
Appears in New Generation Computing �� ������ ���	���

Induction of Logic Programs� FOIL and Related Systems

J� R� Quinlan
University of Sydney
Sydney Australia ����
quinlan�cs�su�oz�au

and R� M� Cameron�Jones
University of Tasmania
Launceston Australia ����

Michael�CameronJones�appcomp�utas�edu�au

Abstract� foil is a �rst�order learning system that uses information
in a collection of relations to construct theories expressed in a dialect
of Prolog� This paper provides an overview of the principal ideas and
methods used in the current version of the system� including two recent
additions� We present examples of tasks tackled by foil and of systems
that adapt and extend its approach�

�� Introduction

All symbolic machine learning leads to the formulation or modi�cation of theories�
so the language in which theories are expressed is an important consideration� First�
order theory languages have been used for at least thirty years� as documented
by Sammut 	
���� Explanation�based generalisation systems 	Mitchell� Keller and
Kedar�Cabelli� 
���� DeJong and Mooney� 
��� have always required them� but the
early and in�uential work of Shapiro 	
��� and Sammut and Banerji 	
��� also
employed them in an inductive learning context� Nevertheless� �rst�order empirical
learning� including what we now call inductive logic programming� did not attract
widespread attention until the 
���s�

Training data in zeroth�order learning consists of attribute�value vectors� each be�
longing to a known class� Theories are propositional functions from attribute values
to classes and are expressed in forms such as decision trees 	Quinlan� 
���� In �rst�
order learning� training data comprises a target relation� de�ned extensionally as a
set of tuples of ground terms� and a set of background relations that might be de�ned
extensionally or intensionally� The goal of learning is to construct a logic program
that constitutes an intensional de�nition of the target relation in terms of itself and
the background relations� Such theories permit recursion and limited quanti�cation�
both advantageous when dealing with structured objects that are di�cult to describe
in attribute�value form� Where zeroth�order learning refers to examples and counter�
examples of some concept� �rst�order learning refers analogously to tuples belonging�
or not belonging� to the target relation� Since this is somewhat long�winded� we refer
to such tuples here as � or � tuples respectively�

We say that a �complete� theory covers a tuple if the corresponding ground query
to the logic program succeeds� The goal of �rst�order learning can thus be stated as
the construction of a theory that covers all � tuples and no � tuples of the target






relation� During learning� however� when only a partial theory exists� this de�nition of
�covers� might be bent slightly� for instance� a recursive literal might be evaluated by
lookup in the extensional de�nition of the target relation rather than by attempting
to execute the incomplete program�

First�order learning systems can be grouped into two families� Most earlier systems
such as mis 	Shapiro� 
���� Marvin 	Sammut and Banerji� 
��� � and Cigol 	Mug�
gleton and Buntine� 
��� are based on the successive revision method� A faulty
theory is too general if it covers a � tuple and too speci�c if it fails to cover a �
tuple� When a new tuple is treated erroneously� the query computation is examined�
perhaps with the help of an oracle� to pinpoint the defect in the theory that is re�
sponsible for the error� The theory is revised accordingly and the process continues
with the next tuple� This style of learning falls within the identi�cation in the limit
paradigm 	Gold� 
��� in which it is often possible to prove that systems will converge
on a correct theory after seeing su�cient training tuples� In practice� though� this
family of algorithms is computationally demanding and is e�ectively limited to tasks
that involve a small number of carefully chosen examples�

The other family uses instead a separate�and�conquer strategy pioneered by Michalski
	
���� All training tuples are considered together and� at each iteration� a clause of
the theory is found that covers some � tuples but no � tuples� The covered tuples
are then discarded and the process iterates until all � tuples are covered by at least
one clause� The family is further subdivided by the method used to �nd a suitable
clause� Top�down systems such as foil 	Quinlan� 
��� start with a general clause
head and add literals to the body until all � tuples are excluded� Bottom�up systems
exempli�ed by golem 	Muggleton and Feng� 
��� form a most speci�c generalisation
of a small subset of the � tuples� then generalise this further by dropping literals so
long as the clause covers no � tuples� Both bottom�up and top�down systems have
successfully tackled large�scale tasks and have proven to be orders of magnitude faster
than systems based on successive revision�

This paper focusses on foil� an early member of the top�down group� We describe
the learning task in more detail and outline key features of the system� Many of these
have been reported previously �the best general references being 	Quinlan� 
��� and
	Cameron�Jones and Quinlan� 
���� and so are only sketched here� but two more
recent additions to foil are treated at greater length� Examples of tasks investigated
with foil� two of which are new� are presented� Numerous other systems have adapted
or extended elements of foil�s approach and several of these related systems are
reviewed� We �nish with some areas for further research�

�� Description of foil

As mentioned above� input to foil includes information about relations� In common
with many �but not all� �rst�order learning systems� foil requires the target and

�



all background relations to be de�ned extensionally by sets of tuples of constants�
Every relation argument has a speci�ed type� there may be many distinct types or
all constants can be regarded as belonging to a single type� Although the intensional
de�nition learned from these extensional relations is derived from a particular set of
examples� it is intended to be executable as a Prolog program in which the background
relations may also be speci�ed intensionally by de�nitions rather than by sets of
ground tuples� For example� foil might learn a de�nition of even integer from just
the integers in 	��
� and background relations de�ned over these integers� but the
learned de�nition� when used with intensional background relations� should be capable
of deciding whether an arbitrary integer is even�

The language in which foil expresses theories is a restricted form of Prolog that
omits cuts� fail� disjunctive goals� and functions other than constants� This last does
not pose any particular problem since Prolog programmers are accustomed to de�ning
functions by relations� a k�ary function can be represented by a k�
�argument relation
in which the last argument gives the value of the function applied to the �rst k
arguments� Negated literals not�L������ are permitted� where not is interpreted as
negation by failure as in Prolog�

As an example of a task� consider learning a de�nition of the membership relation
on lists from a small world containing just the lists � �� ���� ���� ���� ������ ������ and
�������� The target relation member�E�L� contains pairs whose �rst constant denotes
an element that belongs in the list denoted by the second� In this small world there
are just ten tuples in member�

h�����i h�����i h�����i h�������i h�������i
h�������i h�������i h���������i h���������i h���������i

the �rst denoting that element � is a member of the list ��� and so on� As far as
foil is concerned� lists like ������� are just constants� so a background relation com�
ponents�L�H�T� is required to show how to �nd the head H and tail T of a list L� The
tuples making up components are

h������� �i h������� �i h������� �i h�����������i h�����������i h��������������i

where the �rst states that list ��� has head � and tail � ��

All the tuples that belong to the relation member are clearly � tuples� The corre�
sponding � tuples needed by foil can be provided explicitly or� more commonly� can
be determined using the closed world assumption� That is� all tuples consisting of
an element and a list as above that do not appear explicitly in the relation member
can be assumed not to belong to the relation� implying that h��� �i� h�����i� h�������i
and so on are all � tuples� The number of such � tuples may be overwhelming when
the target relation has high arity� so foil contains an optional facility to use only a
random sample of them�

�



Initialisation�
theory �� null program
remaining �� all � tuples of target relation R

While remaining is not empty

�� Grow a new clause ��

clause �� R�A�B� ���� ��

While clause covers � tuples of R

Find appropriate literal�s� L �e�g� to exclude some � tuples�
Add L to right�hand side of clause

Remove � tuples covered by clause from remaining
Add clause to theory

Figure 	� Outline of foil

��� Overview of the learning algorithm

As outlined in Figure 
� foil uses the separate�and�conquer method� iteratively learn�
ing a clause and removing the � tuples that it covers until none remain� A clause
is grown by successive specialisation� starting with the most general clause head and
adding literals to the body until the clause does not cover any � tuples�

Clause construction is guided by the bindings of the variables in the partial clause
that satisfy the clause body� If the clause contains k variables� a binding is a k�tuple
of constants that speci�es the value of all variables in order� Each such possible
binding is labelled � or � according to whether the tuple of values for the variables
in the clause head does or does not belong in the target relation�

We illustrate the process using the member relation� The initial clause consists of just
the head

member�A�B� ��

in which each variable is unique� The labelled bindings corresponding to this initial
partial clause are just the � and � tuples of the target relation� namely

�



h�����i� h�����i� h�����i� h�������i� h�������i�
h�������i� h�������i� h���������i� h���������i� h���������i�
h��� �i� h�����i� h�����i� h�������i� h��� �i�
h�����i� h�����i� h��� �i� h�����i� h�����i�

h�������i�

If the literal components�B�A�C� is now added to the clause body to give

member�A�B� �� components�B�A�C�

the new clause has three variables and is satis�ed by the bindings

h������� �i� h������� �i� h������� �i� h�����������i� h�����������i� h���������������i�

For instance� h������� �i is included because the values A��� B����� C�� � satisfy the
clause body� and is labelled � because the tuple h�����i formed by the values of the
clause head variablesA and B belongs inmember� Since all the bindings are labelled��
the clause covers no � tuples and so is complete� The � tuples covered by this clause
are removed� leaving only h�������i� h�������i� h���������i and h���������i to be covered by
subsequent clauses in the de�nition�

The next iteration commences with the remaining � tuples and all � tuples� namely

h�������i� h�������i� h���������i� h���������i� h��� �i�
h�����i� h�����i� h�������i� h��� �i� h�����i�
h�����i� h��� �i� h�����i� h�����i� h�������i�

If the literal components�B�C�D� is added to the clause head to give the partial clause

member�A�B� �� components�B�C�D�

with four variables� the bindings that satisfy this partial clause are

h�������������i� h�������������i� h�����������������i� h�����������������i�
h��������� �i� h��������� �i� h�������������i� h��������� �i�
h��������� �i� h��������� �i� h��������� �i� h�������������i�

Adding a further literal to give the new partial clause

member�A�B� �� components�B�C�D�� member�A�D�

restricts the bindings to just

�



h�������������i� h�������������i� h�����������������i� h�����������������i�

For instance� the binding h��������� �i is now excluded because the values A��� B�����
C��� D�� � do not satisfy the requirement that A is a member of D� All bindings are
labelled�� again signalling completion of the clause� Each tuple in the target relation
is now covered by the clauses

member�A�B� �� components�B�A�C��
member�A�B� �� components�B�C�D�� member�A�D��

so the de�nition of member is complete� Using the Prolog notation for lists� these
clauses might be written

member�A��AjC���
member�A��CjD�� �� member�A�D��

This example begs some important questions such as how to �nd appropriate literals
to add to the clause body� The next several subsections take up issues of this kind
that are central to foil�s learning method�

��� Selecting literals

Literals that can appear in the body of a clause are restricted by the requirement
that programs be function�free� other than for constants appearing in equalities� The
possible forms that foil considers are�

� Q�V�� V�� ���� Vk� and not�Q�V�� V�� ���� Vk��� where Q is a relation and the Vi�s
denote existing variables bound earlier in the clause or new variables�

� Vi�Vj or Vi ��Vj� for existing variables Vi and Vj of the same type�

� Vi�c and Vi ��c� where Vi is an existing variable and c is a constant of the
appropriate type� Only constants that have been designated as suitable to
appear in a theory are considered � a reasonable theory for member might
reference the null list � � but should not involve an arbitrary list such as ������

� Vi � Vj� Vi � Vj� Vi � t� and Vi � t� where Vi and Vj are existing variables with
numeric values and t is a threshold chosen by foil�

If the learned theory must be pure Prolog� negated literal forms not�Q������ and Vi �����
can be excluded by an option�

Literals of the forms Q����� and not�Q������ are further constrained� At least one
variable must have been bound earlier in the partial clause� either by the head or
a literal in the body� As with golem� the depth of new variables is limited� where

�



variables appearing in the head have depth � and a new variable in a literal has depth
one greater than the maximum depth of its existing variables� Finally� if Q is the
target relation� recursive body literals that could cause non�termination are excluded
as discussed in Section ����

A literal in the body of a clause can serve two purposes� It may increase the proportion
of � bindings� thereby moving the clause closer to completion when all bindings are
�� Alternatively� a literal of the form Q����� may introduce new variables needed in
the �nal clause� Literals of the �rst kind� referred to as gainful� may also introduce
new variables� but this is the primary motivation for the second class of determinate
literals�

Gainful literals are evaluated using an information heuristic� Let the number of� and
� bindings of a partial clause be n� and n� respectively� The average information
provided by the discovery that one of the bindings has label � is

I�n�� n�� � � log
�
n�� �n� � n�� bits�

If a literal L is added� some of these bindings may be excluded and each of the rest
will give rise to one or more bindings for the new partial clause� Suppose that k of
the n� bindings are not excluded by L� and that the numbers of bindings of the new
partial clause are m� and m� respectively� The total information gained by adding
L is then

k � �I�n�� n�� � I�m��m��� bits�

In the member example� there are 
� � and 

 � bindings at the start of the �rst
clause� Adding components�B�A�C� excludes all but

h�����i� h�����i� h�����i� h�������i� h�������i� h���������i�

each of which gives rise to a single binding for the new clause� The total information
gained by adding this literal is then �� �I�
�� 

�� I��� ��� or ���� bits�

Determinate literals are inspired by golem�s determinate terms but� whereas golem
can learn only theories in which all terms are determinate� foil implements the
idea as a preference rather than a requirement� A determinate literal is one that
introduces new variables such that the new partial clause has exactly one binding for
each � binding in the current clause� and at most one binding for each � binding�
Determinate literals are useful because they introduce new variables� but neither
reduce the potential coverage of the clause nor expand the set of bindings� This is
exempli�ed by the �rst literal components�B�C�D� of the second clause above� every
binding other than those of the form h���� �i� yields a single new binding in which new
variables C and D are the head and tail of B respectively� Notice that this literal is
also gainful as it increases the proportion of � bindings�

All sensible literals derived from all relations are considered when adding literals to
a clause� Some literals can be omitted� for instance

�



� literals that do not satisfy the argument type constraints�

� a literal Q����� X� ���� X� ���� with the same variable in argument positions i and
j� when no tuple in the relation Q has the same constant in positions i and j�
and

� recursive literals that might cause in�nite recursion �see below��

Further� evaluation of a literal can often be abandoned when it becomes clear that it
is not determinate and cannot come close to the gain of the most gainful literal found
so far� On occasion a literal can be omitted altogether from consideration because it
is a specialisation of a literal already known to exclude too many � bindings�

��� Assuring recursive soundness

Theories found by foil are intended to be executable as Prolog programs� so it is
important that recursive theories do not lead to in�nite recursion� To this end� foil
incorporates a sophisticated scheme that bars recursive literals unless they can be
proven to be problem�free� at least to the extent of ensuring termination on ground
queries to a single target relation�� The approach� described in detail in 	Cameron�
Jones and Quinlan� 
���a� has three phases�

Ordering constants� The constants of each type T can be given to foil in their
natural order� if one exists� or foil can �nd a plausible ordering� In the latter case�
each pair of arguments Ai� Aj of type T in every relationR is examined to see whether
the tuples of constants de�ning R are consistent with a partial order� here denoted
Ai � Aj �since it is impossible to distinguish between Ai � Aj and Ai � Aj�� If the
arguments exhibit such a partial order� each tuple in relation R will give ci � cj for
the constants ci� cj in the ith and jth positions respectively� The argument partial
order is ruled out only when the closure of these inequalities between constants implies
ck � ck for some constant ck�

Having found all potential partial orderings of pairs of arguments of type T across
all relations� foil orders the constants of type T to be consistent with the maximum
number of the argument partial orders� This process is carried out just once for each
type for which an ordering is not speci�ed by the user�

Ordering pairs of variables� The ordering of constants of type T may imply an or�
dering of pairs of variables Vi� Vj of type T in a partial clause� Each binding of the
partial clause speci�es values ci� cj for Vi and Vj � if it is always the case that ci � cj�
then Vi � Vj�

Ordering recursive literals� Recursive termination will be assured if� for all clauses
with head R�V�� V�� ���� and body literal R�W��W�� ����� the body literal is less than
the head� To order literals� foil considers schemes of the form

�That is� with no mutually recursive de�nitions of two or more relations�

�



R�W��W�� ���� � R�V�� V�� ���� if
W� �� V�� or
W� � V� and W� �� V�� or
W� � V� and W� � V� and W� �� V� � or ���

for suitable argument positions �� �� �� ��� and where �i denotes � if the real order of
constants is known� otherwise a choice between � or �� Whenever a recursive literal
is being considered� foil tries to construct a literal ordering scheme of this kind that
is satisfactory for both this literal and all other recursive literals in the de�nition so
far� If such a scheme does not exist� the recursive literal is ruled out�

For the member example� foil �nds that the de�nition of the components�L�H�T�
relation is consistent with T� L and orders the list constants

� � � ��� � ��� � ��� � ��� �� � ��� �� � ��� �� ���

Now consider the partial clause

member�A�B� �� components�B�C�D�

where� by the ordering above� D� B� When considering the addition of the recursive
literal member�A�D�� it is clear that an ordering scheme

member�W��W�� � member�V�� V�� i	 W�� V�

will guarantee that the body literal is less than the head and so ensure that this literal
cannot cause in�nite recursion�

Many �rst�order learning systems employ simplermechanisms� to prevent problematic
recursion� or no mechanisms at all� Even though this scheme is relatively complex�
it is computationally e�cient in practice and is necessary for learning more di�cult
recursive de�nitions such as Ackermann�s function �discussed in Section �����

��� Controlling search

foil�s exploration of the space of possible de�nitions is fundamentally greedy� but
the system incorporates mechanisms to curtail search down a particular path and to
recover from poor choices of literals� Recovery is achieved by establishing checkpoints
when a gainful literal added to a clause is only marginally better than an alternative
literal� A small� �xed number of checkpoints �default ��� is maintained and� if the
current partial clause cannot be completed so as to exclude all � tuples� search is
restarted from the best remaining checkpoint� This non�chronological backtracking
is invoked relatively infrequently since greedy search is usually su�cient to �nd a
clause� Backtracking is not used to attempt to �nd a better clause� although this
could become an option in future versions�

�Early versions of foil used a weaker scheme that required one argument of the body literal to

be less than the corresponding argument of the head�

�



Greedy search can fail either because there is no literal that could be added to a
clause or� more commonly� because the addition of another literal will render the
clause too complex with respect to the training data� The complexity criterion is
based on Rissanen�s Minimum Description Length Principle 	Quinlan and Rivest�

��� and requires that the cost of encoding a clause should never exceed the cost of
identifying explicitly the tuples that it covers� Since determinate literals are added
indiscriminately� they are excluded from the calculation of the cost to encode a clause�
de�ned as the number of bits needed to identify the relation and arguments of all non�
determinate literals in the clause body� The cost of identifying the n tuples that it
covers among the � and � tuples of the target relation is the logarithm to base � of
the number of ways in which n tuples could be selected� This criterion thus rules out
elaborate clauses that cover few tuples�

When exploring literals to add to the developing clause body� foil sometimes notices
a literal that would complete the clause but prefers another literal that is determinate
or has higher gain� The best of the complete clauses encountered during search is
retained in the wings and� if the �nal clause is not superior in terms of compactness
or coverage� the saved clause is substituted in its place�

The �nal modi�cation to straightforward search occurs when a literal L chosen for
addition to the partial clause contains only variables that appear in the clause head�
L could have appeared as the �rst literal of the clause body while intervening literals
introducing new variables might have restricted the clause�s coverage� In such situ�
ations� all non�determinate literals that introduce variables are discarded and search
resumes from the shortened partial clause�

��� Pruning de�nitions

A particular literal in a completed clause may be needed because it prevents the
clause from covering � tuples� because it introduces a variable used in a later literal�
or because it establishes a partial order on which recursion control depends� As a
consequence of its incremental construction� a clause may contain literals that serve
none of these purposes� Removal of such literals has two bene�ts� the clause becomes
simpler� and it may also cover more � tuples of the target relation�

The policy of adding all determinate literals to the clause body is the principal source
of unnecessary literals� Consequently� clause pruning proceeds in two stages� All
determinate literals that introduce variables not used by later literals are removed�
This operation is fast but fallible� so the shortened clause is tested to see that it is still
valid and recursively sound� if not� the original clause is restored� Then a literal�by�
literal pruning process is carried out� starting from the last literal in the clause body�
At each step a literal is removed� the residual clause tested� and the literal restored
only if the pruned clause is unsatisfactory� This iterative pruning can be costly when
the initial clause is long� but generalising the clause as much as possible can expedite
learning of the rest of the de�nition since fewer � tuples remain to be covered�


�



De�nitions themselves can also be redundant since the � tuples covered by early
clauses may also be covered by later clauses� When the de�nition is complete� each
clause is examined to see whether it uniquely covers one or more � tuples� if not� the
clause is discarded�

��� Dealing with closed worlds

We now come to the �rst of the more recent developments in foil� Unlike aspects
described above� these are not documented elsewhere and so are presented in more
detail�

foil requires that the target and background relations be de�ned extensionally as
tuples of constants� This cannot be done when the relation is inherently in�nite�
so the usual practice is to specify a �nite closed world and to limit tuples to those
containing only constants that appear in the closed world� This implicitly assumes
that a satisfactory de�nition for the closed world will be correct in general� even
when used in conjunction with intensionally�de�ned background knowledge� Bell and
Weber 	
��� call this the open domain assumption�

Consider the task of learning the concept of a simple list as one that contains at most
one element� We might establish a closed world consisting of all lists with up to three
elements drawn from f�����g in which simple�L� is de�ned by the tuples fh� �i� h���i�
h���i� h���ig� Background relations are components�L�H�T� as before� and conc�A�B�C�
meaning that the result of concatenating lists A and B is list C� Notice that conc does
not contain tuples representing the result of concatenating two two�element or two
three�element lists� since these would form lists that lie outside the closed world�

For this task� foil immediately �nds the surprising de�nition

simple�A� �� conc�A�A�B��

The de�nition is correct for the closed world since� when A has two or more elements�
the result of concatenating A with itself lies outside the closed world and the corre�
sponding tuple does not appear in conc� Unfortunately� though� this de�nition is not
correct in general�

Enlarging the closed world merely postpones the problem� In a new closed world
including all lists up to length four� for example� foil �nds a similar de�nition

simple�A� �� conc�A�A�B�� conc�B�B�C��

This is still correct for the larger closed world � if A has two or more elements then
B has four or more and so the result of concatenating B to itself again is not de�ned
in the closed world�







This problem is not restricted to foil but is a consequence of using extensionally
de�ned relations� For instance� golem 	Muggleton and Feng� 
��� also requires
relations to be de�ned by ground assertions and �nds identical de�nitions for these
tasks�

The solution we have implemented in foil involves a special constant 	 denoting
out�of�world� In the three�element world� the de�nition of conc would include the
tuple h�����������������i to indicate that the result of concatenating ������� to itself is
not de�ned in the closed world� This constant 	 has special signi�cance for foil� a
literal is barred if adding it to the clause body would cause 	 to appear in any of the
bindings� The rationale for this is that all de�nitions are forced to stay within the
closed world and cannot exploit boundary e�ects attributable to its �nite size�

Returning to the example� we see that � tuples for simple include h�������i� The literal
conc�A�A�B� is therefore excluded since it would generate a binding h���������i� The
de�nition now found by foil is more complex�

simple�� ���
simple�A� �� components�A�B�� ���

or� in Prolog notation�

simple�� ���
simple��B���

This de�nition satis�es the open domain assumption since it is correct in general� not
just for the particular closed world in which it was learned�

��	 Making clauses more understandable

An important goal of all symbolic learning is to �nd theories that make sense to
people� To this end� foil contains mechanisms intended to re�express clauses in
more intuitive form� Some transformations are relatively easy� such as removing
literals Vi�Vj and Vj�c from the body by substituting Vi or c respectively for each
occurrence of Vj� For instance� the �rst clause of the de�nition above initially has the
form

simple�A� �� A
� ��

The body literal was removed and � � substituted for A in the head�

Such simple transformations are not su�cient to render some clauses intelligible�
even after pruning� An example of this arises while foil is learning a de�nition of
sort�A�B� given just the background relations components�L�H�T� and less�than�A�B��
After learning the base case �sorting the null list gives itself�� foil embarks on a
second clause� The literals added to the clause body are


�



components�A�C�D�� components�B�E�F� �both determinate�
sort�D�G� �determinate��

components�H�C�G� �determinate�
B
H �gainful�
D
� � �gainful��

After pruning and substitution� the clause becomes

sort�A�B� �� components�A�C�� ��� sort�� ��G�� components�B�C�G��

which is equivalent to

sort��C���CjG�� �� sort�� ��G��

This clause is correct � it forces A and B to be identical single�element lists � but
it is certainly not intuitive� The fundamental problem is that literals in the clause
body establish implicit equalities that must be made explicit if the clause is to be
intelligible� For example� sort�� ��G� forces G to be the null list in all bindings� but
the literal G
� � does not appear in the clause� We have found that addition of such
implicit literals to the clause before pruning often leads to a simpler clause�

When a clause is completed� its variable bindings are examined for equalities of the
form Vi�Vj or Vj�c that do not appear explicitly in the clause body� Any such
equalities are inserted into the clause immediately after the �rst literal that binds Vj�
Explicit equalities are also promoted within the clause� the goal being to retain them
in the pruned clause as long as possible� The clause is then pruned from the end in
the usual way�

In the case of this clause� the implicit equalities established by the literals are A�B�
A�H� C�E� F�� � and G�� �� When these are inserted and the literal D�� � promoted�
the clause body becomes

A
B�
components�A�C�D��
D
� ��
components�B�E�F��
C
E�
F
� ��
sort�D�G��
G
� �

components�H�C�G��
A
H�
B
H�

�It might seem that there should be a corresponding determinate literal sort�F�H�� However� F is

the tail of a sorted list and is therefore sorted already� thus H�F and this literal introduces no new

variables�


�



All but the �rst three literals are now pruned and� after substitution� this base case
clause becomes much more recognisable as

sort�A�A� �� components�A�C�� ���

or

sort��C���C���

�� Applications

This section examines a representative sample of tasks to which foil has been applied�
Our intention is to demonstrate that the system�s approach is e�ective across a range
of domains encompassing most areas of �rst�order learning�

The original foil paper 	Quinlan� 
��� presents results on six families of tasks ad�
dressed by other learning systems� including classics such as the de�nition of an arch
	Winston� 
���� classifying trains 	Michalski� 
���� discovering rules for the card
game Eleusis 	Dietterich� 
���� and deciding when chess positions are illegal 	Mug�
gleton et al� 
���� Several experiments involving larger datasets or more di�cult
de�nitions have subsequently been completed� two are reported here for the �rst
time�

��� Recursive list
processing functions

Perhaps our most comprehensive study comes from the domain of learning simple list�
processing functions� reported in 	Quinlan and Cameron�Jones� 
���� All the 
� such
tasks presented in Chapter � of Bratko�s 	
��� well�known Prolog text are tackled
by foil� Two closed worlds are de�ned� containing respectively all lists of length
up to three using elements f�����g and all lists of length up to four using elements
f�������g� For each function� the target relation is speci�ed exhaustively over the
particular closed world so that there is no question of the system�s performance being
in�uenced by the choice of examples� The background relations include components
and all functions that appear in the previous tasks� most of which are irrelevant to
the task at hand�

In almost all cases foil is able to �nd a satisfactory de�nition� although some de��
nitions are correct only in the closed world�� In one case� foil �nds a more concise
de�nition than that given in the book� The relation dividelist�A�B�C� is intended to put
alternate elements from A into lists B and C� Bratko gives a three�clause de�nition�
whereas foil�s has just two clauses�

�Later versions of foil� especially since the introduction of the out�of�world constant �� overcome

most of the remaining problems on these tasks�


�



dividelist�� ��� ��� ���
dividelist�A�B�C� �� components�A�D�E�� components�B�D�F��

dividelist�E�C�F��

where the second clause might be written

dividelist��DjE���DjF��C� �� dividelist�E�C�F��

Other list�processing functions have been investigated� notably learning the quicksort
procedure 	Quinlan� 
��
�

��� Arithmetic functions

Functions such as n�choose�m can also be learned from small closed worlds� The most
complex studied to date is Ackermann�s function� de�ned as

F �m�n� �

���
��

n� 
 if m � �
F �m� 
� 
� if n � �
F �m� 
� F �m�n� 
�� otherwise

In function�free form� the corresponding predicate Ackermann�A�B�C�means F �A�B� �
C� From a closed world containing integers � to �� and a background relation
succ�A�B� meaning B � A�
� foil takes 
��� seconds on a DECstation �������� to
�nd the de�nition

Ackermann���B�C� �� succ�B�C��
Ackermann�A���C� �� succ�D�A�� Ackermann�D���C��
Ackermann�A�B�C� �� succ�D�A�� succ�E�B�� Ackermann�A�E�F��

Ackermann�D�F�C��

This program is interesting because it contains two recursive clauses� one being doubly
recursive� Learning this last clause requires subtle control of recursion since the literal
Ackermann�A�E�F� decreases the second argument while Ackermann�D�F�C� increases
the second argument but decreases the �rst� foil is the only system we know of that
is capable of learning this de�nition�

��� Attribute
value data

Since the theory language available to foil encompasses all symbolic zeroth�order
theories� it is relevant to enquire how the performance of foil compares to that
of zeroth�order systems on attribute�value tasks� A group of two�class classi�cation
tasks was investigated� using no background relations and target relations of the
form Class��V��V������ and Class�V��V������ with one argument for each attribute�
Experiments were carried out� �rst restricting foil to literals of the forms Vi�c�
Vi�t and Vi�t �giving exactly the same theory language available to most zeroth�
order learning systems�� then allowing an extended language including literals such
as Vi�Vj and Vi�Vj that compare the values of pairs of attributes�


�



Results of these experiments appear in 	Cameron�Jones and Quinlan� 
���b� Our
general conclusion is that foil performs slightly better than C��� 	Quinlan� 
��� on
these datasets� especially when permitted to use the extended theory language� but
that learning generally requires more computation� The theories found by foil are
often less simple than those found by C���� indicating that the mechanism to limit
clause complexity described in Section ��� does not adequately prevent over�tting of
the training data� This �nding is supported by other researchers such as F�urnkranz
	
����

��� Protein secondary structure

More evidence for over�tting comes from another task of learning to predict protein
secondary structure 	Muggleton� King and Sternberg� 
���� Proteins consist of long
chains of amino acid residues and at certain positions they form structures such as ��
helices and ��sheets� The target relation here is alpha�Protein�Position� that indicates
when an ��helix occurs at the speci�ed position in a particular protein� Twenty��ve
background relations identify the residue at each position and provide chemical and
physical properties of the residues� The training set consists of 
�
� tuples taken
from twelve proteins with a further �
� tuples from four di�erent proteins used as a
test set�

golem� augmented with a hand�crafted criterion to avoid over�tting in this domain�
is able to �nd �
 clauses that exhibit a predictive accuracy of �� on the test set�
foil performs relatively poorly� �nding �� clauses that have an accuracy of �� on
the test tuples� � lower than the corresponding �gure for golem�

	golem�s performance on this task is further improved by a form of bootstrapping�
The �rst �level �� theory learned above predicts occurrences of ��helices additional to
those recorded in the training data� When these are added as new � tuples� golem
learns a revised �level 
� theory from the modi�ed data� Repeating the process gives
a level � theory whose accuracy on the test data jumps to �
 �

��� Identifying document components

We come now to the �rst new application reported in this paper � learning rules to
locate the logical components of a document such as that shown in Figure �� Di�erent
documents have varying numbers of components and relationships �such as alignment�
between pairs of components� so this is a good example of a task that is ill�suited to
zeroth order learning methods based on �xed�length attribute�value vectors�

Five target relations identify document components relevant to sender� receiver� date�
reference and logo� Plentiful background information is provided by �� relations that
describe ��� components of �� single�page documents� giving each component�s size�
type �e�g� text� picture�� position on the page� and alignment with other components�
The document x� of Figure � with ten components x���x�� is described by 
�� tuples


�



x��sender�

x��receiver�x�

x��logo�
x��date�x��reference�

x�
x�

x�	

x��

Figure 
� Sample document showing components �following Semeraro et al 	
�����

in the background relations�

Results of a leave�one�out cross�validation appear in Table 
� In each run� information
about components of one document is omitted from the training data and used to
test the theory learned from the components of the remaining documents� the same
procedure being repeated for each target relation and each document� Test errors
are broken down into false positives �� tuples incorrectly predicted to belong to the
target relation� and false negatives �� tuples not covered by the learned theory��
Accuracy on unseen test data is excellent� ranging from 
�� for sender and logo to
���� for date�

Table 	� Results on unseen data� document identi�cation tasks�

Target False False Total Error
Relation Pos Neg Errors Rate
sender � � � �
receiver � � � ��� 
date � � � ��� 
reference � � � 
�� 
logo � � � �


�



Table 
� Results on chess endgame

foil gcws

Moves Positions Clauses Uncovered Total Clauses
zero �� � � � �
one �� � � 
� 
�
two ��� 
� � 
� ��
three �
 
� � 
� ��
four 
�� �
 �� �
 ��
�ve ��
 �� � �� 
��
six ��� �
 �
 �� �
seven ��� �� �� 

� �
eight 
��� �� �� 
�� �
nine 
�
� 
�� �
 �
� �
ten 
��� 
�� �� ��� �
eleven ���� 
�� 
�� ��� �
twelve ���� 
�� ��� ��� �
thirteen �
�� ��� 
�� ��� �
fourteen ���� ��� �
 ��
 �
�fteen �
�� �� � �� �
sixteen ��� � � � �
�drawn� ����

��� Moves to win in a chess endgame

The �nal application concerns the simplest chess endgame� King and Rook versus
King� Bain 	
��� studies the task of learning to predict the minimum number of
moves required for a win by the Rook�s side �with values � through 
�� or� failing
this� a draw � there are no positions in which the Rook�s side loses�

Bain formulates this problem as a cascade of learning tasks� From a database of
all legal positions after the removal of symmetric variants� a theory is learned that
describes positions won in zero moves� These positions are then eliminated from the
data and the next task� discriminatingpositionswon in one move from drawn positions
and those won in two or more moves� is presented to the learning system� The process
continues in a similar fashion with the �nal theory discriminating positions won in

� moves from drawn positions� Bain uses a system called gcws� based on golem�
that allows exception predicates to be invented and used in clauses� with it� he �nds
correct de�nitions for the �rst six levels of this task�

Table � summarises results obtained when the experiment was repeated using foil
rather than gcws� For each number of moves to win� the Table shows the number of
� tuples that must be covered by the learned theory� The de�nitions found by foil
often fail to cover all � tuples so� following the practice used by golem� uncovered �
tuples are added as ground clauses� the number of clauses in the �nal theory appears


�



in the column labelled Total� For comparison� the �nal column shows the size of the
theories constructed by gcws�

foil handles this domain comparatively well� Correct de�nitions are found for each
number of moves� with one exception � the de�nition of positions lost in eleven moves
has one false positive error� foil�s de�nitions generally compress the data more than
those found by gcws� with some exact clauses being remarkably simple� Even better
results are obtained if drawn positions are identi�ed �rst� then positions lost in one
move and so on� leaving the �nal theory to distinguish between positions lost in �fteen
and sixteen moves�

�� Related Systems

Elements of foil�s approach have been used in other systems� often with considerable
modi�cation and innovative extension� These developments are typically aimed at
broadening the learning task itself �such as by taking account of additional domain
knowledge�� correcting some perceived de�ciency in foil �such as its tendency to
over�t�� or specialising it for a particular family of tasks �such as learning control
heuristics��

focl 	Pazzani� Brunk and Silverstein� 
��
� Pazzani and Kibler� 
��� is an early
extension of foil that takes advantage of domain knowledge in the form of a partial
theory� intensionally�speci�ed background relations� and relational clich!es� The prior
theory may contain clauses that are too general in that they cover � tuples� and too
speci�c in failing to cover � tuples of the target relation� To investigate this� the
prior theory is elaborated by unfolding its proof tree� guided by the same information
metric that foil uses to select literals to be added to clauses� and complete paths
in the tree that remain too general are specialised by invoking foil�s literal�adding
procedure� Background relations de�ned as clauses rather than as sets of tuples are
evaluated intensionally and� when a clause of a background de�nition has high gain� an
appropriate specialisation of the clause body is added to the current partial clause�
Similarly� relational clich!es consist of schemas containing sequences of literals that
tend to belong together in de�nitions� foilmaymiss such combinations unless at least
one of the individual literals is determinate or has high gain� focl thus represents a
clean union of ideas from explanation�based learning and empirical induction�

Another system from UCI� Audrey II 	Wogulis and Pazzani� 
���� uses similar
mechanisms to specialise over�general theories and to add new clauses� both within a
theory�revision context� Rather than being limited to adding literals� however� this
system uses four revision operators that include replacing some literals in an existing
clause�

Several other researchers have modi�ed foil to make it more robust� especially with
respect to noisy data� mfoil 	Lavra"c and D"zeroski� 
��� replaces foil�s greedy


�



search with beam search� thereby increasing the chances of �nding a good clause�
chooses literals to add to the clause body on the basis of the estimated accuracy of
the new clause� rather than on information gain� and uses a statistical signi�cance
test instead of the MDL criterion to decided when a clause should not be allowed to
grow further� fossil 	F�urnkranz� 
��� employs a single correlation criterion both
for selecting the next literal to add and for stopping the growth of a clause� These
systems perform much better than foil on a chess�derived relation illegal 	Muggleton
et al� 
��� corrupted by moderate levels of noise� learning more compact de�nitions
with higher predictive accuracy�

hydra 	Ali and Pazzani� 
��� deals with noise by extending foil in three dimensions�
The learning task is widened to allow for any number of classes rather than just the
de�nition of a �binary� target relation� hydra then constructs a de�nition for each
class� in our context� this involves learning separate de�nitions for the target relation
R and for not�R�� Since the language of clauses is not closed under negation� one
de�nition might be considerably simpler and more robust than the other� Secondly�
the reliabilities of individual clauses in all theories are estimated from likelihood ratios
derived from their respective coverages of � and � tuples� A query is evaluated
against all theories� e�g� against both the theory for R and the theory for not�R��
The outcome is determined by the most reliable clause from any theory that succeeds
on the query� Finally� hydra uses likelihood improvement rather than information
gain to select the next literal to be added to the clause body� Ablation experiments
suggest that all three changes help to produce more robust learning�

A most promising area for relational learning is the formulation of control heuristics�
Dolphin 	Zelle and Mooney� 
��� blends ideas from explanation�based learning and
induction with the goal of making logic programs run faster� The central idea is to in�
sert a guard literal useful�R�k�query� as the �rst body literal in each nondeterministic
clause k of relation R� preventing the clause from being evaluated unless it is judged
likely to succeed� The � and � tuples of this relation are provided by examples of
when the particular clause succeeds and fails that are extracted from an execution
trace of the original program� from these� a learning program �nds a de�nition of
the guard literal� Although the learning program is based on foil� it embodies an
innovative method of specialising incomplete clauses� The proof of the original query
is generalised by replacing constants with unique variables and from it Dolphin con�
structs a set of specialisation pairs hG�Li� where G is a solved subgoal and L is either
true or an operational literal from the proof that shares one or more variables with G�
Each such pair provides a candidate specialisation of a partial clause H �� B obtained
by unifying head H with G �with most general uni�er ��� and altering the clause to
��H �� B�L�� This allows the head of a clause� as well as its body� to be specialised
and considers only new body literals that are known to be relevant to part of the
proof� foil�s information gain criterion is then used to select a specialisation from
the candidates above� In one impressive example� Dolphin is able to transform a
naive permute�and�check sorting algorithm of complexity O�n�� to an O�n�� insertion
sort�

��



The same authors have developed another similarly�motivated system Chillin 	Zelle�
Mooney and Konvisser� 
���� Zelle and Mooney� 
��� that has learned search control
rules for a nondeterministic English parser� The initial theory consists of ground
clauses obtained directly from the � tuples of the target relation� Successive steps
compress this de�nition by introducing more general clauses and removing subsumed
clauses� A more general clause is found by selecting two existing clauses� forming
the head of a new clause as the least general generalisation of their heads in the
manner of golem� then specialising the clause by adding literals to the clause body�
This last stage is similar to foil� except that the metric used to select literals is
based on notions of compression rather than information gain� Chillin also includes
a mechanism derived from champ 	Kijsirikul� Numao and Shimura� 
��� that can
assess the bene�t of introducing a new relation and learning its de�nition�

Grasshopper 	Leckie and Zukerman� 
��� is another interesting system that learns
to control search in planning domains� Examples of search decisions� both good and
bad� are extracted from the planner�s execution trace and grouped according to the
planning goal that they address and the action chosen� A learning algorithm based on
foil generalises the examples of each group to produce search control heuristics� In
a �nal step� the utility of the learned rules is assessed by comparing their evaluation
cost against their bene�t in reduced search cost� leading to an optimised subset that
minimises overall planning time�

The overview of foil presented in Section ��
 talks only of learning a de�nition for a
single target relation� The implementation� however� allows for any number of target
relations� foil simply tackles them one after another� De Raedt� Lavra"c and D"zeroski
	
��� point out that there are situations in which mutually recursive target relations
can lead to non�terminating programs � recall the caveats to recursive soundness in
Section ���� To overcome this problem� their system mpl develops all de�nitions of
target relations in parallel� checking for global as well as local consistency and using
heuristics for specialising partial clauses that are similar to mfoil�s�

A quite di�erent kind of extension is embodied in Grendel and Grendel� 	Cohen�

���a�b� Relations with high arity can pose severe computational problems for foil
since� if there are v variables in a partial clause� a relation of arity r can give rise
to O��v � r�r� potential next literals� Even when many or most of these are ruled
out by type constraints and the like� the remaining candidates might still be too
numerous to contemplate� Further� high�arity relations may require an impossibly
large set of � tuples if over�generalised clauses are to be avoided� Grendel� attacks
this problem within a foil�like framework by specifying a hypothesis language that
restricts the form of de�nitions to those that make sense in the domain� This not
only prevents consideration of useless literals and literal combinations� but can also
serve in place of � tuples to prevent over�generalisation� the goal is then to �nd a
de�nition in the hypothesis language that covers the � tuples of the target relation�
Cohen 	
���a discusses an application to reverse engineering in which the goal is to
reconstruct the speci�cation of a database interface consisting of over a million lines
of C� Grendel� is able to recover an accurate description of one�third of the system�

�




despite the presence of relations with high arity and clause�level domain constraints
that defeat foil�

�� Areas for Further Research

Systems such as the above extend the basic general�to�speci�c paradigm for inducing
�rst�order theories� The issues that they address are important for the development
of more powerful and �exible learning methods� and many more issues remain to be
tackled in this vigorous research area� In this Section we raise a couple of fundamental
problems that limit foil and that� we suspect� apply in some degree to most �rst�
order systems�

��� Irrelevant information

Any learning problem can be made harder by adding unhelpful information� The e�ect
is to increase the space of possible theories that could be learned� thereby enlarging the
haystack in which we are searching for a �gurative needle� In zeroth�order systems�
where this problem is synonymous with the presence of irrelevant attributes� e�ective
methods for weeding out the non�useful features have been developed 	e�g� John�
Kohavi and P�eger� 
���� Moore and Lee� 
���� in a sense� the problem is under
control� In �rst�order learning� on the other hand� irrelevant information in the form
of unnecessary relations and�or useless �elds of relations can have a dramatic impact
on learning time�

An example comes from the list�processing tasks discussed in Section ��
 using the
smaller closed world of three�element lists� The �rst task is to learn a de�nition of
member and foil requires only ���� seconds to �nd the de�nition of Section ��
� If
the second relation conc�A�B�C� is included as an additional background relation� the
time required to learn the same de�nition jumps to 
��� seconds� or more than ��
times as long� Similarly� adding this excess relation increases golem�s learning time
by a factor of ��� although it now learns a di�erent de�nition

member�A��BjC�� �� conc�D��AjE���BjC���

The impact of extra relations is somewhat unpredictable� Although learning a def�
inition of dividelist� the last task in the original series� does not make use of any of
the 
� relations de�ned by preceding tasks� deleting them produces a comparatively
small reduction in foil�s learning time from �� seconds to 
� seconds�

Practical learning systems will need to be able to deal with large volumes of infor�
mation� selecting only that part relevant to the task at hand� We regard this as the
most pressing unsolved problem in �rst�order learning�

��



��� Incomplete information

When learning recursive de�nitions� most �rst�order systems require that the set of
� tuples for the target relation be largely complete� The few exceptions constrain
the form that de�nitions can take� or depend on information additional to the tuples
themselves� force� 	Cohen� 
��� limits de�nitions to two clauses� one base case and
one linearly recursive clause� and requires that instances of the base clause be iden�
ti�ed� crustacean 	Aha� Lapointe� Ling and Matwin� 
��� searches for de�nitions
consisting of a unit base clause and a single recursive clause containing one literal
in its body� Both systems can then learn accurate de�nitions from sparse� random
samples of tuples from the target relation� Although restricted theory languages such
as these are adequate for a surprisingly large class of relations� there does not seem
to be an easy way to extend approaches of this kind towards more complex recursive
de�nitions�

From foil�s perspective� the problem is that the utility of a clause

R�V�� V�� ���� �� ����� R�W��W�� ����� ����

may not become apparent unless there are numerous ground instances of the clause in
which the ground instances of hV�� V�� ���i and hW��W�� ���i both belong to R� without
this� the recursive literal R�W��W�� ���� has low gain� Even when there are relatively
few missing � tuples� foil may propose additional clauses to cover what seem to be
special cases�

Learning a de�nition of member again illustrates this� When 
� of the �� � tuples of
member are deleted at random� foil �nds the de�nition

member�A�B� �� components�B�A�C��
member�A�B� �� components�B�C�D�� components�D�A�E��
member�A�B� �� components�B�C�D�� member�A�D��

or

member�A��AjC���
member�A��C�AjE���
member�A��CjD�� �� member�A�D��

Notice that the second clause has been added to cover �exceptions� to the general
rule given by the �rst and third clause� From the same data� golem learns a similarly
verbose de�nition

member�A��AjB���
member�A��B�AjC���
member�A��B�CjD�� �� member�A��BjD���

It might seem as though this problem can be solved simply by evaluating clauses in�

��



tensionally when removing the � tuples that they cover� However� foil often learns
a recursive clause before �nding a base case� the latter being essential for any inten�
sional coverage at all� A better approach might use the same kind of bootstrapping
employed by Muggleton et al with the protein data �Section ����� At each iteration�
covered tuples that do not appear explicitly in either the � or � tuples would be
added to the former� In this way it may be possible to assemble a more complete
extensional speci�cation of the target relation� leading to a more accurate de�nition�

�� Conclusion

After some �ve years of development� foil has reached a kind of adolescence� it ex�
hibits some interesting behaviours but has not yet matured su�ciently to withstand
the crucible of large real�world applications� Several extensions of its basic approach
show great promise� especially in areas like learning control heuristics� We are con�
�dent that further research on general�to�speci�c induction over the next few years
will lead to powerful tools for learning in �rst�order domains�

The current version of foil �written in C� is available by anonymous ftp from
ftp�cs�su�oz�au� directory pub� �le foil��sh�

Acknowledgements

This research was made possible by a grant from the Australian Research Council
and assisted by research agreements with Digital Equipment Corporation� We thank
Stephen Muggleton� Giovanni Semeraro and Michael Bain for providing the protein�
document and KRK datasets respectively� We are grateful to William Cohen and
Stephen Muggleton for most helpful comments on a draft of this paper�

References


� Aha� D�W�� Lapointe� S�� Ling� C�X�� and Matwin� S� �
����� Learning
recursive relations with randomly�selected small training sets� Proceedings
Eleventh International Conference on Machine Learning� New Brunswick� New
Jersey� 
��
�� San Francisco� Morgan Kaufmann�

�� Ali� K�� and Pazzani� M�J� �
����� hydra� a noise�tolerant relational concept
learning algorithm� Proceedings Thirteenth International Joint Conference on
Arti�cial Intelligence� Chambery� France� 
����
���� San Francisco� Morgan
Kaufmann�

�� Bain� M�E� �
����� Learning logical exceptions in chess� PhD thesis�
Department of Statistics and Modelling Science� University of Strathclyde�
Scotland�

��



�� Bell� S�� and Weber� S� �
����� On the close logical relationship between foil
and the frameworks of Helft and Plotkin� Proceedings Third International
Workshop on Inductive Logic Programming� Bled� Slovenia� 
���
���

�� Bratko� I� �
����� Prolog Programming for Arti�cial Intelligence ��nd edition��
Wokingham� UK� Addison�Wesley�

�� Cameron�Jones� R�M�� and Quinlan� J�R� �
���a�� Avoiding pitfalls when
learning recursive theories� Proceedings Thirteenth International Joint
Conference on Arti�cial Intelligence� Chambery� France� 
����
���� San
Francisco� Morgan Kaufmann�

�� Cameron�Jones� R�M�� and Quinlan� J�R� �
���b�� First order learning� zeroth
order data� Proceedings AI�� Australian Joint Conference on Arti�cial
Intelligence� Melbourne� �
����
� Singapore� World Scienti�c�

�� Cameron�Jones� R�M�� and Quinlan� J�R� �
����� E�cient top�down induction
of logic programs� SIGART� �� ������

�� Cohen� W�W� �
����� Pac�learning a restricted class of recursive logic
programs� Proceedings Third International Workshop on Inductive Logic
Programming� Bled� Slovenia� ������


�� Cohen� W�W� �
���a�� Recovering software speci�cations with inductive logic
programming� Proceedings AAAI��� Twelfth National Conference on Arti�cial
Intelligence� Seattle� Washington� 
���
��� Menlo Park� AAAI Press�



� Cohen� W�W� �
���b�� Grammatically biased learning� learning logic
programs using an explicit antecedent description language� Arti�cial
Intelligence� ��� ��������


�� De Raedt� L�� Lavra"c� N�� and D"zeroski� S� �
����� Multiple predicate
learning� Proceedings Thirteenth International Joint Conference on Arti�cial
Intelligence� Chambery� France� 
����
���� San Francisco� Morgan Kaufmann�


�� DeJong� G�� and Mooney� R� �
����� Explanation�based learning� an
alternative view� Machine Learning� 	� 
���
���


�� Dietterich� T�G� �
����� The methodology of knowledge layers for inducing
descriptions of sequentially ordered events� Technical Report R����
����
Department of Computer Science� University of Illinois at Urbana�Champaign�
USA�


�� F�urnkranz� J� �
����� fossil� a robust relational learner� Technical Report
TR������� Austrian Research Institute for Arti�cial Intelligence� Vienna�


�� Gold� E�M� �
����� Language identi�cation in the limit� Information and
Control� 	�� ��������

��




�� John� G�S�� Kohavi� R�� and P�eger� K� �
����� Irrelevant features and the
subset selection problem� Proceedings Eleventh International Conference on
Machine Learning� New Brunswick� New Jersey� 
�
�
��� San Francisco�
Morgan Kaufmann�


�� Kijsirikul� B�� Numao� M�� and Shimura� M� �
����� Discrimination�based
constructive induction of logic programs� Proceedings AAAI��
 Tenth
National Conference on Arti�cial Intelligence� San Jose� CA� ������ Menlo
Park� AAAI Press�


�� Lavra"c� N�� and D"zeroski� S� �
����� Inductive Logic Programming� Techniques
and Applications� London� Ellis Horwood�

��� Leckie� C�� and Zukerman� I� �
����� An inductive approach to learning search
control rules for planning� Proceedings Thirteenth International Joint
Conference on Arti�cial Intelligence� Chambery� France� 

���

��� San
Francisco� Morgan Kaufmann�

�
� Michalski� R�S� �
����� Pattern recognition as rule�guided inductive inference�
IEEE Transactions on Pattern Analysis and Machine Intelligence� 
� ������
�

��� Mitchell� T�M�� Keller� R�M�� and Kedar�Cabelli� S�T� �
�����
Explanation�based generalization� a unifying view� Machine Learning� 	�
������

��� Moore� A�W�� and Lee� M�S� �
����� E�cient algorithms for minimizing
cross�validation error� Proceedings Eleventh International Conference on
Machine Learning� New Brunswick� New Jersey� 
���
��� San Francisco�
Morgan Kaufmann�

��� Muggleton� S�� and Buntine� W� �
����� Machine invention of �rst�order
predicates by inverting resolution� Proceedings Fifth International Conference
Machine Learning� Ann Arbor� Michigan� �������� San Mateo� Morgan
Kaufmann�

��� Muggleton� S�� Bain� M�� Hayes�Michie� J�� and Michie� D� �
����� An
experimental comparison of human and machine learning formalisms�
Proceedings of the Sixth International Machine Learning Workshop Ithaca�
NY� San Mateo� Morgan Kaufmann� 

��

��

��� Muggleton� S�� and Feng� C� �
����� E�cient induction of logic programs� In
S� Muggleton �Ed��� Inductive Logic Programming� ��
����� London�
Academic Press�

��� Muggleton� S� King� R�D�� and Sternberg� M�J� �
����� Protein secondary
structure prediction using logic�based machine learning� Protein Engineering�
�� ��������

��



��� Pazzani� M�J�� Brunk� C�A�� and Silverstein� G� �
��
�� A knowledge�intensive
approach to learning relational concepts� Proceedings Eighth International
Workshop on Machine Learning� Evanston� Illinois� �������� San Mateo�
Morgan Kaufmann�

��� Pazzani� M�J�� and Kibler� D� �
����� The utility of knowledge in inductive
learning� Machine Learning� �� 
� ������

��� Quinlan� J�R�� and Rivest� R�L� �
����� Inferring decision trees using the
Minimum Description Length Principle� Information and Computation� ���
��������

�
� Quinlan� J�R� �
����� Learning logical de�nitions from relations� Machine
Learning� �� ��������

��� Quinlan� J�R� �
��
�� Determinate literals in inductive logic programming�
Proceedings Twelfth International Joint Conference on Arti�cial Intelligence�
Sydney� Australia� �������� San Mateo� Morgan Kaufmann�

��� Quinlan� J�R� �
����� C���� Programs for Machine Learning� San Mateo�
Morgan Kaufmann�

��� Quinlan� J�R�� and Cameron�Jones� R�M� �
����� FOIL� a midterm report�
Proceedings European Conference on Machine Learning� Vienna� ����� Berlin�
Springer�Verlag�

��� Sammut� C�A�� and Banerji� R�B� �
����� Learning concepts by asking
questions� In R�S� Michalski� J�G� Carbonell and T�M� Mitchell �Eds���
Machine Learning� An Arti�cial Intelligence Approach �Vol ��� Los Altos�
Morgan Kaufmann�

��� Sammut� C�A� �
����� The origins of inductive logic programming� a
prehistoric tale� Proceedings Third International Workshop on Inductive Logic
Programming� Bled� Slovenia� 
���
���

��� Semeraro� G�� Brunk� C�A�� and Pazzani� M�J� �
����� Traps and pitfalls when
learning logical theories� a case study with foil and focl� Technical Report
������ Department of Information and Computer Science� University of
California� Irvine� USA�

��� Shapiro� E�Y� �
����� Algorithmic Program Debugging� Cambridge� MA� MIT
Press�

��� Winston� P�H� �
����� Learning structural descriptions from examples� In P�H�
Winston �Ed�� The Psychology of Computer Vision� New York� McGraw�Hill�

��� Wogulis� J�� and Pazzani� M�J� �
����� A methodology for evaluating theory
revision systems� results with Audrey II� Proceedings Thirteenth International
Joint Conference on Arti�cial Intelligence� Chambery� France� 

���

��� San
Francisco� Morgan Kaufmann�

��



�
� Zelle� J�M�� and Mooney� R�J� �
����� Combining foil and EBG to speed�up
logic programs� Proceedings Thirteenth International Joint Conference on
Arti�cial Intelligence� Chambery� France� 

���



� San Francisco� Morgan
Kaufmann�

��� Zelle� J�M�� and Mooney� R�J� �
����� Inducing deterministic Prolog parsers
from Treebanks� a machine learning approach� Proceedings AAAI��� Twelfth
National Conference on Arti�cial Intelligence� Seattle� Washington� Menlo
Park� AAAI Press�

��� Zelle� J�M�� Mooney� R�J�� and Konvisser� J�B� �
����� Combining top�down
and bottom�up techniques in inductive logic programming� Proceedings
Eleventh International Conference on Machine Learning� New Brunswick� New
Jersey� ������
� San Francisco� Morgan Kaufmann�

��


