Note: Python Package Index: All Python packages can be searched by name or keyword in the Python Package Index.
For evaluation metrics other than accuracy - like precision, recall and ROC curve - use sklearn.metrics. See http://scikit-learn.org/stable/modules/model_evaluation.html
This module defines a number of methods that can be used for performance evaluation, such as:
Another way to evaluate models is to pass the desired metric as a string as the 'scoring' parameter which is part of some methods. For example:
cross_validation.cross_val_score(model, X, y, scoring='precision')Some possible values of the scoring parameter are 'precision', 'recall', 'f1', 'roc_auc', 'mean_absolute_error', 'mean_squared_error' and 'r2'.
See nfoldcrossvalidation at: https://pythonhosted.org/milk/api.html
The DecisionTreeClassifier
class is capable of multi-class classification.
Found in module sklearn.tree.
See
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
Some important parameters:
Major attributes:
Some important methods:
See http://orange.biolab.si/docs/latest/reference/rst/Orange.classification.tree.html
See http://mlpy.sourceforge.net/docs/3.5/nonlin_class.html#classification-tree
The LinearRegression class in Sklearn.linear_model can perform linear regression on a given dataset.
See http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
Parameters:
Attributes:
See http://orange.biolab.si/docs/latest/reference/rst/Orange.regression.linear.html
See:
See http://mdp-toolkit.sourceforge.net/api/mdp.nodes.LinearRegressionNode-class.html
The DecisionTreeRegressor class can perform regression (Regression tree). Also in sklearn.tree.
See
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
Some important parameters:
Major attributes:
Some important methods:
Note: Scikit-learn does not provide a Model tree implementation. But since this package is open source, you can modify the DecisionTreeRegressor function to obtain a new function that constructs model trees.
See http://orange.biolab.si/docs/latest/reference/rst/Orange.classification.tree.html
See http://orange.biolab.si/docs/latest/widgets/rst/associate/associationrules.html
Scikit-learn: - K-means: http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html - Hierarchical: http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html - DBSCAN: http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html Orange: - K-Means: http://orange.biolab.si/docs/latest/reference/rst/Orange.clustering.kmeans.html - Hierarchical: http://orange.biolab.si/docs/latest/reference/rst/Orange.clustering.hierarchical.html MLPy: - K-means and hiearchical: http://mlpy.sourceforge.net/docs/3.3/cluster.html - An independent implementation of DBSCAN: http://iamtawit.blogspot.in/2012/12/dbscan.html