithm to place the VMs on servers (the Placement Phase in the figure). We present two

algorithms in this paper (see Section 5) corresponding to this step. Then, the results of the placement

are evaluated to report here and compare to related work (the Evaluation Phase in the figure). There

are many real-world cases even at large scales where the VMs are basically static and the goal is to

optimally place them for the lowest energy. The flow in Fig. 11 is sufficient to address the needs of

such cases, but for other cases where the nature of VMs is semi-static or dynamic, we re- run our VM-

placement algorithm (see Fig. 12) at certain intervals if new VMs arrive or existing VMs finish

execution during that interval. We assume 30-minutes for this re-execution interval in this work.

While the choice of this time period for re-placement interval may not be optimal, it is short enough to

address most dynamic behaviors, while it is long enough to cover rather long boot up/shut down

24

latency of several new/finished VMs, and furthermore, it is long enough to reduce the energy and time

overhead of re-running the placement algorithm—see Section 6.3. Deciding the optimal interval for

VM re-placement is an interesting objective and is part of our future work.

Fig. 11. Our optimization and evaluation overall flow

Fig. 12. Placement and re-placement phases of our technique for dynamic environments

After the placement phase is accomplished, it is time to evaluate the proposed VM placement

so we go on to the evaluation phase in Fig. 11. Since the placement algorithm is re-run at fixed

intervals, we evaluate its advantages in a single interval in our experiments in Section 6. The overhead

25

of live migration of a number of VMs, if the re-placement decides so at the beginning of a new

interval, is analyzed in Section 6.3. Based on the VM placement determined by the algorithm, we

generate TCL script files that are the input of the NS2 simulator for network traffic assessment. TCL

files consist of information such as network topology and amount of data that transfers between the

VMs. After NS2 has finished simulating the network operation, it produces track files. In a track file,

the sender, the receiver, the send time and the receive time of all packets are specified and we use this

information to calculate the communication overhead of each VM and add it to the VM total

execution time. Finally we compute energy consumption of datacenter IT equipment based on the

VMs updated execution time.

5. Problem Formulation and Algorithms

In this section we give notations and formulate the optimization problem. After that, the

proposed placement algorithms are described.

5.1 Energy Model

Servers consume a lot of energy in datacenters. Server power consumption is proportional to

CPU utilization. Some researches indicate that an idle server consumes around two-thirds of its peak

load consumption. The remaining one-third changes almost linearly with the increase in the level of

CPU load. According to this, we use the following server power model [68], [18], [69]:

𝑃 = 𝑃 + (𝑃 𝑃) ∗ 𝑈
(12)

where Pmax, Pidle, and U are server power consumption at maximum utilization, server power

consumption when idle, and server CPU utilization respectively. It is noteworthy that since the

assumption in our benchmarks is that when a CPU is assigned to a VM, that single CPU is fully

utilized by that VM, the U parameter for each server is defined here as the number of active cores of

the server divided by the total number of cores deployed in the server.

Switches energy consumption is also significant specially when there is a lot of communication

between servers. Energy consumption of some powerful switches is more than regular servers, and

hence, it is important to consider energy consumption of them in evaluation. Here we use the Eq. (1)

26

for switches power consumption.

5.2 Notations

We assume that the resource demand for each VM is determined and fixed, and does not

change during the run time of the VM. For example a VM needs two cores and 3GB RAM and these

values are constant during the runtime of VM and do not change. We also assume that the

communication matrix of VMs is given. Each element of this matrix shows the amount of

communication between two VM. This information can be obtained by profiling the VMs during a

test period prior to optimization. The above specifications of all VMs are given parameters to the

algorithm. We define the notation listed in Table 1.

Table 1. Notation used in our problem formulation

Parameter Meaning/ description

M Number of Servers

N Number of VMs

S Number of Switches

VMCore i Required Number of Cores for VM i

VMRAM I

VMComTime i

Required Amount of Memory for VM i

Communication Time of VM i

ServerCore i Available Number of Cores in Sever i

ServerRam i Available Amount of RAM in Server i

VMtoVMcom i , j Amount of Communication between VM i and VM j in KB

StoScom i , j Amount of Communication between Server i and Server j in KB

VMonServer i , j Binary variable indicating whether VM i is placed on Server j or not

(1 = is placed , 0 = is not placed)

isServerUp i Binary variable indicating whether Server i is up or not

(1 = server is up, 0 = server is not up)

ServerEC i Energy Consumption of Server i

SwitchEC i Energy Consumption of Switch i

5.3 Problem Formulation

Using the notations given in Table 1, the optimization problem is defined as follows:

“For a given set of datacenter structural parameters (i.e., m, S, ServerCore vector, ServerRam

vector, and the structure of the datacenter network) and a given set of VM parameters (i.e., n,

VMCore vector, VMRAM vector, VMtoVMcomm matrix), minimize total datacenter energy

consumption, covering servers and switches, by assigning each VM to one and only one server

27

while considering the communication delay among the VMs as well as capacity constraints on

server resources. “

Formal equations are listed below:

Equation (3) designates the objective function which is total energy consumption of all servers

and switches. Note that in the placement phase (see Fig. 11) we do not compute this equation; our

algorithms take the servers and racks structure into account when placing the VMs to minimize the

energy, but the amount of this energy is computed in the evaluation phase, where we run NS2

simulations for obtaining the communication time of each VM to finally compute the energy

consumption.

Our goal is to reduce the amount of energy that servers and switches consume. But we should

pay attention to some constraints while we are trying to achieve this goal. The first and second

constraints that are mentioned in (4) and (5) deal with constraints on resources of servers. Equation

(4) is about number of cores that is available in a server and states that required number of cores of

VMs that are placed on each server must be less than or equal to available cores of server. Equation

(5) is similar to (4) but instead of cores count, it focuses on memory volume. Each VM must be

placed on one and only one server and (6) shows this constraint.

After placing VMs on servers, the communication volume between servers is calculated by (7)

and then by using NS2 simulator, the communication time of each VM is calculated in (8). Note that

the NS2 simulation written as NS2(StoScommk,j) in (8) is not a mathematical model since it involves

running the simulator and processing its outputs. It merely clarifies the process taken to obtain

communication time after placement. We also count the number of up servers by (9). Reducing

energy consumption of servers and switches has a direct relationship with results of (7) and (9). If a

placement algorithm can reduce the number of up servers and also communication between servers,

then the energy consumption of datacenter will be reduced consequently.

Finally, the energy consumption of each server and switch is calculated by (10) and (11). As

explained above, these two equations are not part of the placement phase but belong to the evaluation

phase. In these equations we use the power models that are introduced in (1) and (2), as well as

communication time vector VMComTime which is calculated by NS2 simulator after the placement

28

phase. VMComTime indicates the time of the last packet that is sent or received by a VM. At the end

of NS2 simulation phase, it reports the sender, receiver, and the time for each packet. Using this

information, we calculate the VMComTime for each VM as

 VMComTime = max (send or receive time of all packets that this VM has sent or received).

CalculateServersEnergy function in (10) works as follows: for each server in each interval, the

function checks to see how many of the VMs placed on the server are running in the current interval

based on their total running time (communication time + execution time). After obtaining the number

of running VMs, the function calculates the utilization of server (U parameter) based on the number of

cores that are active by these VMs. Finally it calculates the energy consumption of the server in the

interval by equation (10). It is noteworthy that the server is turned off when all the VMs on it are

finished. The sum of the energy consumption in each interval gives the total energy consumption of

server.

In CalculateSwitchesEnergy function in equation (11), in order to determine which top of rack

switches are ON in an interval, the function checks the servers that are connected to each of the

switches (by using the switch id of servers). Note that if none of the servers are ON (meaning that

there is no running VM on the servers) then the switch is turned off. However, if one or more servers

are turned on, the switch is also turned on and its energy consumption contributes to total energy

consumption of the switches. For layer 2 as well as core switches, the process is the same as above

except that instead of servers, now the lower layer switches are taken into account to determine on

and off switches. Note also that the datacenter network topology is considered in this step. It is the

topology that determines which servers are connected to which top of rack switches as well as the

connection between different layers of switches. In fact we use (10) and (11) to evaluate our approach

and compare it with previous ones.

29

𝑀 𝑛 ∑𝑆 𝑣 𝐸 + ∑𝑆𝑤 𝑡 𝐸

(3)

∑𝑉𝑀 𝑜 ∗ 𝑉𝑀𝑜𝑛𝑆 𝑣 ≤ 𝑆 𝑣 𝑜 = …𝑚

 (4)

∑𝑉𝑀 𝑚 ∗ 𝑉𝑀𝑜𝑛𝑆 𝑣 ≤ 𝑆 𝑣 𝑚 = …𝑚

 (5)

∑𝑉𝑀𝑜𝑛𝑆 𝑣 =

(6)

𝑆𝑡𝑜𝑆 𝑜𝑚 = ∑ ∑𝑉𝑀𝑜𝑛𝑆 𝑣 ∗ 𝑉𝑀𝑜𝑛𝑆 𝑣 ∗ 𝑉𝑀𝑡𝑜𝑉𝑀 𝑜𝑚

 𝑗 = …𝑚
(7)

𝑉𝑀 𝑜𝑚 𝑚 = 𝑆2 (𝑆𝑡𝑜𝑆 𝑜𝑚) = …𝑛 𝑘 𝑗 = …𝑚 (8)

 𝑆 𝑣 𝑈𝑝 =

{

 ∑𝑉𝑀𝑜𝑛𝑆 𝑣 >

 ∑𝑉𝑀𝑜𝑛𝑆 𝑣 =

 = …𝑚
(9)

𝑆 𝑣 𝐸 = 𝑆 𝑣 𝑈𝑝 ∗ 𝑙 𝑢𝑙 𝑡 𝑆 𝑣 𝐸𝑛 𝑔 (𝑉𝑀 𝑜𝑚 𝑚 𝑃)

 = …𝑚

(10)

𝑆𝑤 𝑡 𝐸 = 𝑙 𝑢𝑙 𝑡 𝑆𝑤 𝑡 𝐸𝑛 𝑔 (𝑉𝑀 𝑜𝑚 𝑚 𝑃) = … (11)

5.4 Proposed VM Placement Algorithms

In this section we describe our proposed VM placement algorithms. The above-explained VM

placement problem is NP-hard, and consequently, we propose a meta-heuristic and a heuristic

algorithm to solve it. First we introduce our algorithm that is based on the Simulated Annealing

technique. Then we describe a heuristic algorithm we have designed for the same problem.

5.4.1 Simulated Annealing Based VM Placement (SABVMP)

Our Simulated Annealing Based VM Placement (SABVMP) technique takes advantage of the

30

first-fit algorithm in its loop. First-fit consolidates VMs in this way: it puts VMs and servers in two

queues and starts from the first VM in the VMs queue. Then checks every server from the head of

servers queue to see if the server has enough resources and the VM can be placed on that server. If all

the VMs are placed, it terminates successfully, but if there is no suitable server for a VM, it aborts.

SABVMP iteratively changes the order of VMs in the queue (line 7,Table 2), and then uses first-fit to

place the VMs from the queue onto the servers (line 8,Table 2), and then calculates total output traffic

of servers (line 9). It also calculates the amount of traffic between each pair of racks, and multiplies

this value with a constant representing the cost (time) of communication between those two racks, and

then adds this amount to the calculated traffic of servers. The reason behind this formula (lines 4 and

9) is that our experiments show that communication volume among racks has a strong effect on VMs

communication time. Note the effect of the topology of the datacenter network in this formula; the

constant coefficient mentioned above corresponds to the above topology, or in other words, the

structure of the available connections among racks. In the rest of the algorithm (line 10), if the above

mentioned amount of total traffic among servers is accepted over previous iterations (line 10),

algorithm saves this value as the new best value of simulated annealing and chooses the current order

of VMs in queue as the best one.

The function Accept in line 10 of algorithm compares the amount of VM communication

(among servers in one rack as well as among different racks) in the new order of VMs (O`) against the

old one (O) and determines whether to accept O’ as the new order or not. If O’ reduces the above

metric, it is always accepted as the new order; but even if it does not, it may still be accepted by a

probability based on temperature so as to avoid being stuck in local minima. In other words,

complying with the Simulated Annealing philosophy of operation, although O` is actually worse than

O, this temporary upward move is accepted hoping that future moves find a better minima. This

probability of acceptance reduces with temperature so that at the beginning, larger parts of the design

space are initially explored, but the moves are mostly downward at later stages near the end of the

algorithm. By each iteration, the temperature is reduced (line 11) and so does the above probability.

The algorithm continues until the temperature reaches its lowest value, Tl. The VMs will be placed on

servers according to the final order of VMs in the queue. Table 2 shows the SABVMP pseudo code.

31

Table 2. Pseudo code of our SABVMP algorithm

Algorithm 1 – VM Placement with SABVMP

1. Set the highest temperature to Th, and the coolest temperature to Tl

2. Initialize VMs order in queue ,X

3. Do VM placement using first fit

4. Calculate total output communication of servers (servers traffic + C * racks traffic) , O

5. T= Th

6. While temperature is higher than Tl

7. Randomly change the order of VMs in queue ,X`

8. Do VM placement using first fit algorithm

9. Calculate total output communication of servers (servers traffic + C * racks traffic), O`

10. if (Accept(O’,O, temperature)) then X = X` and O = O`

11. Decrease the temperature T by multiplying it by a constant smaller than one

12. End

5.4.2 Communication-Aware VM Placement (CAVMP)

In terms of processing capacity of physical machines, the pure VM placement problem is

similar to the bin-packing problem in computational complexity theory where objects of different

volumes must be packed into a finite number of bins of a certain capacity in a way that minimizes the

number of bins used. However, our above communication-aware VM placement problem has other

characteristics, most importantly existence of communication among VMs, which necessitates

designing new algorithms. Nevertheless, algorithms developed for the basic bin-packing problem can

still be used in part. Our heuristic algorithm also partially uses the first-fit technique, which is among

bin-packing algorithms. In this heuristic algorithm we try to find VMs that are in the same group and

then put them on servers. One of the differences between CAVMP and SABVMP is that unlike

SABVMP, CAVMP does VM placement only in one pass, and hence, is much faster than SABVMP

and can be even used online. Table 3 contains the pseudo code of our CAVMP algorithm. CAVMP

works in this way: it first chooses a VM randomly from the set of VMs (called X in Table 3) and

inserts it in the queue X` (line 2) and assigns a Group ID to it (line 3). After that, it searches for a VM

among VMs in X that has the most communication with VMs that are in the X` queue. This new VM

then is appended to the tail of the X` queue and the same Group ID as the previous one is assigned to

it. If there is no VM in X that has communication with current VMs in X`, but X still is not empty, it

indicates that all the VMs in a group have already been detected and the remaining VMs do not

belong to this group. Thus, the Group ID is increased and again a VM is randomly relocated from X

32

to X`. This process repeats until every VM in X is transferred to the X` queue. At this state, all the

VMs that are in the same group have been detected and have the same Group ID (lines 4 to 13). Now

it is time to place the VMs on servers. The placement phase in the CAVMP algorithm has three steps.

At the first step, the algorithm tries to place all the VMs of a group on a single server, so it checks the

resource demand of each group against available resources of each server to find a suitable match

(line 14). After finishing step one, it is expected that some groups are not placed because their

resource demand is more than available resources of all individual servers. Now it is time for step

two. In this step CAVMP tries to place the VMs of a group on a single rack. It also tries to place the

VMs of a group that have more communication with each other on the same server (line 15). The goal

of this step is first, to avoid communication between racks and second, to reduce the communication

inside a rack. Finally at the third step, first-fit algorithm is used to place the remaining VMs in X`

queue onto servers (line 16). This step is used when the resource demand of a group is more than

available resource of all individual racks. This may happen when a group is very large and need a lot

of resources, or when the previous groups of VMs have consumed some part of availed resources of

racks and consequently, no rack has enough resources left. At this step CAVMP uses a topology-

aware variation of the first-fit algorithm to place the VMs such that the VMs with more

communication among them are put in the same server, then the same rack, and then the

topologically-neighbor racks (this is accomplished by selecting the VMs from the head of the above

queue in which the VMs with more communication are put next to each other). Note that this

hierarchal placement approach is also the other place where the topology of the datacenter network is

taken into account; VMs are assigned to servers and racks considering their topological neighborhood.

33

Table 3. Pseudo code of CAVMP algorithm

Algorithm 2 – VM Placement with CAVMP

X : initial set of VMs in arbitrary order

X` : queue that contains final order of VMs

Group ID : indicates group ID of each VM (It is initialized to zero)

1. Select a VM randomly from X and remove it

2. Insert this VM in X`

3. Assign Group ID to this VM

4. While X is not empty

5. Find the VM in X that has most communication with VMs in X`

6. If there is no VM in X that has communication with current VMs in X`

7. Choose a VM randomly from X

8. Increase Group ID

9. End

10. Assign Group ID to new VM

11. Append this new VM to the tail of X`

12. Remove the selected VM from X

13. End

14. Try to place all the VMs of a group on the same server

15. Try to place the remaining VMs from previous step in the same rack

16. Finally Use topology-aware first-fit to place remaining VMs in X` on servers

6. Experimental Results

In this section we first describe the topology and specification of the datacenter IT equipment,

and then the benchmarks are described and finally the results of our algorithms are compared to the

competitors. We compare results of our two algorithms, SABVMP and CAVMP, to three rivals: a

baseline communication-unaware first-fit algorithm as well as an improved version of the SCAVP

technique, which we call SCAVP+, where Integer Linear Programming (ILP) is used to find the best

placement of VMs within racks based on the same criteria that SCAVP uses. Note that SCAVP [65] is

the most relevant communication-aware VM placement work we are aware of. Another rival

algorithm with which we compare our algorithms, is the VMFlow approach [64], which is a

communication aware algorithm as well, and is introduced in the related work section.

6.1 Datacenter Network Topology

Three-tier tree topology is a common architecture in today datacenters [70], so we used this

architecture for evaluation (see Fig. 13); Core switches are at the topmost layer of datacenter

network. Next level consists of aggregate switches. Finally at the lowest level, the top-of-rack

switches have been placed and servers are connected to them. We assumed 192 servers for the

34

datacenter where every 24 servers are packed in one rack, so we have eight racks in total, and hence,

eight top-of-rack switches. There are also four aggregate switches and two core switches in the

datacenter as shown in Fig. 13. Each top-of-rack switch is connected to two aggregate switches and

each aggregate switch is connected to both core switches. One Gigabit Ethernet (1GE) links are used

for connecting servers to top-of-rack switches. All other links between switches are 10GE.

Fig. 13. Three-tier tree topology used in most datacenters and our experiments

In simulations on synthetic benchmarks, we used servers with 8 cores and 12 GB RAM, and

obtained the values for power consumption of servers from [71], and for switches from [23]. All other

values we used for calculating total energy consumption are listed in Table 4. In the real-world

benchmark, the VM specifications are based on the available online data and are given separately in

Section 6.2.4. Since top-of-rack switches are different from layer 2 and core switches, power values

for them are given in different rows in the table. Each switch in our experiments, both in synthetic as

well as real world benchmarks, has one linecard and each linecard has 24 ports, thus we have

 = and =

35

Table 4. Values used for parameters to calculating energy consumption

Parameter Value (Watt)

Pidle 128

Pmax 247

Pchassis (top of rack switch) 90

Plinecard (top of rack switch) 30

Pr (top of rack switch) 1

Pchassis (layer 2 and core switches) 520

Plinecard (layer 2 and core switches) 35

Pr (layer 2 and core switches) 2

6.2 Results

We used two benchmark classes in our work: a set of synthetic benchmarks, as well as two real

world benchmarks. We also used NS2 version ns-allinone-2.35 in our experiments and Ubuntu 10.04

was the operating system of machine that we used for simulations. The results are presented and

discussed below.

6.2.1 Synthetic Benchmarks

The first class of experiments is on synthetic benchmark where we generated random values

for the number of groups, the amount of communication among the VMs in each group, and also for

the resource demands of the VMs. For producing these random values, the random generator function

of C++ was used which produces uniformly distributed random values. Different seed values were

used for each benchmark instance of a certain category of benchmarks when producing the random

values. Details of these benchmarks are given in Table 5.

The Pure Runtime field in Table 5 is pure computation time of each VM and does not include

its communication time which experiments show to be roughly 10 minutes so as to be close to the 30-

minute period assumed for re-executing the placement algorithm—see Section 4.1. We calculate the

communication time for each VM by the NS2 simulator and then add it to the above pure runtime to

obtain the actual runtime of each VM. Note that the actual communication time depends on the

communication pattern as well as placement of VMs, and hence, due to the randomness of the

benchmarks, it is not possible, nor needed, to more accurately tune them to absolutely total 30 minutes

of execution time. It is also noteworthy that in all experiments, a homogeneous datacenter is assumed

so the pure runtime of VMs does not change on different servers.

36

Table 5. Specifications of synthetic base point benchmarks used in the experiments

Number

of

Instances

Pure

Runtime

(min.)

Number

of VMs

Number

of Groups

Random values

Number of

VMs in each

Group

Communication

between VMs

(KB)

Number

of Cores

for each

VM

Amount of

RAM for

each VM

(GB)

10 20 100 40 1 to 4
50,000 to

100,000
1 to 4 1 to 3

We assume that the VMs are provided in groups and that the VMs in a group only

communicate to one another and have no communication with the VMs in other groups. This scenario

corresponds to most multi-tier implementations of internet-scale services, where machines form

multiple groups or tiers each of which serves a specific part needed for accomplishment of the overall

task. Furthermore, in many dynamic environments such as Infrastructure-as-a-Service (IaaS) cases,

independent services run separately and do not communicate with one another.

Total energy consumptions of the five algorithms are given in Table 6 for each benchmark as

well as averaged over all of them. As the table shows, our CAVMP algorithm improves total energy

consumption from 15.1% up to 21.0% (16.6% on average) compared to the first-fit algorithm, and

from 5.8% up to 13.0% (9.2% on average) compared to the SCAVP+ algorithm. Compared with

VMFlow, the CAVMP improves the energy consumption from 5.9% up to 15.1% (10.8% on average).

One can see from these results that SCAVP+ is more successful than VMFlow in improving energy

consumption. The cause of better improvements in benchmarks 4, 8 and 9 is that in these benchmarks,

the amount of communication between VMs is more than other benchmarks. As these numbers are

randomly generated, in the mentioned benchmarks these numbers are greater than others and

consequently our algorithms have achieved more improvements in energy consumption.

37

Table 6. Total energy consumption (KWh) comparison of the algorithms on synthetic benchmarks

 Algorithm
Benchmarks

1 2 3 4 5 6 7 8 9 10 Average

To
ta

l E
n

er
gy

C
o

n
su

m
p

ti
o

n
 (

K
W

h
) First-Fit 5.172 5.077 5.107 5.229 5.143 5.11 5.296 5.23 4.963 5.409 5.174

SCAVP+ 4.632 4.518 4.609 4.975 4.627 4.523 4.986 4.695 4.842 5.101 4.751

VMFlow 4.950 4.782 4.909 4.942 4.831 4.443 4.948 4.866 4.575 5.104 4.835

SABVMP 4.505 4.312 4.398 4.457 4.444 4.336 4.628 4.388 4.557 4.834 4.486

CAVMP 4.338 4.118 4.316 4.434 4.361 4.183 4.484 4.131 4.212 4.552 4.313

Im
p

ro
ve

m
en

t
(%

)

CAVMP vs.
16.1 18.9 15.5 15.2 15.2 18.1 15.3 21 15.1 15.9 16.6

First-Fit

CAVMP vs.
6.4 8.9 6.3 10.9 5.8 7.5 10.1 12 13 10.8 9.2

SCAVP+

CAVMP vs.
12.4 13.9 12.1 10.3 9.7 5.9 9.4 15.1 7.9 10.8 10.8

VMFlow

More details of the experimental results on these benchmarks are given in Table 7 to Table 8. In

Table 7, breakdown of total power consumption into that of servers and switches is provided. The

results indicate that CAVMP improves the energy consumption of servers from 10.3% up to 22.3%

(16.8 % on average) and energy consumption of switches from 15.8% up to 19.6% (17.7% on

average) compared to first-fit algorithm. Improvement of CAVMP compared to SCAVP+ for energy

consumption of severs is from 8% up to 15.9% (10.4% on average) and for energy consumption of

switches is from 0.1% up to 15.7% (5.9% on average).

Table 8 gives network activity details of the benchmarks after being placed on physical servers

by the algorithms. The results show that CAVMP reduces number of created packets from 46.2% up

to 71.7% (55.4% on average) compared to first-fit algorithm, and from 44.5% up to 71.9% (54.3% on

average) compared to SCAVP+ algorithm. For average communication time, CAVMP improves it

from 54.5% up to 80.1% (62.7% on average) compared to first-fit, and from 42.6% up to 75% (55.1%

on average) compared to SCAVP+ algorithm. The results clearly prove our claims earlier in the paper

that too simplistic models for communication overhead are inaccurate and mislead prior placement

algorithms.

In section 3.3.6 we claimed that paying attention only to communication volume is not enough

and this factor alone cannot properly show the effectiveness of a VM placement approach. Now here,

Table 8 demonstrates validity of this claim. As an example consider the results of benchmark 4 in

38

Table 8. In this benchmark SABVMP algorithm produces fewer packets than CAVMP (8306332 vs.

8852241 packets respectively) while its average communication time is more than CAVMP algorithm

(6.76s vs. 5.63s respectively).

Table 7. Breakdown of energy consumption of servers and switches for the algorithms

Algorithms

Energy Consumption of Servers (KWh)
Energy Consumption of Switches

(KWh)
Total Energy Consumption (KWh)

First-fit SCAVP+ VMFlow SABVMP CAVMP First-fit SCAVP+ VMFlow SABVMP CAVMP First-fit SCAVP+ VMFlow SABVMP CAVMP

B
e

n
ch

m
ar

ks

1 3.589 3.299 3.295 3.173 3.007 1.583 1.333 1.655 1.332 1.331 5.172 4.632 4.950 4.505 4.338

2 3.454 3.185 3.207 2.983 2.789 1.623 1.333 1.576 1.329 1.329 5.077 4.518 4.782 4.312 4.118

3 3.485 3.275 3.252 3.066 2.985 1.622 1.334 1.657 1.332 1.331 5.107 4.609 4.909 4.398 4.316

4 3.605 3.435 3.326 3.125 3.102 1.624 1.54 1.616 1.332 1.332 5.229 4.975 4.942 4.457 4.434

5 3.561 3.294 3.255 3.113 3.029 1.582 1.333 1.576 1.331 1.332 5.143 4.627 4.831 4.444 4.361

6 3.487 3.19 3.079 3.005 2.853 1.623 1.333 1.364 1.331 1.33 5.11 4.523 4.443 4.336 4.183

7 3.672 3.446 3.372 3.295 3.152 1.624 1.54 1.576 1.333 1.332 5.296 4.986 4.948 4.628 4.484

8 3.607 3.361 3.248 3.056 2.826 1.623 1.334 1.618 1.332 1.305 5.23 4.695 4.866 4.388 4.131

9 3.341 3.264 3.085 3.102 2.882 1.622 1.578 1.490 1.455 1.33 4.963 4.842 4.575 4.557 4.212

10 3.785 3.563 3.527 3.418 3.219 1.624 1.538 1.577 1.416 1.333 5.409 5.101 5.104 4.834 4.552

Table 8. The number of packets and average communication time in synthetic benchmarks

Algorithms

Number of Created Packets
Average Communication time

(Minutes)

First-fit SCAVP+ VMFlow SABVMP CAVMP First-fit SCAVP+ VMFlow SABVMP CAVMP

B
en

ch
m

ar
ks

1 16660024 16334225 12968821 9389696 7315590 12.98 10.63 10.47 8.11 4.92

2 16202921 16340557 10994352 8249222 4998043 12.82 10.73 9.07 6.71 3.35

3 16372259 15868397 10511741 10153529 7715610 12.77 10.82 9.32 8.59 5.57

4 16702210 16344139 12493124 8306332 8852241 13.15 10.78 10.1 6.76 5.63

5 15979576 15475093 10798503 8224744 6830880 12.95 10.62 8.95 7.35 4.63

6 17237219 16576796 11677803 8079757 8863314 13.18 10.45 9.28 7.27 6

7 16343172 16008757 12834956 9653977 7560433 12.88 10.67 9.64 7.87 5.09

8 14640857 14773285 10408409 6521748 4146000 13.59 10.82 9.25 5.69 2.71

9 15688719 15191705 11438370 7457326 7630100 12.89 11.28 9.25 7.36 4.73

10 15935169 15447530 12085616 9145935 8566678 12.78 11.03 9.9 8.01 5.73

39

6.2.2 Analysis of sensitivity to the number of groups

Each group of VMs represents a service that is providing a service to the users. Assuming that

the services work independently, no communication happens among different groups whereas the

VMs in each group may communicate to one another to provide the designated service. The number

of these groups, or services, can affect the outcome of the placement algorithms. Thus, we designed

two more sets of experiments to evaluate this effect. Similar to the base point case in previous section,

each set of experiments consists of 10 benchmarks with random values as in Table 5 produced with

different seed values; the two sets of experiments contain 30 and 50 groups respectively.

Comparing the energy saving results of the cases for 30, 40, and 50 groups in Fig. 14, it is

clearly seen that our technique performs more effectively when the number of groups increases for the

same number of total VMs. This shows the significance of considering inter-VM communication even

when placing VMs among servers inside a single rack; our technique considers this issue whereas

SCAVP (and hence SCAVP+) suffice to only inter-rack communication, and hence, our algorithm

better packs groups on individual servers to reduce inter-server traffic.

Fig. 14. The energy saving of our algorithm improves with the number of VM groups (i.e., the number of services)

40

6.2.3 Analysis of sensitivity to the amount of communication

The volume of communication among the VMs in each group is another important factor that

can affect how much energy can be saved by the placement techniques. We conducted another two

sets of experiments, again with 10 randomly generated benchmarks as before, but with two other

ranges of communication volume among their VMs: one set with communication in the range of

5,000 KB to 10,000 KB of communication between each VM pair, and another one with 100,000 KB

to 200,000 KB communication size. The summary of results is shown in Fig. 15. As expected, when

there is little communication among servers, no more energy can be saved compared to SCAVP+

algorithm since the differentiating factor of our technique is not seen in the benchmark. However, our

technique shines with higher communication volume among VMs.

Fig. 15. The energy saving of our algorithm improves with the amount of communication among VMs.

Another interesting observation in this set of experiments is that our saving is marginally, 0.5%,

below that of SCAVP+ at 5-10 MB communication size range. This is because we applied ILP

technique in SCAVP+ to improve SCAVP for the purpose of best fitting VMs among servers in a

rack, and hence, it outperforms our own heuristic CAVMP placement when there is little to no

communication among VMs. However note that our CAVMP takes only 0.015s to run on an Intel

Corei3 machine (OS: Windows 7, 4 GB of RAM, CPU frequency: 2.93 GHz) in this case whereas

SCAVP+ takes two orders of magnitude more time, 3.62s, for the same case Thus, our technique is a

better choice for online usage even in this case.

It is noteworthy that in all the experiments we considered the CPU utilization of VMs, not

41

servers, to be zero while communicating and 100% while computing, but the utilization of servers

depends on the number of VMs placed on them and can be any valid value U.

6.2.4 Real World Benchmark: Wikipedia servers

The second class of benchmarks we used is two real world benchmarks obtained from

Wikipedia servers [72] and other sources [73-77] which we call RB2 (real-world benchmark 2) from

now on for ease of reference. The Wikipedia servers are monitored using Ganglia infrastructure which

provides the information of each server such as memory and CPU usage and the amount of

communication. In this benchmark, we assumed each physical machine of Wikipedia is a virtual

machine. Wikipedia actual physical machines are of various types and have different resources; for

example, one of their machine has12 CPUs with 2.00GHz frequency and its CPU utilization is 5%,

while another one has 8 cores with 2.66GHz clock frequency and CPU utilization of 9 % [72].Thus,

we had to convert them to our available cores of VMs to be able to use them in our experiments.

Consequently, after the conversion we assume that each virtual core of VMs works at full utilization.

Note that the actual CPU utilization of the physical server depends on the number of VMs assigned to

that server, and hence the server cores are not necessarily 100% utilized. Each machine belongs to a

module of the application that is running on Wikipedia servers. We considered each module as a

group and assumed that each physical machine mainly communicates with other physical machines

inside that group.

For each physical machine, Ganglia provides only aggregate input and output traffic volume

but does not give the amount of communication between every pair of machines. In order to create

the communication matrix, that indicates the amount of communication between every two machines

in each interval, we used the simple gravity model [78]. In this model for calculating the traffic

between two machines, i and j, the following equation is used:

 = (𝑜𝑢𝑡 ∗ 𝑛) (∑ 𝑛)

where, 𝑜𝑢𝑡 is output traffic of physical machine i and 𝑛 is input traffic of physical machine j [64]. It

is noteworthy that although this model cannot accurately determine actual communication among

machines since in reality some machines only serve independent requests and do not communicate

42

with other nodes, but due to lack of any further details of communication, there is no more accurate

alternative and we had to suffice to this model.

The Wikipedia benchmark has 100 VMs and RB2 has 132 VMs, and the pure runtime (not

covering communication time) of all the VMs is 600 minutes in Wikipedia benchmark and 300

minutes in the RB2 one. The number of cores that each VM needs in these benchmarks is more than

our synthetic ones, so we used bigger servers in simulations of these benchmarks. Here each server

has 16 cores and 64 GB memory and for the power parameters, we have P_idle=283 W, P_max=388

W [79]. The power parameters for switches are the same as Table 4.

First, we describe the Wikipedia benchmark. This benchmark consists of 10 groups and each of

these groups has its own number of VMs. A variety of resource demands are found in these VMs but

their most influential difference is the pattern of communication among these VMs. As can be seen in

Table 9, some groups have little communication inside themselves despite their big size, but some

other small ones such as 4 and 5 have very high communication. This is important because the energy

consumption results that are presented later heavily depend on this communication pattern.

The RB2 benchmark has 19 groups with total 132 VMs. In this benchmark, unlike the previous

one, we can only see group No. 9 with small size and high communication and it will affect the

energy consumption that we will see later.

Table 9. Details of the communication pattern of our real world benchmarks

Wikimedia benchmarks RB2 benchmark

Group
No.

Number of
VMs

Average amount
of communication
between VMs in

each interval (KB)

Group
No.

Number
of VMs

Average amount of
communication
between VMs in

each interval (KB)

Group
No.

Number
of VMs

Average amount
of communication
between VMs in

each interval (KB)

1 37 11,000 1 4 500,000 11 7 700,000

2 31 12,500 2 15 4,000 12 2 220,000

3 4 58,000 3 2 50,000 13 15 60,000

4 4 5,000,000 4 8 5,000 14 6 64,000

5 4 3,200,000 5 7 25,000 15 16 22,000

6 4 130,000 6 3 50,000 16 6 400,000

7 6 10,000 7 4 15,000 17 4 60,000

8 3 950,000 8 4 14,000 18 16 6,000

9 3 40,000 9 5 1,000,000 19 4 210,000

10 4 230,000 10 4 200,000

43

The first parameter to compare is the number of up servers. In the Wikipedia benchmark,

SCAVP+ and SABVMP algorithms used 31 servers while the first-fit and CAVMP used 32 servers.

The difference is more in the RB2 benchmark where SCAVP+ uses the least number of servers with

23 servers, and after that is SABVMP with 24 servers. The third rank in terms of fewer numbers of

servers is for first-fit with 26 servers and then comes VMFlow with 28 ones. As we expected, here

again the CAVMP uses the most servers by turning on 37 ones. The reason that in the RB2

benchmark we see a bigger difference among the number of used servers by various algorithms is the

very high diversity of VMs in terms of demand for resources; this leads to different results in different

algorithms depending on how the algorithm decides which server to turn on. Note that CAVMP again

uses more servers than SCAVP+ since SCAVP+ takes advantage of an efficient bin-packing based

placement.

 To assess how much traffic each algorithm transmits, we count the number of transmitted

packets that are transferred over the network of the datacenter. Fig. 16 shows the number of packets

that each algorithm transmits. The size of each packet is 8KB. As can be seen, CAVMP transmits

fewer packets than any other algorithm and significantly improves the number of transmitted packets

by 77% compared to SCAVP+ and 53% compared to VMFlow in the Wikipedia benchmark. The

reason for this dramatic decrease in the number of transmitted packets is that CAVMP places all the

VMs in groups 4, 5 and 8 on the same servers, and since each of these groups have huge

communication inside themselves; this communication volume is offloaded from the datacenter

network. In the RB2 benchmark, we can see that the difference between CAVMP and the rival

algorithms is less than Wikipedia benchmark since groups such as 4, 5 and 8 from Wikipedia do not

exist in this benchmark. Here the CAVMP decreases the communication volume by 49% and 39%

compared to SCAVP+ and VMFlow respectively. The number of transmitted packets for SCAVP+

and first-fit are close to each other, however since SCAVP+, unlike first-fit, tries to reduce the

communication among the racks, most of its communication is between servers inside the same rack;

we will shortly see the effect of it on energy consumption.

44

Fig. 16. Number of packets each algorithm transmits over the datacenter network in real world benchmarks

Average communication times for VMs in each algorithm are compared in Fig. 17. As the

figure shows, first-fit performs the most poorly because it is totally communication-unaware. In the

Wikipedia benchmark, CAVMP shows the best operation and its average VM communication time is

about 93% less than first-fit, about 92% less than SCAVP+ and 93.5% less than VMFlow. We

observe that while the amount of communication in VMFlow was less than SCAVP+, the

communication time is more. This observation perfectly shows the disability of VMFlow to

simultaneously reduce the communication time as well as communication volume. The VMFlow

algorithm is partially successful in decreasing the communication volume, but since it does not

propose an intelligent placement, this reduction does not improve the communication time. For

example if a group with a lot of inter-VM communication has five members, this algorithm puts four

of them in a server in a rack and the fifth one in another rack. In such case, while the amount of

communication between the four VMs is eliminated, the communication between the fifth one and

others cause all the switches and servers that are involved in the communication to remain ON and

consume energy. We will provide the experimental results of its effects later.

45

Fig. 17. Average VM communication time in each algorithm in our real world benchmarks

The downside of concentrating all communication in a few servers is the increase in packet

drops. Since first-fit distributes communication across the servers, percentage of packets that are

dropped is less than three others. Other algorithms try to compact the communication and it results in

more dropped packets. Although the percentage of packet drop in other algorithms is more than first-

fit, it is still marginal. It is observable in Table 10 that while an algorithm tries to compact the traffic

on fewer servers, the amount of dropped packets increases. Further note that since the network

protocol used in the experiments is TCP, the dropped packets are retransmitted, and hence, the final

result returned by NS2 covers this retransmission time as well.

Now we compare the amount of energy that the placement suggested by each algorithm

consumes. As mentioned before, in the experiments we only consider the energy that the IT

equipment (servers and switches) consume in the datacenter but do not take into account the energy

consumption of other parts such as the cooling system. We calculate the amount of energy that each

individual switch and server consumes and according to them calculate the total energy consumption.

Results are depicted in Fig. 18, and full details are given in Table 13.

As in synthetic benchmarks, we considered full CPU utilization for VMs during run-time and

zero utilization during communication time; utilization of physical servers is based on the number of

VMs running on them at each time. For example if all the VMs on a server are solely communicating

in a specific period, the utilization of that server is then considered zero and the server power

46

consumption is only its idle power.

Fig. 18. Energy consumption of each algorithm under the real world benchmarks

Table 10. Summary of experimental results for real world benchmarks

Wikimedia Benchmark RB2 Benchmark

 First-fit SCAVP+ VMFlow SABVMP CAVMP First-fit SCAVP+ VMFlow SABVMP CAVMP

Number of Up
servers

32 31 31 31 32 26 23 28 24 37

Number of
transmitted

packets

5.1E+09 4.7E+09 2.4E+09 2.2E+09 1.1E+09 1.8E+09 1.8E+09 1.5E+09 1.3E+09 8.9E+08

Average VM
communication
time (minute)

1015 987 1223.68 563.36 79.32 901.939 777.705 720.03 565.947 258.697

Packet drop (%) 0.246 0.4263 0.249 0.8163 1.9755 0.027 0.0277 0.0303 0.0383 0.0497

Servers energy
consumption

(KWh)
504.805 411.061 367.375 239.077 138.99 453.971 362.156 389.164 247.461 164.099

Switches energy
consumption

(KWh)
445.623 444.099 872.136 374.078 43.8826 635.131 551.286 544.087 487.481 169.17

Total energy
consumption

(KWh)
950.428 855.16 1239.51 613.156 182.872 1089.1 913.442 933.25 734.942 333.27

Energy reduction
compared to
SCAVP+ (%)

-11 0 -45 29 79 -19 0 -2 20 64

As a result, CAVMP provides the best placement and reduces the energy consumption by 81%

compared to first-fit in Wikipedia benchmark and 69% in RB2 benchmark. Comparison of SCAVP+

47

and CAVMP indicates that CAVMP has better results and can save energy consumption by 79% and

63% in Wikipedia benchmark and RB2 benchmark respectively compared to SCAVP+. This clearly

shows the importance of considering inter-VM communication (compare to first-fit), and more

importantly, the significance of considering the structure of server as well as racks (compared to

SCAVP+), when placing VMs in order to reduce total energy consumption.

Please note that the reason for such a big difference between the improvement of synthetic

benchmarks and real world ones is the huge amount of inter-VM communication in real world

benchmarks. The higher the inter-VM communication, the better the benefits of our approach. Note

that if we increase the amount of communication in synthetic benchmarks, the same results as real

world benchmarks will be obtained

6.2.5 Algorithm Execution Time

Table 11 gives execution time of SABVMP and CAVMP algorithms when run on an Intel

Core i3 2.93GHz machine with 4GB of memory. Execution time of CAVMP is two orders of

magnitude less than SABVMP. Indeed CAVMP execution time is very low and so it can be

effectively used as an online algorithm. Due to absence of any pre-processing at the placement time

(such as grouping the VMs that other algorithms do), First-fit algorithm has the least execution time.

Table 11. Execution time of algorithms in real world benchmark in seconds

 First-fit SCAVP VMFlow SABVMP CAVMP

Ganglia 0.088 s 3.58 s 0.481 s 36.069 s 0.444 s

6.3 Overhead of Re-running VM placement

In the above experiments we considered a single time interval after placing the VMs, or a semi-

static environment with some constant set of services and VMs, such as the real-world Wikipedia

servers. However for more dynamic environments such as IaaS cases, in which new services may start

and current services may terminate from time to time, we run the VM placement algorithm

periodically as in Fig. 12 and find the new placement based on the new status of VMs. This may

48

impose two overheads that should be assessed here: the overhead of executing the placement

algorithm, and the overhead of migrating VMs among servers if needed. The execution time of our

online algorithm, CAVMP, is negligible (as detailed above and quantified in Table 11), and hence, it

has virtually no overhead. The newly run placement algorithm may decide a new place for a number

of existing VMs to improve energy consumption in the new interval, and hence, these VMs should be

live migrated to other servers. Thus, it is important to evaluate the energy and time overhead of these

migrations. The actual number of migrations depends on the actual case and the number and

communication pattern of newly arrived VMs as well as that of finished ones. We provide a worst-

case analysis here to show the overhead is negligible even if all VMs have to undergo a live migration

at the beginning of the new interval.

The required time to do a live migration can be calculated as the VM’s size of memory divided

by available network bandwidth [80]. This is because the data and images of VMs are usually stored

on a Network Attached Storage (NAS) so there is no need to move them among servers [80].

Considering n VMs with M GB of memory each (worst case in Table 5), n.M GB should be moved

among m servers which provide m Gbps bandwidth assuming 1Gbps Ethernet links. Thus, it takes

8Mn/m seconds to migrate all n VMs. In other words, for the values in synthetic benchmarks as in

Table 5, it takes around 83100/30=80 seconds to do all migrations if in the worst case all VMs

were decided to be moved. This represents worst case overhead of negligibly 4.4% if the re-placement

interval is 30 minutes as assumed in Section 4.1. We repeat that deciding the optimal interval for VM

re-placement is an interesting objective that we intend to explore as a future direction for further

research.

7. Conclusion and Future Work

Datacenters’ voracious appetite for energy has motivated researchers around the globe to find

techniques and mechanisms for quenching it. Cooling system and IT equipment are of paramount

importance regarding energy consumption in datacenters. IT equipment itself can be split into

computing resources and communication resources. The focal point of this chapter is energy

efficiency of networking equipment in datacenters. The chapter has surveyed and categorized various

49

approaches in this area and tried to present them in a clear picture. Finally, a new approach by the

authors of chapter is illustrated that tries to reduce the energy consumption of datacenters by

considering communication among the VMs.

In the following, we indicate some future directions regarding reducing usage of equipment

which is the main concern of this chapter. In the VDC placement, one important challenge that needs

to be addressed is the resource fragmentation. The current approaches just consider the directly

connected nodes instead of the whole topology of physical infrastructure. So, the resource fragment

problems are inevitable in current state. Further research in this area and trying to investigate the

network topology can lead to better placement and better use of resources.

Regarding hypervisor enhancement, one future direction can be considering multi-core systems

instead of single core ones. Simplifying the problem of resource scheduling among guest domains to

cases where there is just one physical core can’t satisfy the modern systems with several cores.

Combining software solutions such as aggregating flows with hardware advances like multiqueues

devices can further improve the network performance of virtualized systems. So, it can be another

direction for future research in the scope of hypervisor enhancement. Finally, making the network I/O

virtualization approaches adaptive to heterogeneous workloads can be another avenue for subsequent

researches.

New topologies that try to enhance the network performance in datacenters need more

attention. Although some routing algorithms are proposed for them, there is still space for proposing

more efficient and practical routing algorithms. Various aspects of these newly proposed architectures

such as bisection bandwidth or their incremental nature need more investigations. There are also

opportunities for designing new architectures based on servers that have more than two NICs.

Considering the heterogeneous network equipment and try to utilize them in an efficient way by

traffic engineering and co-location different flows can be a direction for future researches. Some of

the current approaches just consider the state of switches (being ON/OFF) or their active time.

However, the bit rate of ports as well as the number of used/unused ports of switch also can affect the

decision making in traffic engineering and bring some valuable opportunities for energy saving.

50

Also, there are a number of avenues of research we propose to follow as future directions

regarding our approach and other communication aware consolidation approaches. One open

challenge in this work is to find the optimal solution of the problem. To reach this goal it is necessary

to involve an estimation of network communication time in the placement phase. Results of NS2

simulation cannot be directly used here since the execution time of each NS2 simulation is very high

(up to several hours). Finding a way to estimate the communication time without needing NS2

simulations per iteration is necessary here.

Finally, considering and evaluating the effects of other datacenter structural features such as

cooling structure and thermal effects (e.g. rack-based vs. row-based vs. room-based cooling), network

topologies, power distribution mechanisms (e.g. modular distributed UPS vs. centralized UPS), as

well as application behaviors (e.g. burst network usage in cases such as shuffling phase of

MapReduce jobs) and their effects and interaction with VM placement are other interesting questions

to seek answers for.

Acknowledgment

This work was supported by the Iran Telecommunication Research Center [500/12188/t].

References

[1] Google, http://www.google.com/about/datacenters/efficiency/internal, accessed November

10
th
, 2014.

[2] F. Ahmad and T. N. Vijaykumar, "Joint optimization of idle and cooling power in data

centers while maintaining response time," in Proceedings of the fifteenth edition of ASPLOS

on Architectural support for programming languages and operating systems, pp. 243-256,

2010.

[3] V. K. Arghode and Y. Joshi, "Modeling Strategies for Air Flow Through Perforated Tiles in a

Data Center," IEEE Transactions on Components, Packaging and Manufacturing

Technology, , vol. 3, pp. 800-810, 2013.

[4] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, "Energy-Efficient Thermal-Aware Task

Scheduling for Homogeneous High-Performance Computing Data Centers: A Cyber-Physical

Approach," IEEE Transactions on Parallel and Distributed Systems, vol. 19, pp. 1458-1472,

2008.

[5] A. Sansottera and P. Cremonesi, "Cooling-aware workload placement with performance

51

constraints," Performance Evaluation, vol. 68, pp. 1232-1246, 2011.

[6] Facebook, https://www.facebook.com/notes/facebook-engineering/designing-a-very-efficient-

data-center/10150148003778920, accessed November 10
th
, 2014.

[7] D. Wong and M. Annavaram, "Scaling the Energy Proportionality Wall with KnightShift,"

IEEE Micro, vol. 33, pp. 28-37, 2013.

[8] L. Tan, C. Minghua, and L. L. H. Andrew, "Simple and Effective Dynamic Provisioning for

Power-Proportional Data Centers," IEEE Transactions on Parallel and Distributed Systems,

vol. 24, pp. 1161-1171, 2013.

[9] L. Minghong, A. Wierman, L. L. H. Andrew, and E. Thereska, "Dynamic Right-Sizing for

Power-Proportional Data Centers," IEEE/ACM Transactions on Networking, vol. 21, pp.

1378-1391, 2013.

[10] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz, "NapSAC: design and

implementation of a power-proportional web cluster," SIGCOMM Computer Communication

Review, vol. 41, pp. 102-108, 2011.

[11] N. Bobroff, A. Kochut, and K. Beaty, "Dynamic placement of virtual machines for managing

sla violations," in 10th IFIP/IEEE International Symposium on Integrated Network

Management, pp. 119-128, 2007.

[12] L. A. Barroso and U. Holzle, "The case for energy-proportional computing," Computer, vol.

40, pp. 33-37, 2007.

[13] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall, "Entropy: a consolidation

manager for clusters," in Proceedings of the ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, pp. 41-50, 2009.

[14] M. Marzolla, O. Babaoglu, and F. Panzieri, "Server consolidation in Clouds through

gossiping," in IEEE International Symposium on World of Wireless, Mobile and Multimedia

Networks (WoWMoM), pp. 1-6, 2011.

[15] X. Wang and Z. Liu, "An Energy-Aware VMs Placement Algorithm in Cloud Computing

Environment," in International Conference on Intelligent System Design and Engineering

Application (ISDEA), pp. 627-630, 2012.

[16] H. Goudarzi, M. Ghasemazar, and M. Pedram, "SLA-based Optimization of Power and

Migration Cost in Cloud Computing," in IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGrid), pp. 172-179, 2012.

[17] S. Weiming and H. Bo, "Towards Profitable Virtual Machine Placement in the Data Center,"

in IEEE International Conference on Utility and Cloud Computing (UCC), pp. 138-145,

2011.

[18] D. Kliazovich, P. Bouvry, and S. U. Khan, "DENS: Data Center Energy-Efficient Network-

Aware Scheduling," in IEEE/ACM Int'l Conference on & Int'l Conference on Cyber, Physical

and Social Computing Green Computing and Communications (GreenCom),(CPSCom), pp.

69-75, 2010.

[19] A. Corradi, M. Fanelli, and L. Foschini, "VM consolidation: A real case based on OpenStack

Cloud," Future Generation Computer Systems, vol. 32, pp. 118-127, 2014.

52

[20] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, "The cost of a cloud: research problems

in data center networks," SIGCOMM Computer Communication Review, vol. 39, pp. 68-73,

2008.

[21] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, "Energy proportional datacenter

networks," in Proceedings of the 37th annual international symposium on Computer

architecture (ISCA), pp. 338-347, 2010.

[22] L. A. Barroso, J. Clidaras, and U. Hlzle, the Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines, Morgan & Claypool Publishers, 2013.

[23] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, "A power benchmarking

framework for network devices," NETWORKING, pp. 795-808, 2009.

[24] C. Eddington, "InfiniBridge: an InfiniBand channel adapter with integrated switch," IEEE

Micro, vol. 22, pp. 48-56, 2002.

[25] B. Dickov, M. PericÃ s, P. M. Carpenter, N. Navarro, and E. AyguadÃ, "Analyzing

Performance Improvements and Energy Savings in Infiniband Architecture using Network

Compression," in Proceedings of the IEEE 26th International Symposium on Computer

Architecture and High Performance Computing, pp. 73-80, 2014.

[26] V. Sundriyal, M. Sosonkina, A. Gaenko, and Z. Zhang, "Energy saving strategies for parallel

applications with point-to-point communication phases," Journal of Parallel and Distributed

Computing, vol. 73, pp. 1157-1169, 2013.

[27] C. Decusatis, "Optical interconnect networks for datacom and computercom," in Optical

Fiber Communication Conference and Exposition and the National Fiber Optic Engineers

Conference (OFC/NFOEC), pp. 1-33, 2013.

[28] D. Larrabeiti, P. Reviriego, J. A. Hern, Ndez, J. A. Maestro, M. Urue, "Towards an energy

efficient 10 Gb/s optical ethernet: Performance analysis and viability," Optical Switching and

Networking, vol. 8, pp. 131-138, 2011.

[29] R. Danping, L. Hui, and J. Yuefeng, "Power saving mechanism and performance analysis for

10 Gigabit-class passive optical network systems," in IEEE International Conference on

Network Infrastructure and Digital Content, pp. 920-924, 2010.

[30] P. Mahadevan, S. Banerjee, and P. Sharma, "Energy proportionality of an enterprise

network," in Proceedings of the first ACM SIGCOMM workshop on Green networking, pp.

53-60, 2010.

[31] C. Yiu and S. Singh, "Merging traffic to save energy in the enterprise," in Proceedings of the

2nd International Conference on Energy-Efficient Computing and Networking, pp. 97-105,

2011.

[32] A. Carrega, S. Singh, R. Bolla, and R. Bruschi, "Applying traffic merging to datacenter

networks," in Proceedings of the 3rd International Conference on Future Energy Systems:

Where Energy, Computing and Communication Meet, Article No. 3, 2012.

[33] Q. Yi and S. Singh, "Minimizing Energy Consumption of FatTree Data Center Networks,"

SIGMETRICS Performance Evaluation Review, vol. 42, pp. 67-72, 2004.

[34] C. Gunaratne, K. Christensen, B. Nordman, and S. Suen, "Reducing the Energy Consumption

of Ethernet with Adaptive Link Rate (ALR)," IEEE Transactions on Computers, vol. 57, pp.

53

448-461, 2008.

[35] W. Fisher, M. Suchara, and J. Rexford, "Greening backbone networks: reducing energy

consumption by shutting off cables in bundled links," in Proceedings of the first ACM

SIGCOMM workshop on Green networking, pp. 29-34, 2010.

[36] Q. Xiao, J. Hong, A. Manzanares, R. Xiaojun, and Y. Shu, "Communication-Aware Load

Balancing for Parallel Applications on Clusters," IEEE Transactions on Computers, vol. 59,

pp. 42-52, 2010.

[37] Z. Jidong, S. Tianwei, H. Jiangzhou, C. Wenguang, and Z. Weiming, "Efficiently Acquiring

Communication Traces for Large-Scale Parallel Applications," IEEE Transactions on

Parallel and Distributed Systems, vol. 22, pp. 1862-1870, 2011.

[38] D. M. Divakaran, L. Tho Ngoc, and M. Gurusamy, "An Online Integrated Resource Allocator

for Guaranteed Performance in Data Centers," IEEE Transactions on Parallel and Distributed

Systems, vol. 25, pp. 1382-1392, 2014.

[39] S. Luo, H. Yu, L. Li, D. Liao, and G. Sun, "Traffic-aware VDC embedding in data center: A

case study of fattree," China Communications, vol. 11, pp. 142-152, 2014.

[40] W. Xiaohui, L. Hongliang, Y. Kun, and Z. Lei, "Topology-Aware Partial Virtual Cluster

Mapping Algorithm on Shared Distributed Infrastructures," IEEE Transactions on Parallel

and Distributed Systems, vol. 25, pp. 2721-2730, 2014.

[41] A. Amokrane, M. F. Zhani, R. Langar, R. Boutaba, and G. Pujolle, "Greenhead: Virtual Data

Center Embedding across Distributed Infrastructures," IEEE Transactions on Cloud

Computing, vol. 1, pp. 36-49, 2013.

[42] M. Bourguiba, K. Haddadou, I. El Korbi, and G. Pujolle, "Improving Network I/O

Virtualization for Cloud Computing," IEEE Transactions on Parallel and Distributed

Systems, vol. 25, pp. 673-681, 2014.

[43] G. Haibing, M. Ruhui, and L. Jian, "Workload-Aware Credit Scheduler for Improving

Network I/O Performance in Virtualization Environment," IEEE Transactions on Cloud

Computing, vol. 2, pp. 130-142, 2014.

[44] G. Bei, W. Jingzheng, W. YongJi, and S. U. Khan, "CIVSched: A Communication-Aware

Inter-VM Scheduling Technique for Decreased Network Latency between Co-Located VMs,"

IEEE Transactions on Cloud Computing, vol. 2, pp. 320-332, 2014.

[45] S. Govindan, C. Jeonghwan, A. R. Nath, A. Das, B. Urgaonkar, and S. Anand, "Xen and Co.:

Communication-Aware CPU Management in Consolidated Xen-Based Hosting Platforms,"

IEEE Transactions on Computers, vol. 58, pp. 1111-1125, 2009.

[46] G. Qu, Z. Fang, J. Zhang, and S. Zheng, "Switch-Centric Data Center Network Structures

Based on Hypergraphs and Combinatorial Block Designs," IEEE Transactions on Parallel

and Distributed Systems, vol. 26, pp. 1154-1164, 2015.

[47] G. Deke, C. Tao, L. Dan, L. Mo, L. Yunhao, and C. Guihai, "Expandable and Cost-Effective

Network Structures for Data Centers Using Dual-Port Servers," IEEE Transactions on

Computers, vol. 62, pp. 1303-1317, 2013.

[48] L. Yong, Y. Dong, and G. Lixin, "DPillar: Scalable Dual-Port Server Interconnection for Data

Center Networks," in Proceedings of 19th International Conference on Computer

54

Communications and Networks (ICCCN), pp. 1-6, 2010.

[49] D. Li and J. Wu, "On Data Center Network Architectures for Interconnecting Dual-Port

Servers," IEEE Transactions on Computers, early access, under press.

[50] L. N. Bhuyan and D. P. Agrawal, "Generalized Hypercube and Hyperbus Structures for a

Computer Network," IEEE Transactions on Computers,vol. C-33, pp. 323-333, 1984.

[51] G. Panchapakesan and A. Sengupta, "On a lightwave network topology using Kautz

digraphs," IEEE Transactions on Computers,vol. 48, pp. 1131-1137, 1999.

[52] F. T. Leighton, Introduction to parallel algorithms and architectures: array, trees,

hypercubes: Morgan Kaufmann Publishers Inc., 1992.

[53] Y. Shang, D. Li, M. Xu, and J. Zhu, "On the Network Power Effectiveness of Data Center

Architectures," IEEE Transactions on Computers early access, under press.

[54] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, "Dcell: a scalable and fault-tolerant

network structure for data centers," in Proceedings of the ACM SIGCOMM conference on

Data communication, pp. 75-86, 2008.

[55] L. Dan, G. Chuanxiong, W. Haitao, K. Tan, Z. Yongguang, and L. Songwu, "FiConn: Using

Backup Port for Server Interconnection in Data Centers," in IEEE INFOCOM, pp. 2276-2285,

2009.

[56] A. Q. Lawey, T. E. H. El-Gorashi, and J. M. H. Elmirghani, "Distributed Energy Efficient

Clouds Over Core Networks," Journal of Lightwave Technology, vol. 32, pp. 1261-1281,

2014.

[57] W. Lin, Z. Fa, J. Arjona Aroca, A. V. Vasilakos, Z. Kai, H. Chenying, L. Dan, and L.

Zhiyong, "GreenDCN: A General Framework for Achieving Energy Efficiency in Data

Center Networks," IEEE Journal on Selected Areas in Communications,vol. 32, pp. 4-15,

2014.

[58] D. Li, Y. Yu, W. He, K. Zheng, and B. He, "Willow: Saving Data Center Network Energy for

Network-limited Flows," IEEE Transactions on Parallel and Distributed Systems, early

access, under press.

[59] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, "Hedera: dynamic

flow scheduling for data center networks," in Proceedings of the 7th USENIX conference on

Networked systems design and implementation, pp. 19-19 , 2010.

[60] A. Corradi, M. Fanelli, and L. Foschini, "VM consolidation: A real case based on OpenStack

Cloud," Future Generation Computer Systems, vol. 32, pp. 118-127, 2014.

[61] T. C. Ferreto, M. A. S. Netto, R. N. Calheiros, and C. A. F. De Rose, "Server consolidation

with migration control for virtualized data centers," Future Generation Computer Systems,

vol. 27, pp. 1027-1034, 2011.

[62] M. Cao Le Thanh and M. Kayashima, "Virtual machine placement algorithm for virtualized

desktop infrastructure," in IEEE International Conference on Cloud Computing and

Intelligence Systems (CCIS), pp. 333-337, 2011.

[63] X. Liao, H. Jin, and H. Liu, "Towards a green cluster through dynamic remapping of virtual

55

machines," Future Generation Computer Systems, vol. 28, pp. 469-477, 2012.

[64] V. Mann, A. Kumar, P. Dutta, and S. Kalyanaraman, "VMFlow: leveraging VM mobility to

reduce network power costs in data centers," in Proceedings of the international IFIP TC 6

conference on Networking - Volume Part I, pp. 198-211, 2011.

[65] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible, "Improving

Performance and Availability of Services Hosted on IaaS Clouds with Structural Constraint-

Aware Virtual Machine Placement," in IEEE International Conference on Services

Computing (SCC), pp. 72-79, 2011.

[66] W. Meng, M. Xiaoqiao, and Z. Li, "Consolidating virtual machines with dynamic bandwidth

demand in data centers," in Proceedings IEEE INFOCOM, pp. 71-75, 2011.

[67] M. Xiaoqiao, V. Pappas, and Z. Li, "Improving the Scalability of Data Center Networks with

Traffic-aware Virtual Machine Placement," in Proceedings IEEE INFOCOM, pp. 1-9, 2010.

[68] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, "Energy-aware server

provisioning and load dispatching for connection-intensive internet services," in Proceedings

of the 5th USENIX Symposium on Networked Systems Design and Implementation, pp. 337-

350, 2008.

[69] S. Rivoire, P. Ranganathan, and C. Kozyrakis, "A comparison of high-level full-system power

models," in Proceedings of the conference on Power aware computing and systems, pp. 3-3,

2008.

[70] OL-11565-01, Cisco data center infrastructure 2.5 design guides, 2007.

[71] Dell PowerEdge R710 Featuring the Dell Energy Smart 870W PSU and Intel Xeon E5620,

ENERGY STAR Power and Performance Data Sheet.

[72] Ganglia monitoring tool, available online at http://ganglia.wikimedia.org/, accessed July 6
th
 ,

2014.

[73] http://neos-server.org/ganglia/, accessed July 6
th
, 2014.

[74] http://ganglia.it.pasteur.fr/, accessed July 6
th
, 2014.

[75] http://www.meteo.unican.es/ganglia/, accessed July 6
th
, 2014.

[76] https://ganglia.surfsara.nl/, accessed July 6
th
, 2014.

[77] https://dev.monitor.orchestra.med.harvard.edu/, accessed July 6
th
, 2014.

[78] Zhang, Y., Roughan, M., Duffield, N., Greenberg, A. Fast accurate computation of large-scale

IP traffic matrices from link loads. Proceedings of ACM SIGMETRICS Performance

Evaluation Review, pp. 206-217, 2012.

[79] IBM Power 710 Express and IBM Power 730 Express (8231-E2B), ENERGY STAR Power

and Performance Data Sheet.

[80] A. Beloglazov, J. Abawajy, and R. Buyya, "Energy-aware resource allocation heuristics for

efficient management of data centers for Cloud computing," Future Generation Computer

Systems, vol. 28, pp. 755-768, 2012.

http://ganglia.wikimedia.org/
http://neos-server.org/ganglia/
http://ganglia.it.pasteur.fr/
http://www.meteo.unican.es/ganglia/

56

