
BatchSizer: Power-Performance Trade-off for DNN Inference
Seyed Morteza Nabavinejad

nabavinejad@ipm.ir
Institute for Research in Fundamental

Sciences (IPM)
Tehran, Iran

Sherief Reda
sherief_reda@brown.edu

Brown University
Providence, RI

Masoumeh Ebrahimi
mebr@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

ABSTRACT
GPU accelerators can deliver significant improvement for DNN
processing; however, their performance is limited by internal and
external parameters. A well-known parameter that restricts the
performance of various computing platforms in real-world setups,
including GPU accelerators, is the power cap imposed usually by an
external power controller. A common approach to meet the power
cap constraint is using the Dynamic Voltage Frequency Scaling
(DVFS) technique. However, the functionally of this technique is
limited and platform-dependent. To improve the performance of
DNN inference on GPU accelerators, we propose a new control
knob, which is the size of input batches fed to the GPU accelera-
tor in DNN inference applications. After evaluating the impact of
this control knob on power consumption and performance of GPU
accelerators and DNN inference applications, we introduce the de-
sign and implementation of a fast and lightweight runtime system,
called BatchSizer. This runtime system leverages the new control
knob for managing the power consumption of GPU accelerators
in the presence of the power cap. Conducting several experiments
using a modern GPU and several DNN models and input datasets,
we show that our BatchSizer can significantly surpass the conven-
tional DVFS technique regarding performance (up to 29%), while
successfully meeting the power cap.

CCS CONCEPTS
•Computer systems organization→ Single instruction, mul-
tiple data; Neural networks.

KEYWORDS
batch size, inference, deep neural networks, power cap

ACM Reference Format:
Seyed Morteza Nabavinejad, Sherief Reda, and Masoumeh Ebrahimi. 2021.
BatchSizer: Power-Performance Trade-off for DNN Inference. In 26th Asia
and South Pacific Design Automation Conference (ASPDAC ’21), January
18–21, 2021, Tokyo, Japan. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3394885.3431535

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’21, January 18–21, 2021, Tokyo, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431535

1 INTRODUCTION
With the proliferation of DNNs in various applications such as
speech recognition [13], computer vision [15], and natural lan-
guage processing [14], a large body of research has focused on
accelerating training and inference phases of DNNs for different
platforms such as GPUs, FPGAs, and ASICs. The GPU accelerator is
a popular option for improving the performance of DNNs due to its
programmability and scalability features and the proven promising
results. While in theory, a GPU accelerator can exploit its maximum
power capacity when executing applications, in a real-world setup,
the available power budget is capped by an external agent. The
reason is that different components of a computing platform such as
CPU, memory modules, storage, network interface, and hardware
accelerators (e.g., GPU accelerator) usually share the power source.
Consuming more power by a component than its allocated amount
means power shortage in other components. The power cap can
severely degrade the performance of DNNs on GPU accelerators,
and hence, one should employ proper techniques and methods to
address this challenge.

The common practice to maintain the power usage within the
power cap in many processors such as CPUs and GPUs is applying
dynamic voltage frequency scaling (DVFS) on that processor. A
large body of research has studied power management in GPU
accelerators and have proposed various approaches based on DVFS
[3, 8, 11]. While many GPU vendors have developed user-friendly
interfaces for DVFSmanagement (e.g., nvidia-smi byNvidia [1]), the
application of those interfaces is restricted due to several obstacles.
First, the DVFS levels accessible on different GPUs are limited to
the ones designed by the GPU vendor, and the end-user cannot
set the DVFS to a level beyond the available ones. Consequently,
the power consumption of the GPU accelerator is also limited to
a set of certain values. Therefore, it is hard to efficiently manage
the power consumption to meet the power cap while maximizing
the accelerator performance. Second, increasing the DVFS level
does not certainly lead to proportional increases in performance.
An application (e.g., DNNs) that is running on GPU should also
be able to fully utilize the available resources such as streaming
multiprocessors (SMs). Otherwise, DVFS increases the working
frequency of GPU streaming multiprocessors without any usage.

To address the aforementioned shortages of the conventional
DVFS technique in GPU-based DNN inference accelerators, we
introduce a new control knob which is the size of input batches
during DNN inference. We show that the size of a batch has a
direct impact on resource utilization, the power consumption of
the GPU accelerator, as well as the performance of DNN inference.
Leveraging this new control knob, we design and implement a
lightweight runtime system called BatchSizer. It can determine the
batch size for each time epoch considering the power cap of the

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Seyed Morteza Nabavinejad, Sherief Reda, and Masoumeh Ebrahimi

GPU accelerator, such that the throughput of the DNN inference is
maximized. BatchSizer is based on binary search, and hence, can
select the proper batch size in a fraction of time.

We conduct various experiments to evaluate the efficacy of Batch-
Sizer and compare its performance against the DVFS technique. We
employ a P40 GPU as the accelerator, several well-studied image
classification DNNs as workloads, and two popular image datasets
as the input of DNN inference. The experimental results show
that BatchSizer can maintain the power cap while improving the
throughput by up to 29% compared with another approach that
leverages DVFS.

The main contributions of the paper are as follows:
• We study the impact of batch size on resource utilization
of the GPU accelerator and observe how different batch
sizes affect power consumption and performance of DNN
inference.

• We implement dynamic batch sizing for image classification
DNNs that enables us to change the batch size of DNN in-
ference on the fly, with least possible overhead and without
any interrupt.

• We design and implement a lightweight runtime system
called BatchSizer that can find the proper batch size in a few
steps using binary search such that the power consumption is
less than the power cap, while the throughput is maximized.

• Conducting an extensive set of experiments, we show the
effectiveness of BatchSizer compared to an approach that
leverages traditional DVFS technique.

The rest of the paper is organized as follows: we summarize the
related works in Section 2 and discuss the motivation behind our
study in Section 3. Our proposed approach is introduced in Section
4. We evaluate our approach and present results of experiments in
Section 5. Finally, we conclude the paper in Section 6.

2 PREVIOUS WORK
Employing Dynamic Voltage Frequency Scaling (DVFS) to improve
the power or performance of GPU accelerators has been explored in
a large body of research [3, 8, 11, 17, 18]. Komoda et al. [9] proposed
a power capping technique for CPU-GPU systems that considers
DVFS and task mapping simultaneously. They tended to set the
frequency of both CPU and GPU according to the task mapped to
each of them. Therefore they model the performance and power
consumption of the CPU-GPU system considering the task mapping
and DVFS level to prevent power cap violation or load imbalance.
To enhance the performance per watt of GPU accelerators, Jiao et
al. [8] leveraged the cutting-edge GPUs’ ability to host several con-
current kernels, and applied core and memory frequency scaling.
Guerreiro et al. [3] classified the effect of DVFS on the performance
and power of GPU applications to obtain representative models.
Based on the models, they estimated the impact of various DVFS set-
tings on the performance and power of applications to set the DVFS
of the GPU accelerator on the most proper level. GreenMM [18]
aimed to reduce the energy consumption of matrix multiplication, a
prevailing operation in many DNNs, including image classification
ones, in GPU accelerators. They employed GPU undervolting with-
out reducing the frequency to decrease the power consumption
as much as possible. Since aggressive undervolting might result

in an increased fault rate, GreenMM introduces Algorithm-Based
Fault Tolerance (ABFT) to mitigate this challenge. Tang et al. [17]
conducted an extensive set of experiments to understand the im-
pact of DVFS on performance and energy consumption of several
DNNs. To this end, they executed four DNNs on three GPU acceler-
ators. PIT [11] is another approach that employs DVFS along with
reduced-precision instructions supported by new GPUs to manage
the power consumption of DNN inference on GPU accelerators. It
first deploys the reduced-precision model of DNN on the GPU, and
if needed, it adjusts the GPU frequency with its dedicated procedure.
That procedure starts from the lowest DVFS level and increases it
as much as possible to improve the performance, while meeting
the power cap.

3 MOTIVATION
It this section, we aim to show the impact of the batch size on
power and performance of DNN inference. We employ three DNNs,
namely Inception [16], ResNet [4], and MobileNet [6] and two
image datasets as input with 10,000 images, one from the ImageNet
dataset [12], and the other from Caltech256 dataset [2]. We deploy
the three DNNs on an Nvidia P40 GPU in sequence, and repeat
that several times to process the two datasets. In each iteration,
we double the batch size and monitor the throughput (image per
second), as well as the power consumption and resource utilization
of the GPU (later in Section 5, we discuss the experimental setup
in more detail).

The throughput and maximum power consumption are shown in
Fig. 1, which reveal the strong relationship between the batch size
and power and throughput. With increasing the batch size, both
throughput and maximum power consumption also increase. How-
ever, the effect of batch size depends on the DNN and dataset. For
example, when processing the Caltech256 dataset using MobileNet,
we observe significant throughput improvement as the batch size
increases, while the improvement is negligible when processing the
ImageNet dataset with the same DNN. Furthermore, we observe

Figure 1: Impact of the batch size on throughput and power
consumption of DNN inference.

BatchSizer: Power-Performance Trade-off for DNN Inference ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

100

200

300

0 10 20 30 40 50 60

Time (s)

P
o
w

e
r

(W
) BS = 32 BS = 128 BS = 512

Power Consumption

0

25

50

75

100

0 10 20 30 40 50 60

Time (s)

U
ti
liz

a
ti
o
n
 (

%
)

Streaming Multiprocessors Utilization

Figure 2: Relationship between resource utilization of GPU,
its power consumption, and the maximum throughput
achievable by increasing the batch size.

that after the batch size 256, the throughput does not increase (or
even decreases) while the maximum power consumption continues
to rise.

To better understand the cause of such behavior, in Fig. 2 we de-
pict the power consumption and Streaming Mutliprocessors (SMs)
utilization over time for one of the DNNs (Inception with the Cal-
tech256 dataset) under three different batch sizes: 32, 128, and 512.
After BS = 128, the maximum SMs utilization approaches 100%, and
it is exactly 100% for BS = 512. Therefore after BS = 256, increas-
ing the batch size only leads to increased power consumption as
the utilization of other resources (e.g., memory) increases. On the
other hand, the throughput does not improve (or even degrades)
because of contention among active GPU threads over shared re-
sources such as memory bandwidth. We consider this observation,
along with other ones, when designing the BatchSizer. Finally, we
observed that both power consumption and SMs utilization are sig-
nificantly fluctuating. As presented in Fig. 2, when the input batch
is being prepared for execution, the power consumption is low and
SMs utilization is zero because no computation is happening. But
when input execution starts, spikes happen on the SMs utilization,
and consequently, consumed power. These spikes determine the
maximum power consumption and SMs utilization.

4 METHODOLOGY
4.1 Problem Statement
The problem that we aim to address in this work is as follows: A
DNN inference application 𝑖 is deployed on a GPU accelerator with
a default batch size BS. A power cap (Pcap) is applied to GPU acceler-
ator by an external controller, and the power consumption of GPU
should be less than that. Both throughput and power consumption
of DNNi are a function of the batch size, in addition to other param-
eters such as input dataset, temperature of GPU, etc. The objective
function is to maximize the throughput over the course of time
while meeting the power cap. The 𝑇 parameter shows the period
of time that the job is active and running.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
1
𝑇

𝑇∑
𝑡=1

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑡𝑖 (1)

GPU Monitoring Interfaces
(Nvidia-SMI and NVProf)

BS = 1

Power

Performance

BS = 2

BS = 4

BS = N

BatchSizer

Objective + Constraints
(Power, Performance, etc.)

Profiling Data

1

DNNBS: Batch Size

2 4 ... N

Binary Search

Figure 3: Overall flow of BatchSizer

s.t.
𝑃𝑜𝑤𝑒𝑟𝑡𝑖 ≤ 𝑃𝑐𝑎𝑝 (2)

4.2 BatchSizer
A key prerequisite to have a runtime system that can effectively
decide on the batch size during the execution of DNNs is implement-
ing dynamic batch sizing in the applications. Currently, the batch
size can be determined only when the application is submitted to
the GPU accelerator. Once the application is deployed and started
the execution, the batch size cannot be changed any longer. The
conventional approach to change the batch size is to terminate the
running instance and launch a new one with a different batch size,
which imposes significant delay or reduces the average throughput.
To mitigate this challenge, we implement dynamic batch sizing by
modifying a few lines of code compared with conventional static
batch size. The changes are straightforward and do not degrade
the programmability of the DNNs. Besides, it imposes almost no
notable overhead on latency or throughput. Dynamic batch sizing
enables us to change the batch size on the fly without any inter-
rupt in the flow of DNN inference. Having dynamic batch sizing
implemented, we can proceed to the design and implementation of
our runtime system, BatchSizer.

The design objective of BatchSizer is to maximize the average
throughput while considering the power cap. To achieve this ob-
jective, BatchSizer dynamically changes the batch size over the
course of time. In the design of BatchSizer we take into account the
observations presented in Section 3. The first key observation is
that both maximum power consumption and throughput increase
with the batch size. Therefore we can assume that those parame-
ters are sorted in ascending order with respect to the batch size.
Having them sorted, BatchSizer can employ a pseudo binary search
approach to efficiently search the state space in a few steps and find
the most suitable batch size. Since the time complexity of the binary
search is O (log n), the time overhead of BatchSizer is negligible.

The second observation is the spiking nature of the power con-
sumption (see Fig. 2), which is used in the design of BatchSizer.
Considering the maximum power consumption, which occurs dur-
ing the spikes, is essential to make sure that the power consumption
does not surpass the power cap. Thereby, after changing the batch
size, BatchSizer waits for a few batches to be processed to profile
the power consumption of a few number of spikes. The third obser-
vation used in the design of BatchSizer is the throughput saturation
after a specific batch size (see Fig. 1). As we mentioned in Section

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Seyed Morteza Nabavinejad, Sherief Reda, and Masoumeh Ebrahimi

3, after BS = 256, we see no improvement in throughput. BatchSizer
skips those batch sizes and only considers the ones that lead to
throughput improvement. In the current version, BatchSizer uses of-
fline profiling information to detect the maximum beneficial batch
size. However, it can be easily modified to detect them online, but
with a certain overhead. In the online approach, after selecting a
batch size and monitoring its throughput, BatchSizer can evaluate
the throughput of an immediate smaller batch size to ensure that
the current batch size offers a better throughput than a smaller one.
Otherwise, it skips the current batch size and selects the smaller
one.

Combining the three aforementioned observations, the overall
flow of BatchSizer can be described as follow, also presented in
Algorithm 1 and Fig. 3. BatchSizer starts with a default batch size (1
in our experiments). After processing a few input batches (10 in our
experiments) and monitoring the power consumption, it compares
the profiled power data with the power cap. If the maximum power
consumption is equal or less than a certain coefficient of the power
cap (𝛼 × 𝑃𝑐𝑎𝑝), then the current batch size is good, and no further
action is needed. We have set 𝛼 = 0.8 in the experiments. We
consider a lower margin of the power cap to avoid excessive batch
size changes that might lead to an enormous number of power
cap violation instances. If the maximum power consumption is
greater than the power cap, BatchSizer sets the batch size as the
median of the lowest possible batch size and the current batch
size. If the current batch size is the smallest one, no further batch
size reduction is possible, and hence, the power cap cannot be
met in the current state. If the maximum power consumption is
less than 𝛼 × 𝑃𝑐𝑎𝑝 , it means there is room to improve throughput
by increasing the batch size. Therefore, BatchSizer sets the batch
size to be equal to the median of the current batch size and the
largest possible batch size. If the current batch size is the largest
one, then no further throughput improvement is possible through
batch sizing. Fig. 4 shows how BatchSizer works with the help of
an illustrative example.

Since BatchSizer continues processing the input data even when
it is searching for a proper batch size, it does not impose any time
or resource overhead on the system. However, the throughput may
slightly degrade when the BatchSizer is searching, or the power
cap might be violated for a short period of time. The other design
feature of BatchSizer is the continuous batch size adjustment. Upon
finding a suitable batch size it does not stop, but continues mon-
itoring the power consumption. It restarts batch size adjustment
again if it detects power cap violation or throughput improvement
opportunities that might happen due to changes in the power cap or
power consumption of the DNN. The power cap might be changed
by external power controller and the power consumption of DNN
can be affected by parameters such as variation in input data.

5 EVALUATION
5.1 Evaluation Setup
We employ a dual-socket Xeon server equipped with two E5-2680
v4 Xeon chips each with 28 cores running at 2.4 GHz and 128GB
of DDR4 memory. Ubuntu 16.04 with kernel 4.4 is installed on the
server with CUDA 11.0 and TensorFlow 1.15. A Tesla P40 GPU
Accelerator is attached to the server that is based on Nvidia Pascal

Algorithm 1 BatchSizer
1: Input: 𝑃𝑐𝑎𝑝 ; SB(1:N): Set of available batch sizes in an ascending order
2: minBS = 1; maxBS = N; initialBS = 1; currentBS = 1; BS = SB(initailBS); Power-

Reading = []
3: while True do
4: PowerReadng.append(monitorPower(inference(BS)))
5: if 𝛼 × 𝑃𝑐𝑎𝑝 ≤ max(PowerReading) ≤ 𝑃𝑐𝑎𝑝 then
6: Continue with BS
7: if max(PowerReading) < 𝛼 × 𝑃𝑐𝑎𝑝 then
8: minBS = currentBS
9: currentBS = ceil(𝑚𝑖𝑛𝐵𝑆+𝑚𝑎𝑥𝐵𝑆

2)
10: BS = SB(currentBS)
11: if max(PowerReading) > 𝑃𝑐𝑎𝑝 then
12: if currentBS = 1 then
13: Further BS reduction is not possible.
14: if currentBS = minBS then
15: maxBS= currentBS, minBS = 1,
16: currentBS = floor(𝑚𝑖𝑛𝐵𝑆+𝑚𝑎𝑥𝐵𝑆

2)
17: BS = SB(currentBS)
18: else
19: maxBS = currentBS
20: currentBS = floor(𝑚𝑖𝑛𝐵𝑆+𝑚𝑎𝑥𝐵𝑆

2)
21: BS = SB(currentBS)

architecture and has 3840 CUDA cores and 24GB GDDR5 memory,
and its maximum power limit is 250W. We employ 10 DVFS levels
for GPU in our experiments: 544 MHz, 632 MHz, 734 MHz, 835
MHz, 949 MHz, 1063 MHz, 1189 MHz, 1303 MHz, 1430 MHz, and
1531 MHz. Please note we can only control the frequency of GPU.
The GPU driver automatically adjusts the voltage according to the
selected frequency. To measure the power consumption of GPU, we
employ nvidia-smi tool which uses the embedded sensors of GPU
hardware for reading power consumption over the time. We choose
ten DNNs with different characteristics such as size and computa-
tional complexity to show the applicability of BatchSizer on a wide
variety of DNNs. The specifications of the DNNs are presented in
Table 1.We have two image datasets, one from ImageNet [12] which
is a popular dataset that is widely used in other works, and the
other one is Caltech 256 [2] which is collected by researchers from
the California Institute of Technology. The workload used in the
experiments consists of 20 jobs shown in Table 2. Each DNN model
from Table 1 has appeared two times in the workload, once with
input from ImageNet, and once with input from Caltech 256. The
power cap for each job is a number between 50 W (the minimum
power when loading a model on GPU) and 250 W (the maximum
power capacity of GPU). These numbers are selected randomly, but
we have tried to cover a wide range of power caps, from tight caps
to relaxed ones.

The batch size set that BatchSizer selects from is as follows:
{1, 2, 4, 8, 16, 32, 64, 128, 256}. While we have used them in the ex-
periments, any other set with an arbitrary size can also be used.
Since the time complexity of BatchSizer is O (log n), it can handle
large sets and find a suitable batch size with the least number of
tries and within a reasonable time.

Previous works such as PIT [11] usually consider a simple rou-
tine for changing the DVFS (starting from the least amount and
increasing it step by step until reaching the power cap). To have a
more sophisticated approach for comparison, similar to BatchSizer,
we employ a pseudo binary search approach in all experiments to
find a proper DVFS level. To have a fair comparison, we select BS
= 16 (middle of the batch size set) for this DVFS-based algorithm.

BatchSizer: Power-Performance Trade-off for DNN Inference ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Table 1: Description of DNNs used in the experiments

Name Abbr Frozen Graph
Size (MBs)

Computational
Complexity
(MFLOPs)

Reference

Inception V1 IncV1 26.06 13.22 [15]
Inception V2 IncV2 43.92 22.34 [7]
Inception V3 IncV3 93.42 54.25 [16]
Mobilenet-V1-1 MobV1 16.69 8.42 [6]
Mobilenet-V2-1 MobV2 13.75 6.94 [5]
NASNET-Mobile NASNET 21.37 10.51 [19]
PNASNET-Mobile PNASNET 20.37 10.06 [10]
ResNet-V2-50 Res50 100.21 51.01 [4]
ResNet-V2-101 Res101 174.82 88.89 [4]
ResNet-V2-152 Res152 236.32 120.08 [4]

1 2 4 8 16 32 64 128 256

minBS, currentBS maxBS

Max Power < Power Cap
(70 < 140)

1 2 4 8 16 32 64 128 256

minBS maxBS

Max Power > Power Cap
(165 > 140)

currentBS

1 2 4 8 16 32 64 128 256

minBS maxBS

Max Power < Power Cap
(110 < 140)

currentBS

1 2 4 8 16 32 64 128 256

minBS maxBS

Max Power = Power Cap
(140 = 140)

currentBS

(1)

(2)

(3)

(4)

Figure 4: An illustrative example to show the workflow of
BatchSizer

Table 2: Specification of Jobs Used in the Experiments

DNN Dataset Power Cap
(W) DNN Dataset Power Cap

(W)
1 IncV1 ImageNet 191 11 IncV1 Caltech 125
2 IncV2 ImageNet 123 12 IncV2 Caltech 192
3 IncV3 ImageNet 228 13 IncV3 Caltech 165
4 MobV1 ImageNet 195 14 MobV1 Caltech 98
5 MobV2 ImageNet 84 15 MobV2 Caltech 208
6 NASNET ImageNet 159 16 NASNET Caltech 135
7 PNASNET ImageNet 246 17 PNASNET Caltech 136
8 Res50 ImageNet 143 18 Res50 Caltech 198
9 Res101 ImageNet 167 19 Res101 Caltech 236
10 Res152 ImageNet 218 20 Res152 Caltech 188

Selecting a small batch size (e.g., 1) leads to poor throughput, while
a large one (e.g., 256) causes significant power cap violations.

5.2 Experimental Results
First, we present the throughput results in Fig. 5. BatchSizer can
improve the throughput in most of the jobs (up to 29% in job 19)
while yielding slightly lower throughput than DVFS in some others
(up to 8% lower in job 5). To understand the reason behind these
improvements or slight reductions, we show the average batch
size selected by BatchSizer for each job in Fig. 6. For the jobs that
the average batch size is close to the DVFS batch size (i.e., 16),
the BatchSizer either has lower throughput or slight throughput
improvement, compared with DVFS. The reason for such small
batch sizes selected by BatchSizer is the tight power cap of those
jobs (Note that the power cap’s tightness is relative to the DNN
model. The same power cap, e.g., 100 W, might be tight for a deep
and complex DNN such as ResNet, while too relaxed for a small
DNN such as MobileNet). However, when the power cap is relaxed
enough, BatchSizer opts for large batch sizes to fully utilize the GPU

0

30

60

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Job

T
h

ro
u

g
h

p
u

t
(I

m
a

g
e

/S
e

c
)

BatchSizer

DVFS

Figure 5: Comparing the throughput of BatchSizer against
DVFS

Figure 6: The average batch size employed by BatchSizer to
process each job in comparison with constant value selected
by DVFS

accelerator’s computing resources, which leads to high throughput.
In such cases, the DVFS cannot leverage the entire power capacity,
even by the highest possible DVFS level. Hence, its throughput
would be lower than BatchSizer.

Next, we show the power consumption pattern of both approaches
for five jobs in Fig. 7. Due to the lack of space, we could not present
the results for the entire workload. The results clearly show that
BatchSizer can better exploit the power capacity by increasing re-
source utilization, and hence, improve the throughput. DVFS, on
the other hand, cannot take full advantage of the power capacity
because of its limited batch size, even by employing the highest
DVFS level. Consequently, its throughput is less than BatchSizer.
In other words, the performance of DVFS is limited to the dynamic
range of power consumption achievable by the lowest and highest
DVFS levels. We also observe that in some rare instances, Batch-
Sizer slightly violates the power cap. While adjusting the batch size,
BatchSizer might select the one leading to a temporary power cap
violation. However, BatchSizer immediately modifies it and does
not allow the violation to last for a long time. It is worth to mention
that changing the batch size does not affect the accuracy of the
results in DNNs, and hence, BatchSizer has no negative impact on
the final accuracy of the results.

Finally, in Fig. 8, we show the dynamic behavior of BatchSizer
regarding the batch size. The jobs plotted in this figure are the same
as Fig. 7. As shown in this figure, BatchSizer selects a batch size to
fully leverage the power capacity without violating the power cap.
When there is room for more power consumption, it opts for larger
batch sizes until it reaches the largest possible batch size. In the
case of tight power caps, however, it tends to select smaller batch
sizes. In the presence of a power cap violation, it instantly reduces
the batch size to avoid further violation.

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Seyed Morteza Nabavinejad, Sherief Reda, and Masoumeh Ebrahimi

50

100

150

200

250

Time (s)

P
o
w

e
r

(W
)

BatchSizer DVFS

Power Cap

PNASNET−ImageNet

80

120

160

Time (s)
P

o
w

e
r

(W
)

IncV1−ImageNet

80

120

160

Time (s)

P
o
w

e
r

(W
)

NASNET−ImageNet

50

100

150

Time (s)

P
o
w

e
r

(W
)

IncV2−Caltech

50

100

150

200

Time (s)

P
o
w

e
r

(W
)

Res152−Caltech

Figure 7: Showing the power behavior of BatchSizer and DVFS for several jobs.

0

100

200

0

100

200

Time (s)

P
o
w

e
r

(W
)

B
a

tc
h

 S
iz

e

Power Con.

Batch Size

Power Cap

PNASNET−ImageNet

0

50

100

150

200

0

50

100

150

200

Time (s)

P
o
w

e
r

(W
)

B
a

tc
h

 S
iz

e

IncV1−ImageNet

0

50

100

150

0

50

100

150

Time (s)

P
o
w

e
r

(W
)

B
a

tc
h

 S
iz

e

NASNET−ImageNet

0

50

100

150

200

0

50

100

150

200

Time (s)

P
o
w

e
r

(W
)

B
a

tc
h

 S
iz

e

IncV2−Caltech

0

50

100

150

200

0

50

100

150

200

Time (s)

P
o
w

e
r

(W
)

B
a

tc
h

 S
iz

e

Res152−Caltech

Figure 8: Illustrating the dynamic behavior of BatchSizer regrading the batch size selection and its impact on the power con-
sumption.

6 CONCLUSION
In this work, we introduced a new control knob for power con-
sumption of DNNs on GPU accelerators. The batch size can con-
trol the resource utilization of GPU, and consequently, its power
consumption. Based on this control knob we designed the Batch-
Sizer approach that can find the proper batch size to maximize the
throughput while meeting the power cap, with negligible overhead
in a dynamic fashion. BatchSizer is orthogonal to previous power
management and performance improvement techniques for DNNs
such as DVFS, quantization, and pruning, and it can be used in
combination with them to yield more promising results. In future
works, we aim to explore such combinations.

ACKNOWLEDGMENTS
M. Ebrahimi is partially supported by grants STINT (MG2018-8007)
and VR (2016-05140). S. Reda is partially supported by NSF grant
1814920 and DoD ARO grant W911NF-19-1-0484.

REFERENCES
[1] NVIDIA Corporation. 2016. NVIDIA System Management Interface program.

Retrieved July 27, 2020 from https://developer.download.nvidia.com/compute/
DCGM/docs/nvidia-smi-367.38.pdf

[2] G Griffin, A Holub, and P Perona. 2007. The caltech-256: Caltech technical report.
vol 7694 (2007), 3.

[3] João Guerreiro, Aleksandar Ilic, Nuno Roma, and Pedro Tomás. 2019. DVFS-
aware application classification to improve GPGPUs energy efficiency. Parallel
Comput. 83 (2019), 93–117.

[4] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identitymappings
in deep residual networks. In European conference on computer vision. Springer,
630–645.

[5] Andrew Howard, Andrey Zhmoginov, Liang-Chieh Chen, Mark Sandler, and
Menglong Zhu. 2018. Inverted residuals and linear bottlenecks: Mobile networks
for classification, detection and segmentation. (2018).

[6] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[7] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167 (2015).
[8] Qing Jiao, Mian Lu, Huynh Phung Huynh, and Tulika Mitra. 2015. Improving

GPGPU energy-efficiency through concurrent kernel execution and DVFS. In
CGO’15. IEEE, 1–11.

[9] Toshiya Komoda, Shingo Hayashi, Takashi Nakada, Shinobu Miwa, and Hiroshi
Nakamura. 2013. Power capping of CPU-GPU heterogeneous systems through
coordinating DVFS and task mapping. In 2013 IEEE 31st International Conference
on computer design (ICCD). IEEE, 349–356.

[10] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. 2018. Progressive
neural architecture search. In Proceedings of the European Conference on Computer
Vision (ECCV). 19–34.

[11] Seyed Morteza Nabavinejad, Hassan Hafez-Kolahi, and Sherief Reda. 2019. Coor-
dinated DVFS and Precision Control for Deep Neural Networks. IEEE Computer
Architecture Letters 18, 2 (2019), 136–140.

[12] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115, 3 (2015), 211–252.

[13] Tara N Sainath, Abdel-rahman Mohamed, Brian Kingsbury, and Bhuvana Ram-
abhadran. 2013. Deep convolutional neural networks for LVCSR. In IEEE interna-
tional conference on acoustics, speech and signal processing. 8614–8618.

[14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural info. processing sys. 3104–3112.

[15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In IEEE
conference on computer vision and pattern recognition (CVPR). 2818–2826.

[17] Zhenheng Tang et al. 2019. The impact of GPU DVFS on the energy and perfor-
mance of deep learning: An empirical study. In e-Energy ’19. 315–325.

[18] Hadi Zamani et al. 2019. GreenMM: energy efficient GPU matrix multiplication
through undervolting. In ICS. 308–318.

[19] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In IEEE conference on
computer vision and pattern recognition (CVPR). 8697–8710.

