
Matrices, Vector Spaces, and Information Retrieval
Author(s): Michael W. Berry, Zlatko Drmač and Elizabeth R. Jessup
Source: SIAM Review, Vol. 41, No. 2 (Jun., 1999), pp. 335-362
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/2653077 .

Accessed: 04/02/2014 14:34

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend
access to SIAM Review.

http://www.jstor.org

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=siam
http://www.jstor.org/stable/2653077?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp

SIAM REVIEW (?) 1999 Society for Industrial and Applied Mathematics
Vol. 41, No. 2, pp. 335-362

Matrices, Vector Spaces, and
Information Retrieval*

Michael W. Berryt
Zlatko Drmacf

Elizabeth R. Jessupt

Abstract. The evolution of digital libraries and the Internet has dramatically transformed the pro-
cessing, storage, and retrieval of information. Efforts to digitize text, images, video, and
audio now consume a substantial portion of both academic anld industrial activity. Even
when there is no shortage of textual materials on a particular topic, procedures for in-
dexing or extracting the knowledge or conceptual information contained in them can be
lacking. Recently developed information retrieval technologies are based on the concept
of a vector space. Data are modeled as a matrix, and a user's query of the database is
represented as a vector. Relevant documents in the database are then identified via simple
vector operations. Orthogonal factorizations of the matrix provide mechanisms for han-
dling uncertainty in the database itself. The purpose of this paper is to show how such
fundamental mathematical concepts from linear algebra can be used to manage and index
large text collections.

Key words. information retrieval, linear algebra, QR factorization, singular value decomposition,
vector spaces

AMS subject classifications. 15-01, 15A03, 15A18, 65F50, 68P20

PlI. S0036144598347035

1. Problems in Indexing Large Text Collections. Traditional indexing mech-
anisms for scientific research papers are constructed from information such as their
titles, author lists, abstracts, key word lists, and subject classifications. It is not
necessary to read any of those items in order to understand a paper: they exist pri-
marily to enable researchers to find the paper in a literature search. For example,
the key words and subject classifications listed above enumerate what we consider to
be the major mathematical topics covered in this paper. In particular, the subject
classification 68P20 identifies this paper as one concerned with information retrieval
(IR). Before the advent of modern computing systems, researchers seeking particular
information could only search through the indexing information manually, perhaps

*Received by the editors January 12, 1998; accepted for publication (in revised form) November
4, 1998; published electronically April 23, 1999.

http://www.siam.org/journals/sirev/41-2/34703.html
tDepartment of Computer Science, University of Tennessee, Knoxville, TN, 37996-1301 (berry@

cs.utk.edu). The work of this author was supported in part by National Science Foundation grant
ACIR-94-11394.

tDepartment of Computer Science, University of Colorado, Boulder, CO 80309-0430 (zlatko@
cs.colorado.edu, jessup@cs.colorado.edu). The work of the second author was supported by National
Science Foundation grants ACIR-93-57812 and ACIR-96-25912. The work of the third author was
supported by National Science Foundation grant ACIR-93-57812 and Department of Energy grant
DE-FG03-97ER25325.

335

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

336 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

in a card catalog. If an abstract or key word list were not provided, a professional
indexer or cataloger could have written one.

These manual methods of indexing are succumbing to problems of both capacity
and consistency. At the time of this writing, about 156,000 periodicals are published
in print worldwide, with roughly 12,000 periodicals being added to that number each
year [58]. There are nearly 1.4 million books in print in the United States alone, with
approximately 60,000 new titles appearing there annually [15, 16]. The Library of
Congress maintains a collection of more than 17 million books and receives new items
at a rate of 7, 000 per working day [39]. While these numbers irnply daunting indexing
problems, the scale is even greater in the digital domain. There are currently about
300 million Web pages on the Internet [13, 35], and a typical search engine updates or
acquires pointers to as many as 10 million Web pages in a single day [53]. Because the
pages are indexed at a much slower rate, the indexed collection of the largest search
engine presently totals about 100 million documents [13, 53, 35].

Even when subsets of data can be managed manually, it is difficult to maintain
consistency in human-generated indexes: the extraction of concepts and key words
from documentation can depend on the experiences and opinions of the indexer. De-
cisions about important key words and concepts can be based on such attributes as
age, cultural background, education, language, and even political bias. For instance,
while we chose to include only higher-level concepts in this paper's key word list, a
reader might think that the words vector and matrix should also have been selected.
Our editor noted that the words expository and application did not appear in the list
even though they describe the main purpose of this paper. Experiments have shown
that there is a 20% disparity on average in the terms chosen as appropriate to describe
a given document by two different professional indexers [28].

These problems of scale and consistency have fueled the development of auto-
mated IR techniques. When implemented on high-performance computer systems,
such methods can be applied to extremely large databases, and they can, without
prejudice, model the concept-document association patterns that constitute the se-
mantic structure of a document collection. Nonetheless, while automated systems
are the answer to some concerns of information management, they have their own
problems. Disparities between the vocabulary of the systems' authors and that of
their users pose difficulties when information is processed without human interven-
tion. Complexities of language itself present other quandaries. Words can have many
meanings: a bank can be a section of computer memory, a financial institution, a steep
slope, a collection of some sort, an airplane maneuver, or even a billiard shot. It can
be hard to distinguish those meanings automatically. Similarly, autlhors of medical
literature may write about myocardial infarctions, but the person who has had a mi-
nor heart attack may not realize that the two phrases are synonymous when using the
public library's on-line catalog to search for information on treatments and prognosis.
Formally, polysemy (words having multiple meanings) and synonymy (multiple words
having the same meaning) are two major obstacles to retrieving relevant information
from a database.

Polysemy and synonymy are two of the ftindamental problems that any conceptual
indexing scheme must overcome. Other issues such as the breadth and depth of
concept extraction, zoning (indexing of parts of a document like its title, abstract,
or first few paragraphs, as opposed to the entire document), and term or phrase
weighting may also affect retrieval performance [33]. Indexing approaches (automated
and otherwise) are generally judged in terms of their recall and precision ratings.

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 337

Recall is the ratio of the number of relevant documents retrieved to the total number
of relevant documents in the collection, and precision is the ratio of the number of
relevant documents retrieved to the total number of documents retrieved.

Standardized evaluation of IR began in 1992 with the initiation of the annual
Text REtrieval Conference (TREC) sponsored by the Defense Advanced Research
Projects Agency (DARPA) and the National Institute of Standards and Technology
(NIST) [29]. TREC participants competitively index a large text collection (gigabytes
in size) and are provided search statements and relevancy judgments in order to judge
the success of their approaches. Another DARPA-sponsored effort in standardization
is being lead by the TIPSTER working group [57]. The focus of this group is to
specify an architecture of an IR system (a set of protocols for document processing)
without legislating how that architecture should be implemented. Participants try to
determine ways of integrating new methods of IR using a consistent interface.

The purpose of this paper is to show how linear algebra can be used in automated
IR. The most basic mechanism is the vector space model [50, 18] of IR, in which each
document is encoded as a vector, where each vector component reflects the importance
of a particular term in representing the semantics or meaning of that document. The
vectors for all documents in a database are stored as the columns of a single matrix.
In section 2 of this paper, we show how to translate a collection of documents into a
matrix and how to compare a user's query to those documents through basic vector
operations. The SMART (System for the Mechanical Analysis and Retrieval of Text)
system, introduced in 1983 [50], was one of the first to use the vector space model.
The SMART system [18], tuned using sophisticated heuristic techniques, has been a
top performer at TREC conferences.

The newer method of latent semantic indexing (LSI) or latent semantic analysis
(LSA) is a variant of the vector space model in which a low-rank approximation to the
vector space representation of the database is employed [9, 19]. That is, we replace
the original matrix by another matrix that is as close as possible to the original matrix
but whose column space is only a subspace of the column space of the original matrix.
Reducing the rank of the matrix is a means of removing extraneous information or
noise from the database it represents. Rank reduction is used in various applications
of linear algebra and statistics [14, 27, 31] as well as in image processing [2], data com-
pression [46], cryptography [43], and seismic tomography [17, 52]. LSI has achieved
average or above average performance for several TREC collections [21, 22].

In this paper, we do not review LSI but rather show how to apply the vector
space model directly to a low-rank approximation of the database matrix. The oper-
ations performed in this version of the vector space model admit an easier geometric
interpretation than do those underlying LSI. We refer the interested reader to [9] and
[19] for the details of LSI.

We begin our exposition with the QR factorization, the orthogonal factorization
with which most students are familiar. While this factorization has not actually been
used in IR methods tested to date, it suffices for showing the features of rank reduction,
while being simpler than the singular value decomposition (SVD). In section 3, we
show how the QR factorization of the database matrix can be used to provide a
geometric interpretation of the vector space model. In section 4, we demonstrate
how using the factorization to reduce the rank of the matrix can help to account for
uncertainties in the database.

In sections 5 and 6, we move on to combine the vector space model with the
SVD. The SVD is a form of orthogonal matrix factorization that is more powerful

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

338 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

than the QR factorization. Although the SVD is not often included in introductory
linear algebra courses, students comfortable with the QR factorization should be able
to read and understand these sections. We first introduce the SVD and compare the
low-rank approximations computed from the SVD and the QR factorization. We then
explain how to formulate the comparison of queries and documents via the SVD.

In section 7, we explain what motivates the use of the SVD in place of the QR
factorization in practice by showing how relationships between terms can be discovered
in the vector space model. Such comparisons aid in the refinement of searches based
on the vector space model. The SVD allows such comparisons of terms with terms
as well as documents with documents, while the QR factorization permits only the
latter. In section 8, we depart from the basic mathematics to cover the more advanced
techniques necessary to make vector space and SVD-based models work in practice.
Finally, in section 9, we provide a brief outline of further reading material in IR.

Sections 2-7 of this paper should be accessible to anyone familiar with orthogonal
factorization (like the QR factorization). Section 8 is more difficult; the recent research
results and questions about the practical implementation details of SVD-based models
in it may be challenging reading for students.

2. The Vector Space Model.

2.1. A Vector Space Representation of Information. In the vector space IR
model, a vector is used to represent each item or document in a collection. Each com-
ponent of the vector reflects a particular concept, key word, or term associated with
the given document. The value assigned to that component reflects the importance of
the term in representing the semantics of the document. Typically, the value is a func-
tion of the frequency with which the term occurs in the document or in the document
collection as a whole [20, 55]. Suppose a document is described for indexing purposes
by the three terms applied, linear, and algebra. It can then be represented by a
vector in the three corresponding dimensions. Figure 2.1 depicts that vector when
the terms have respective weights 0.5, 2.5, and 5.0. In this case, the word algebra is
the most significant term in the document, with linear of secondary importance and
applied of even less importance.

A database containing a total of d documents described by t terms is represented
as a t x d term-by-docutment matrix A. The d vectors representing the d documents
form the columns of the matrix. Thus, the matrix element aij is the weighted fre-
quency at which term i occurs in document j [9]. In the parlance of the vector space
model, the columns of A are the document vectors, and the rows of A are the term
vectors. The semantic content of the database is wholly contained in the column
space of A, meaning that the document vectors span that content. Not every vector
represented in the column space of A has a specific interpretation in terms of the
document collection itself (i.e., a linear combination of vectors corresponding to two
document titles may not translate directly into a meaningful document title). What
is important from an IR perspective, however, is that we can exploit geometric rela-
tionships between document vectors to model similarities and differences in content.
We can also compare term vectors geometrically in order to identify similarities and
differences in term usage.

A variety of schemes are available for weighting the matrix elements. The elements
aij of the term-by-document matrix A are often assigned two-part values aij = lijgi.
In this case, the factor gi is a global weight that reflects the overall value of term
i as an indexing term for the entire collection. As one example, consider a very
common term like computer within a collection of articles on personal computers.

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 339

(2.5, 5, 0.5)

0.5

0.4

0.3,

CL~~~~~~/

~0.2

0.1

4s . 3
3 .2.5 ~~~~~~~~~~~~~~2<

2 ~~~~~~~~~~~~~1.5
1 < 1

0.1~~~~~~~~~~~~~~.

Algebra 0 0 Linear

Fig. 2.1 Vector representation of applied linear algebra.

It is not important to include that term in the description of a document as all of
the documents are known to be about computers (whether or not they use the actual
term computer) so a small value of the global weight gi is appropriate.

The factor lij is a local weight that reflects the importance of term i within
document j itself. Local weights range in complexity from simple binary values (0 or
1) to functions involving logarithms of term frequencies. The latter functions have a
smoothing effect in that high-frequency terms having limited discriminatory value are
assigned low weights. Global weighting schemes range from simple normalizations to
advanced statistics-based approaches. See [20] and [55] for more details about term
weighting.

For text collections spanning many contexts (e.g., an encyclopedia), the number
of terms is often much greater than the number of documents: t >> d. In the case of
the Internet, the situation is reversed. A term-by-document matrix using the content
of the largest English language dictionary as terms and the set of all Web pages
as documents would be about 300, 000 x 300, 000, 000 [4, 13, 35]. As a document
generally uses only a small subset of the entire dictionary of terms generated for a
given database, most of the elements of a term-by-document matrix are zero.

In a vector space IR scheme, a user queries the database to find relevant docu-
ments, somehow using the vector space representation of those documents. The query
is a set of terms, perhaps with weights, represented just like a document. Again, it
is likely that many of the terms in the database do not appear in the query, mean-
ing that many of the query vector components are zero. Query matching is finding
the documents most similar to the query in use and weighting of terms. In the vec-
tor space model, the documents selected are those geometrically closest to the query
according to some measure.

One common measure of similarity is the cosine of the angle between the query and
docuinent vectors. If the term-by-document matrix A has columns a4,j = 1,... ,d,

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

340 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

those d cosines are computed according to the formula

aT q _ aijjqi (2.1) CosO % lflqfl 3~ L-q
(2.1) cos(}j ~11 aj 112||1 q 11 2 0/tte2,, q

for j = 1,... ,d, where the Euclidean vector norm X 2 is defined by X 2

xTx = E= x2 for any real t-dimensional vector x. Because the query and docu-
ment vectors are typically sparse, the dot product and norms in (2.1) are generally
inexpensive to compute. Furthermore, the document vector norms 11 aj 112 need be
computed only once for any given term-by-document matrix. Note that multiplying
either aj or q by a constant does not change the cosine value. Thus, we may scale the
document vectors or queries by any convenienit value. Other similarity measures are
reviewed in [30].

2.2. An Example. Figure 2.2 demonstrates how a simple collection of five titles
described by six terms leads to a 6 x 5 term-by-document matrix. Because the content
of a document is determined by the relative frequencies of the terms and not by the
total number of times particular terms appear, the matrix elements in this example
are scaled so that the Euclidean norm of each column is 1. That is, 11 aj 112 = 1 fOr
columns aj, j = 1, . . . , 5. In this way, we use term frequency as the local weight lj
and apply no global weighting (i.e., gi = 1).

The choice of terms used to describe the database determines not only its size but
also its utility. In our example, we used only the terms directly related to cooking,
meaning that the reader interested in French cooking in particular would have no
way of retrieving relevant documents. In this case, adding the terms French and
Viennese to describe the nationalities covered would broaden the representation of
the database semantics in a helpful way. On the other hand, including very common
terms like to or the would do little to improve the quality of the term-by-document
matrix. The process of excluding such high-frequency words is known as stoplisting
[25].

In constructing a term-by-document matrix, terms are usually identified by their
word stems [33]. In our example, the word pastries counts as the term pastry, and
the word baking counts as the term bake. The use of stemming in IR dates back to
the 1960s [40]. Stemming reduces storage requirements by decreasing the number of
words maintained [48].

2.3. Query Matching. Using the small collection of titles from Figure 2.2, we can
illustrate query matching based on angles in a six-dimensional vector space. Suppose
that a user in search of cooking information initiates a search for books about baking
bread. The corresponding query would be written as the vector

q(1) = (1 0 1 0 0 0)

with nonzero entries for the terms baking and bread. The search for relevant doc-
uments is carried out by computing the cosines of the angles Oj between the query
vector q(1) and the document vectors aj by (2.1). A document is returned as relevant
only if the cosine of the angle it makes with the query vector is greater than some
threshold or cutoff value. A practical implementation might use a stringent cutoff like
0.9 [9], but for our small example we use a cosine threshold of 0.5.

For the query q(l), the only nonzero cosines are cos01 = 0.8165 and COS04
0.5774. Hence, all of the documents concerning baking bread (the first and fourth)

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 341

The t = 6 terms:

Ti: bak(e,ing)
T2: recipes
T3: bread
T4: cake
T5: pastr(y,ies)
T6: pie

The d= 5 document titles:

DI: How to Bake Bread Without Recipes
D2: The Classic Art of Viennese Pastry
D3: Numerical Recipes: The Art of Scientific Computing
D4: Breads, Pastries, Pies and Cakes: Quantity Baking Recipes
D5: Pastry: A Book of Best French Recipes

The 6 x 5 term-by-document matrix before normalization, where the
element aij is the number of times term i appears in document title j:

I 0 0 1 0\
1 0 1 1 1
I 0 0 1 0

A O O 0 1 0
0 1 0 1 1
O O 0 1 0

The 6 x 5 term-by-document matrix with unit columns:

0.5774 0 0 0.4082 0
0.5774 0 1.0000 0.4082 0.7071

A- 0.5774 0 0 0.4082 0
_ 0 0 0 0.4082 0

0 1.0000 0 0.4082 0.7071
0 0 C 0.4082 0

Fig. 2.2 The constructi'on of a term-by-document matri'x A.

are returned as relevant. The second, third, and fifth documents, which concern
neither of these topics, are correctly- ignored.

If the user had simply requested books about baki'ng, however, the results would
have been markedly different. In this case, the query vector is given by

q (2) = (1 0 0 ? ? ?)T

and the cosines of the angles between the query and five document vectors are, in

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

342 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

order, 0.5774, 0, 0, 0.4082, and 0. Only the first document, a book about baking bread,
makes the cosine cutoff. The fourth document, which is in fact a more comprehensive
reference about baking, is not returned as relevant.

The IR community has developed a variety of approaches to respond to such
failures of the basic vector space model. Those techniques typically affect how the data
are represented in the term-by-document matrix. Examples include term weighting
schemes, use of a controlled vocabulary (a specified set of allowed terms [33]), and
replacing the exact term-by-document matrix by a low-rank approximation to that
matrix. The latter approach is the basis of the method of LSI [9, 19] and of the new
method described in this paper. In sections 3 to 6 of this paper, we work through
the process of rank reduction, first using the QR factorization and then proceeding
to the perhaps less familiar SVD used in LSI. In both cases, we use the factorizations
to illustrate the geometry of query matching and to explain what can constitute a
reasonable approximation to the term-by-document matrix. The latter is important
as proponents of LSI argue that the rank-reduction step serves to remove noise from
the database representation.

3. The QR Factorization. In this section, we show how the QR factorization can
be used to identify and remove redundant information in the matrix representation of
the database. In linear algebra terms, we identify the rank of the term-by-document
matrix. This process leads us directly to a geometric interpretation of the vector space
model. In section 4, we show how to lower the rank of the matrix further by removing
components that can be attributed to the natural uncertainties present in any large
database. The rank-reduction steps allow us to set portions of the matrix to zero and
thus to ignore them in subsequent computations. Doing so lowers the cost of query
matching and helps to recoup some of the expense of computing the factorization.

Note that the 6 x 5 term-by-document matrix of the example in Figure 2.2 is of
rank 4 because column 5 is the sum of columns 2 and 3. Even greater dependence can
be expected in practice: a database of library materials can contain different editions
of the same book, and a database of Internet sites can contain several mirrors of
the same Web page. As in our example, dependencies can also involve more than
simple copies of information: binary vectors representing the documents applied
linear algebra and computer graphics sum to the binary vector representing
linear algebra applied to computer graphics (where the preposition to is not
considered to be a term), so any database containing all three documents would have
dependencies among its columns.

3.1. Identifying a Basis for the Column Space. Our first step in the rank-
reduction process is to identify dependence between the columns or rows of the term-
by-document matrix. For a rank rA matrix, the rA basis vectors of its column space
serve in place of its d column vectors to represent its column space. One set of basis
vectors is found by computing the QR factorization of the term-by-document matrix

A= QR,

where R is a t x d upper triangular matrix and Q is a t x t orthogonal matrix. A
square matrix Q is orthogonal if its columns are orthonormal. That is, if qj represents a
column of an orthogonal matrix Q, it has unit Euclidean norm (I| q 112 qj qT 1

for j 1,... , t) and it is orthogonal to all other columns of Q (qqi 0 for all
i j). The rows of Q are also orthonormal, meaning that QTQ QQT I.

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 343

This factorization exists for any matrix A. See [26] for methods of computing the
QR factorization. The relation A = QR shows that the columns of A are all linear
combinations of the columns of Q. Thus, a subset of rA of the columns of Q forms a
basis for the column space of A.

We now demonstrate how to identify the basis vectors of the example term-by-
document matrix A from Figure 2.2 by using the QR factorization. If A = QR, the
factors are

-0.5774 0 -0.4082 0 -0.7071 0
-0.5774 0 0.8165 0 0.0000 0

(3.1) Q- -0.5774 0 -0.4082 0 0.7071 0
(3.1) ~ 0 0 0 -0.7071 0 -0.7071

0 -1.0000 0 0 0 0
0 0 0 -0.7071 0 0.7071/

-1.0001 0 -0.5774 -0.7070 -0.4082
0 - 1.0000 0 -0.4082 -0.7071

(3.2) R = | 0.8165 0 0.5774
0 0 0 -0.5774 0)

In (3.1), we have partitioned the matrix Q to separate the first four column vectors
from the remaining columns. In (3.2), we have partitioned the matrix R to separate
the nonzero part from the 2 x 5 zero part. We now rewrite the factorization A = QR as

A= (QA Q) (RA)

(3.3) QARA + QA * ? = QARA,

where QA is the 6 x 4 matrix holding the first four columns of Q, Q' is the 6 x 2
remaining submatrix of Q, and RA covers the nonzero rows of R. This partitioning
clearly reveals that the columns of QA1 do not contribute to the value of A and that
the ranks of A, R, and RA are equal. Thus, the four columns of QA constitute a basis
for the column space of A.

It is important to note here that the clear partitioning of R into zero and nonzero
parts is a feature of the particular matrix A. In general, it is necessary to use column
pivoting during the QR factorization to ensure that the zeros appear at the bottom
of the matrix [26]. When column pivoting is used, the computed factorization is
AP = QR, where P is a permutation matrix. With column pivoting, the first rA
columns of Q form a basis for the column space of the rank rA matrix A, and the
elements of the first rA rows of R provide the coefficients for the linear combinations of
those basis vectors that constitute the columns of A. In particular, if QA is the t x rA
matrix having the basis vectors as columns and if rj represents the jth column of the
matrix R, the jth column of AP is given by the matrix-vector product APej = QArj.
The remaining columns of Q (the columns of Q') are a basis for the orthogonal
complement of the column space of AP and so of the column space of A. Column
pivoting provides important numerical advantages without changing the database, as
permuting the columns of A results only in a reordering of the document vectors.
Because they describe the same constructs, we henceforth use the matrix A in place
of AP for clarity of presentation.

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

344 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

The semantic content of a database is fully described by any basis for the column
space of the associated term-by-document matrix, and query matching proceeds with
the factors QR in place of the matrix A. The cosines of the angles O. between a query
vector q and the document vectors aj are then given by

T _ Qr)Tq T r(QTq
(3.4) cosO 3 a3. q _ Q_ _ _A _ _ _ _ q_ _ _ _ __W (34) Cos

||= 1 aj 11211 q 112 | QAr- 11211 q 112 | r- 11211 q 112

for j = 1, ... , d. In this relation, we have used the fact that multiplying a vector by
any matrix with orthonormal columns leaves the vector norm unchanged; that is,

1W QArj 112 = r(QAr)Qr QArj r=Lr ,r[rj =lrj 11f2

We now revisit the example term-by-document matrix from Figure 2.2 using the query
vector q(l) (baking bread) and observe that there is no loss of information in using
its factored form. As expected, the cosines computed via (3.4) are the same as those
computed using (2.1): 0.8165, 0, 0, 0.5774, and 0.

3.2. The Geometry of the Vector Space Model. The partitioned representation
of the term-by-document matrix in (3.3) also aids in a geometric interpretation of the
query matching procedure. Note that, for the orthogonal matrix Q,

QQT = (QA Q')(QA Q)T = QAQT + QI(QI)T.

Therefore, we can write the query vector q as the sum of its components in the column
space of A and in the orthogonal complement of the column space as follows:

q=Jq =QQT

[QAQT +QI(QI)]q = [QA A +A(A) =QA QT q + Q 1jQ
I
)Tq

(3.5) =qA+qqI

The column space component qA = QAQQTq is called the orthogonal projection of q
into the space spanned by the columns of QA. Note that qA is in fact the closest
approximation of the query vector q in the column space of A. More precisely,

jl q-qAfj2 =min{fjq-Xjl2, x from the column space of A}.

The proof relies on the fact that if the vectors qA and x are both in the column space
of A, the vector qA - x is also. The vector q - qA q is orthogonal to any vector in
that space by definition. Using the Pythagorean theorem,

llq-X112 = llq-qA + qA-X112 = llq-qAf12 + |qA-X112 llq-qAL12.

Substituting (3.5) into (3.4) reveals that only the component qA actually con-
tributes to the dot products used to compute the cosines between the query and
document vectors:

a.qA + aj qA a[qA +a. A A q

11 a- 11211 q 112 11 aj 11211 q 112

Because a is a column of A, it is orthogonal to the columns of QA, which implies
that a.QA 0 and that the cosine formula simplifies to

cs a qA + 0 * (QA)T q afTqA

J flaj fl2flqfl2 flaj fl2flqfl2

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 345

One interpretation of this result is that the user's imperfect query is automatically
replaced in the dot product computation with its best approximation from the content
of the database. The component q , which cannot share content with any part of the
column space of A, is ignored. If we take that observation one step farther, we can
replace q with its projection altogether and compute a new measure of similarity:

aTq
(3.6) cos0 = a qA

11aj 12 11 A 12

That is, we compare the projection of the user's query to the document vectors. For
a given index j,the two cosines are related by

(3.7) cosO3 = cos i = cosqA2 1 qA 112
1l q 112 j|| qA 2 + 11 qA 112

As the ratio of norms on the right-hand side of (3.7) is bounded above by 1, the
cosines computed using q are always less than or equal to those computed using qA.
As a result, a query vector nearly orthogonal to the column space of A is more likely
to be judged relevant when using qA than when using q, even though such a vector has
only a tiny component in that space. In other words, while use of (3.6) may help to
identify more of the relevant documents, it may also increase the number of irrelevant
ones. In IR terminology, this phenomenon is referred to as an increase in recall at the
risk of reduced precision [33].

4. The Low-Rank Approximation. Up to this point, we have used the QR fac-
torization to explain the geometry of the query matching procedure. In addition, the
QR factorization gives us a means of dealing with uncertainties in the database. Just
as measurement errors can lead to uncertainty in experimental data, the very process
of indexing the database can lead to uncertainty in the term-by-document matrix. A
database and its matrix representation may be built up over a long period of time, by
many people with different experiences and different opinions about how the database
content should be categorized. For instance, in the example of Figure 2.2, one could
argue that the fifth document is relevant to baking since it is about pastry recipes,
which are simply instructions for baking pastry. Under that interpretation the (un-
normalized) term-by-document matrix A would have the entry A15 = 1. Because the
best translation from data to matrix is subject to interpretation, a term-by-document
matrix A might be better represented by a mnatrix sum A + E, where the uncertainty
matrix E may have any number of values reflecting missing or incomplete information
about documents or even different opinions on the relevancy of documents to certain
subjects.

Now, if we accept the fact that our matrix A is only one representative of a whole
family of relatively close matrices representing the database, it is reasonable to ask if
it makes sense to attempt to determine its rank exactly [56]. For instance, if we find
the rank rA and, using linear algebra, conclude that changing A by adding a small
change E would result in a matrix A + E of lesser rank k, then we may as well argue
that our problem has a rank-k matrix representation and that the column space of
A is not necessarily the best representation of the semantic content of the database.
Next we show how lowering the rank may help to remove extraneous information or
noise from the matrix representation of the database.

To proceed, we need a notion of the size of a matrix. In particular, we need to be
able to say when a matrix is small in comparison to another matrix. If we generalize

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

346 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

the Euclidean vector norm to matrices, the result is the so-called Frobenius matrix
norm, which is defined for the real t x d matrix X by

t d

(4.1) ||X||F = E EXAj
i=1 j=l

The Frobenius norm can also be defined in terms of the matrix trace Trace(X), which
equals the sum of the diagonal elements of the matrix XTX:

(4.2) IIXIIF Trace(XTX) Trace(XXT).

Using the latter definition, we show that premultiplying the matrix X by a t x t
orthogonal matrix 0 leaves the Frobenius norm unchanged:

IIOXIIF Trace((OX)T (OX)) Trace(XTOTOX) = TFace(XTX) =IXfF.

Similarly, IIXVIIF = |lXIIF for any orthogonal d x d matrix V.
Our aim is to find a reasonable low-rank approximation to the matrix A. We focus

on the upper triangular matrix R, recalling that the ranks of R and A are equal. While
the rank of A is not generally obvious, the rank of R is easy to determine, as it is
equal to the number of nonzero entries on its diagonal. The QR factorization with
column pivoting aids us in manipulating the rank of R, as it tends to separate the
large and small parts of the matrix, pushing the larger entries toward the upper left
corner of the matrix and the smaller ones toward the lower right. If this separation
is successful, the matrix R can be partitioned to isolate the small part. For example,
the factor R for our example problem can be partitioned as follows:

(-1.0001 0 -0.5774 -0.7070 -0.4082
0 -1.0000 0 -0.4082 -0.7071
0 0 0.8165 0 0.5774 R,, R12 R= ~0 0 0 -0.5774 0 0 R22.

00 0 0 0
00 0 0 0

Under this partitioning, the submatrix R22 is a relatively small part of the matrix R.
Specifically, || R22 |IFIII R IIF = 0.5774/2.2361 = 0.2582.

We now create a new upper triangular matrix R by setting the small matrix
R22 equal to the zero matrix. The new matrix R? has rank 3, as does the matrix
A + E = QR. The uncertainty matrix E is then given by the difference

E= (A + E)-A

QR,, R12)Q(, R12)

=Q (?)Q (R22)

0Q(O -R22)

Note that

1f E IIF 0 R) F R22 IIF

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 347

Because 11 A IIF = 11 R IF' 11 E F/ 1l A IIF = || R22 ||F/|| R IIF = 0.2582. In words,
making a 26% relative change in the value of R makes the same-sized change in A,
and that change reduces the ranks of both matrices by 1. Recall that uncertainties of
roughly this order may be introduced simply by disagreement between indexers [28].
Thus, we may deem it acceptable to use the rank-3 approximation A + E in place
of the original term-by-document matrix A for query matching. If we compute the
cosines using (3.4), we need never compute the matrix A + E explicitly but rather
can use, from its QR factors, the first three columns of Q and the triangular matrix
R which has three zero rows.

To verify that we have not caused undue loss of accuracy, we return to the example
of Figure 2.2 using the matrix A+ E in place of the original term-by-document matrix
A. The cosines computed for query q(l) (baking bread) are 0.8165, 0, 0, 0.7071, and
0, and the cosines computed for query q2 (baking) are 0.5774, 0, 0, 0.5000, and 0.
In both of these cases, the results are actually improved, meaning that our rank-3
approximation A + E appears to be a better representation of our database than is
the original term-by-document matrix A.

To push the rank reduction farther, we repartition the matrix R so that its third
row and column are also included in R22. In this case, 11 R22 IIF!II R IIF = 0.5146,
and discarding R22 to create a rank-2 approximation of the term-by-document matrix
introduces a 52% relative change in that matrix. The cosines for q(1) are now 0.8165,
0, 0.8165, 0.7071, and 0.4082, and for q2, they are 0.5774, 0, 0.5774, 0.5000, and
0.2887. In both cases, some irrelevant documents are incorrectly identified, meaning
that the 52% relative change in R and A is unacceptably large.

In general, it is not possible to explain why one variant of the term-by-document
matrix works better than another for a given set of queries. We have seen, however,
that it can be possible to improve the performance of the method by reducing the rank
of the term-by-document matrix. Note that even the 26% change that we've chosen
as acceptable in our example is quite large in the context of scientific or engineering
applications where accuracies of three or more decimal places (0.1% error or better)
are typically required.

5. The Singular Value Decomposition. In sections 3 and 4, we show how to
use the QR factorization in the context of a vector space model of IR. Note that
while that approach gives us a reduced-rank basis for the column space of the term-
by-document matrix, it gives us no such information about its row space. Thus,
there is no mechanism for term-term comparison (as described in section 7 of this
paper). In this section, we introduce an alternate approach, based on the SVD, that,
while more expensive computationally than the QR factorization [26], simultaneously
gives us reduced-rank approximations to both spaces. Furthermore, the SVD has the
additional mathematical feature of allowing us to find a rank-k approximation to a
matrix A with minimal change to that matrix for a given value of k.

The fundamental mathematical construct underlying this new approach is the
SVD of the term-by-document matrix A. That decomposition is written

A= UEVT,

where U is the t x t orthogonal matrix having the left singular vectors of A as its
columns, V is the d x d orthogonal matrix having the right singular vectors of A as its
columns, and Z is the t x d diagonal matrix having the singular values a1 ?> 2 > * * * >
amin(t,d) of A in order along its diagonal. This factorization exists for any matrix A.
See [26] and the papers cited in section 8.3 of this paper for methods for computing

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

348 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

t > d:

* * * * * * * * . ~ L* *

V T

A UZ

t<d:

A U ,
V T

Fig. 5.1 IThe singular value arid si'ngular vector matrices.

the SVD. Figure 5.1 shows the relative sizes of the matrices U, E, and V when t > d
and when t < d. All entries not explicitly listed in the singular value matrices are
zero.

The rank rA of the matrix A is equal to the number of nonzero singular values.
It then follows directly from the orthogonal invariance of the Frobenius norm that
A IF is defined in terms of those values:

tAHFUZVT F T Z E(2
j=1

There are many parallels between the SVD A U VT and the QR factorization
ARh QR. Just as the rankerA of the matrix A equals the number of nonzero diagonal
elements of R, so does it equal the number of nonzero diagonal elements of v. Just
as the first rA columns of Q are a basis for the column space of A, so are the first
rA COlUMnS Of U. (In addition, the first rA rows of VT are a basis for the row space
of A.) Just as we created a rank-k approximation to A, where k < rA, by setting all
but the first k rows of R equal to zero, so can we create a rank-k approximation Ak
to the matrix A by setting all but the k largest singular values of A equal to zero.

A fundamental difference between the two factorizations is in the theoretical un-
derpinnings of that approximation. More precisely, a classic theorem by Eckart and
Young [23, 42] states that the distance between A and its rank-k approximations is
minimized by the approximation Ak. The theorem further shows how the norm of
that distance is related to singular values of A. It reads

(5.1) IA -AkHlF min IIA -XIF ~ cT 1+c2
rank(X)<k rA

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 349

Here Ak =UkkV,T, where Uk is the t x k matrix whose columns are the first k
columns of U, Vk is the d x k matrix whose columns are the first k columns of V, and
Sk is the k x k diagonal matrix whose diagonal elements are the k largest singular
values of A.

We return now to the example matrix from Figure 2.2. The SVD of that matrix
is A= UYVT where

(0.2670 -0.2567 0.5308 -0.2847 -0.7071 0
0.7479 -0.3981 -0.5249 0.0816 0 0

u- 0.2670 -0.2567 0.5308 -0.2847 0.7071 0 0.1182 -0.0127 0.2774 0.6394 0 -0.7071
0.5198 0.8423 0.0838 -0.1158 0 0
0.1182 -0.0127 0.2774 0.6394 0 0.7071 /
1.6950 0 0 0 0

0 1.1158 0 0 0

S- 0 0 0.8403 0 0
_ 0 0 0 0.4195 01

(0.4366 -0.4717 0.3688 -0.6715 0
0.3067 0.7549 0.0998 -0.2760 -0.5000

v= 0.4412 -0.3568 -0.6247 0.1945 -0.5000
0.4909 -0.0346 0.5711 0.6571 0
0.5288 0.2815 -0.3712 -0.0577 0.7071/

This rank-4 matrix has four nonzero singular values, and the two zero rows of Z signal
that the first four columns of U constitute a basis for the column space of A.

Using (5.1), we establish that IIA - A31F = 74 =0.4195 and that, since flAHIF
2.2361, IIA-A3 1F/IIA11F 0.1876. Similarly, jjA-A2jHF/IIAHIF 0.4200. Therefore,
only a 19% relative change is required to reduce the rank of A from 4 to 3, while
it would take a 42% relative change to reduce it from 4 to 2. If we consider 19% a
reasonably small change and 42% too large compared to the initial uncertainty in our
model, then we can accept rank 3 as the best for our model.

The columns of A3 span a three-dimensional subspace of the column space of A.
This subspace is a good choice because a relatively small change is required to lower
the rank of A by 1 (thereby obtaining A3), while a relatively large one is required
to lower its rank one unit farther. In our model, we believe that this subspace and
the corresponding matrix A3 represent the structure of the database well. In other
words, we assume that the true content of the database cannot be easily reduced to
a lower dimensional subspace. Thus, in our small example, we are able to identify a
rank (k = 3) that provides a reasonable compromise between accuracy and problem
size. How to choose the rank that provides optimal performance of LSI for any given
database remains an open question and is normally decided via empirical testing [9].
For very large databases, the number of dimensions used usually ranges between 100
and 300 [38], a choice made for computational feasibility as opposed to accuracy. Using
the SVD to find the approximation Ak, however, guarantees that the approximation
is the best we can create for any given choice of k.

As expected, the relative changes of 19% and 42% required to reduce the rank
of the matrix via the SVD are less than the corresponding changes of 26% and 52%

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

350 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

The original term-by-document matrix:

0.5774 0 0 0.4082 0
0.5774 0 1.0000 0.4082 0.7071

A- 0.5774 0 0 0.4082 0
_ 0 0 0 0.4082 0

0 1.0000 0 0.4082 0.7071
0 0 0 0.4082 0

The rank-3 approximation computed using the QR factorization:

0.5774 0 0 0.4082 0
0.5774 0 1.0000 0.4082 0.7071
0.5774 0 0 0.4082 0

A 0 0 0 0 0
0 1.0000 0 0.4082 0.7071
0 0 0 0 0

The rank-3 approximation computed using the SVD:

0.4971 -0.0330 0.0232 0.4867 -0.0069'
0.6003 0.0094 0.9933 0.3858 0.7091
0.4971 -0.0330 0.0232 0.4867 -0.0069

A3 = 0.1801 0.0740 -0.0522 0.2320 0.0155
-0.0326 0.9866 0.0094 0.4402 0.7043
0.1801 0.0740 -0.0522 0.2320 0.0155

Fig. 5.2 The term-by-document matrix A and its two rank-3 approximations.

required to do it by the QR factorization. Keeping these numbers in mind, it is inter-
esting to make a visual comparison of the original term-by-document matrix A and
the two rank-3 approximations. As shown in Figure 5.2, the QR-based approximation
A looks a lot more like the original matrix than does the more accurate SVD-based ap-
proximation A3. These results demonstrate the danger of making assumptions about
accuracy based on appearance.

Recall that the original term-by-document matrix A was constructed from term
frequencies, thus all of its entries are nonnegative. The presence of negative elements
in Ak is not a problem but rather a reflection of the fact that the entries are linear
combinations of the entries of A. Keep in mind that the database content is modeled
by the geometric relationships between the document vectors (columns of Ak), not by
the individual components of those vectors.

6. The Reduced-Rank Vector Space Model. Just as we did for the QR factor-
ization, we can develop a formulation of query matching based on the SVD. One form
of the vector space model that uses the SVD is LSI, as defined in [9] and [19]. In this
section, we introduce a new SVD-based variant of the vector space model that follows

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 351

more directly from the preceding discussion than does LSI. We compare a query vec-
tor q to the columns of the approximation Ak to the term-by-document matrix A. If
we define ej to be the jth canonical vector of dimension d (the jth column of the d x d
identity matrix), the jth column of Ak is given by Akej. The cosines of the angles
between the query vector q and approximate document vectors are then computed by

cosO0 - (Akej)Tq (UkYkV1[e)Tq eTVk(UT q)
|| Akeflj 11 12 q 2 UkkVk7ej 112 1f q 112 || fkVk Ej 112 || q 112

for j 1,... , d. If we define the vector sj = kVkT ej, the formula reduces to

(6.1) S~~~~~~~T VUkT q) (6.1) CosOj - 1U'j) j 1 ...,Idi
- 1 Sj 112 11 12

and the cosines can be computed without explicitly forming the t x d matrix Ak. The
norms 11 sj 112 are computed once for each term-by-document matrix and subsequently
used for all queries.

Equation (6.1) is rich in geometry. The k elements of the vector sj are the coordi-
nates of the jth column of Ak in the basis defined by the columns of Uk. In addition,
the k elements of the vector Uk7q are the coordinates in that basis of the projection
Uk UkTq of the query vector q into the column space of Ak. These observations parallel
those made for the QR factorization in section 3.2 and so imply that an alternative
formula for the comparison could be formed solely from the projected query vector:

(6.2) COS S(UT q)d.
Sj 1 2 11Uk7jq 1

In this case, the cosine computation uses only k-dimensional vectors after the one-
time computation of U, q. Because the query vector q is typically very sparse, the
cost of computing UTjq iS itself low. For all document vectors, cos Oj' > cos 0, so that
recall may be improved at the expense of precision if (6.2) is used in place of (6.1).

Just as was the case for the QR factorization, lowering the rank lowers the cost
of query matching. In practice (for LSI), lowering the rank also lowers the cost of the
factorization itself. It is never necessary to compute the full SVD of A it is sufficient
to compute only the select singular values and singular vectors that make up Sk, Uk,
and Vk.

Let us now revisit the query q(l) for books about baking bread in the example
of Figure 2.2. Using the rank-3 approximation A3 (k = 3) and (6.1), the cosines are
0.7327, -0.0469, 0.0330, 0.7161, and -0.0097. The first and fourth books are still
correctly identified this time with nearly equal relevance ratings. The remaining
cosines are no longer zero but are still tiny with respect to the cutoff of 0.5, meaning
that no irrelevant books are incorrectly returned. Using the second query vector
q(2) about baking and A3 results in the cosines 0.5181, -0.0332, 0.0233, 0.5064,
and -0.0069, so that both books about baking are returned, again with very similar
relevance ratilngs.

Running the same tests with the rank-2 approximation A2 leads to the cosines
0.5181, -0.1107, 0.5038, 0.3940, and 0.2362 for the query vector q(l) (baking bread).
Now the unlikely title Numerical Recipes is ranked as highly as the appropriate first
document, but the fourth document (perhaps the best match) does not make the 0.5
cutoff. The cosines computed for the query vector q(2) (baking) are all less than

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

352 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

0.5. These nonsensical results conifirm our suspicion that A2 is not a reasonable
approximation to A.

We note again that, unlike the QR factorization, the SVD provides us with a
mechanism for low-rank representation of both the row and column spaces of the
term-by-document matrix A. Thus, the SVD-based method can be used both for
the query-document comparison just described and for a reduced-ranlk version of the
term-term comparison that is the subject of section 7.

7. Term-Term Comparison. Up to this point, we have been concerned with
the vector space model as a mechanism for comparing queries with documents. With
minor variation, the model can also be used to compare terms with terms. When
implemented as part of a search engine, term-term comparison provides a tool to help
refine the results of a search automatically. An example is presented in Figure 7.1.
The five titles listed in that figure are the results of a search of a large and diverse
collection of book titles using the single polysemous key word run as the query.
The titles reflect three of the mniany meanings of the key word. We use term-term
comparison to help focus the result.

To begin, we create a new 7 x 5 term-by-document matrix G using the docu-
ment vectors returned in the search. Term-term comparison is then carried out by
computing the cosines of the angles Wij between all pairs of term vectors i and j:

(7.1) cos wii = || GT)(112 || GTej 112

for i, j = 1, . . . , 7, where el denotes the Ith canonical vector of dimension t (the Ith
column of the t x t identity matrix). The cosines are listed in the matrix C, where
Cij = coswij. For clarity of presentation, only the entries in the top half of the
symmetric matrix C are shown.

The entry Cij reveals how closely term i is associated with term j. If the entry
is near 1, the term vectors for the two terms are nearly parallel and the terms are
closely correlated. In this case, the terms are similarly used across the collection of
documents and so have similar functions in describing the semantics of those docu-
ments. Geometrically, the vectors occupy nearby locations in the row space of the
term-by-document matrix. If the entry Cij is near zero, the vectors are nearly orthog-
onial and the corresponding terms are not related. As expected, the cosine matrix C
shows a nonzero cosine for the angles between the term vector for run and all other
term vectors. It is the cosines of the angles between the remaining term vectors that
are more interesting. They show that the remaining term vectors divide into three
geometrically distinct groups, where the first group corresponds to terms 2 through
4, the second to terms 5 and 6, and the third to term 7 alone.

The geometric separation of the term vectors translates into three semantically
independent groups of terms. The terms bike, endurance, and training identify
documents about the sport of running, while the other two groups of terms are associ-
ated with other meanings of the term run. The process of grouping terms according
to their related content in this way is known as clustering [33]. Using these results, anl
automated indexing tool can prompt the user to idenitify which of the three meanings
of run is of interest and so help the user to refinie the search. Clustering thus serves
as one mechanisin for dealing with polysemy.

It is this application of the vector space model that justifies use of the SVD for
the reduced-rank method when Ak = UkEkV1T replaces A. Recall that the columns
of Uk formed a basis for the column space of Ak, and so those columns could be used

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 353

The t = 7 terms:

TI: runi(niing)
T2: bike
T3: endurance
T4: training
T5: band
T6: music
T7: fishes

The d= 5 document titles:

D1: Complete Triathlon Endurance Training Manual: Swim, Bike, Run
D2: Lake, River and Sea-Run Fishes of Canada
D3: Middle Distance Runininig: Training and Competition
D4: Music Law: How to Run Your Band's Businiess
D5: Running: Learniing, Training, Competing

The 7 x 5 term-by-document matrix with unit columns:

0.5000 0.7071 0.7071 0.5774 0.7071
0.5000 0 0 0 0
0.5000 0 0 0 0

G 0.5000 0 0.7071 0 0.7071
0 0 0 0.5774 0
0 0 0 0.5774 0
0 0.7071 0 0 0

Cosines of angles between term vectors:

1.0000 0.3464 0.3464 0.7746 0.4000 0.4000 0.4899
1.0000 1.0000 0.4472 0 0 0

1.0000 0.4472 0 0 0
C= 1.0000 0 0 0

1.0000 1.0000 0
1.0000 0

1.0000

Fig. 7.1 Identifying polysemy via term cornparison.

in place of the columns of Ak for query matching. In the same way, the rows of Vk
are a basis for the row space of Ak anid so can replace the rows of Ak in (7.1). Thus,
in a reduced-rank approximation, the cosine becomes

(e[T UkZ Ek VkT) (Vk Sk Ukjej) (eT Uk Sk) (E k UkCJ)
| VkEkU Uei 112 VkkUkC 2 T EkUTei II2 ,1kUk ej U 2

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

354 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

for i =1,...,t and j =1,...,d. Defining bj =kUk ej, we have

bT b
cos wij =

b 12 11b 12

for i = 1,,t and j=1,.. ,d.
In addition to the geometric measure of similarity used in Figure 7.1, techniques

based on graph-theoretic concepts (e.g., links, cliques, connected components) are
sometimes used to produce approximate clusters directly from the term frequencies
stored in the original term-by-document matrix. Clusters formed by any method may
be merged or split depending on the level of similarity among clusters. Clustering
information can be used to generate statistical thesauri in which terms are grouped
according to how often they co-occur under the assumption that terms that typically
appear together should be associated with similar concepts. Such thesauri are used
for query expansion and refinement. See [33] for a more thorough discussion of term
(and document) clustering techniques.

8. What We Do to Really Make IR Work. Scientific computing is rarely a
straightforward application of textbook algorithms. Implementing vector space meth-
ods in IR is no different. In this section, we discuss some techniques used in practice to
index and manage large collections of documents using LSI. They also apply directly
to the SVD-based method described in section 6. Most of the material in this section
is more advanced than that covered in the preceding sections, so we review only the
basic ideas and provide references to more detailed explanations.

8.1. Relevance Feedback. An ideal IR system would achieve high precision for
high levels of recall. That is, it would identify all relevant documents without also
returning any irrelevant ones. Unfortunately, due to problems such as polysemy and
synonymy (described in section 1), a list of documents retrieved for a given query is
almost never perfect, and the user has to ignore some of the items.

In practice, precision can be improved using relevance feedback [49], that is, spec-
ifying which documents from a returned set are most relevant to the information
sought and using those documents to clarify the intent of the original query. The
term-term comparison procedure described in section 7 provides one mechanism for
relevance feedback by which the user can improve a query based on term cluster-
ing information. Relevance feedback can also be carried out in the column space of
the term-by-document matrix. In particular, the query can be supplemented with
or replaced by the vector sum of the most relevant documents returned in order to
focus the search nearer to those document vectors. We now provide a mathematical
description of the latter relevance feedback procedure.

Because we are concerned only with information contained within the column
space of Ak, we assume that the original query vector q lies within that space. If
not, we replace the query vector with its projection into that space (q *- UkUTkq).
To provide a common ground for the query and document vectors, it is convenient
to describe them both in terms of the same basis for the rank-k approximation to
the column space. We choose the basis given by the columns of Uk and then work
directly with the k-dimensional vectors that provide the coordillates of the vectors
in that basis instead of working directly with the much larger t-dimnensional query
and document vectors. The coordinates of the query vector are the elements of the
vector U7Tq, and the coordinates of the jth column UkEkV Tej of the matrix Ak are
the elements of the vector EkVk ie.

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 355

Suppose that the most relevant result of a user's search is the single document
aj. The new and improved query is then the sum

qew = UkUj T+ a
UkUk q + UkEkVjkej
Uk(U q + YkVk ej).

(If the document vector aj is not in the column space of Ak, it should also be replaced
with its projection into that space, a. +- UkUj aj.) If a larger collection of documents
is relevant, the new query can be written as

d

(8.1) qnew = q + , wjaj = Uk(UTq + kVkIW),
,}=1

where the vector element wj is 1 if ai is relevant and 0 otherwise. If the query vector
is replaced by the sum of document vectors, the vector q is replaced by zero in (8.1).
The vector UkTq was formed in the original cosine computation, so the new query
is formed efficiently via the sum of vectors of dimension k. We can now repeat the
comparison using qnew in place of q. If (as we did for (6.1)) we define the vector
3] =ZkVkTe., the cosine formula is now

sT(U Tqnew)

Sj 11 2 || qnew 112

for j 1,.. , d. There is empirical evidence that replacing the query with a combi-
nation of a few of the most relevant documents returned can markedly improve the
performance of LSI in some cases [20].

8.2. Managing Dynamic Collections. Like the weather, databases rarely stay
the same. Information is constantly added or removed, meaning that catalogs and
indexes become obsolete or incomplete (sometimes in a matter of seconds). For the
LSI model, the most obvious approach to accommodating additions (new terms or
documents) is to recompute the SVD of the new term-by-document matrix, but, for
large databases, this procedure is very costly in time and space. Less expensive
alternatives, folding-in and SVD-updating, have been examined in [9], [44], and [54].
The first of these procedures is very inexpensive computationally but results in an
inexact representation of the database. It is generally appropriate to fold documents
in only occasionally. Updating, while more expensive, preserves (or restores) our
representation of the database. In this section, we briefly review both procedures.

8.2.1. Folding-In. Folding a new document vector into the column space of an
existing term-by-document matrix amounts to finding coordinates for that document
in the basis Uk. The first step in folding a new t x 1 document vector p into the
column space is to project it onto that space. Let p represent the projection of p;
then, following the discussions in section 6,

(8.2) p=UkUTjp.

This equation shows that the coordinates of p in the basis Uk are given by the elements
of the vector UT p.

The new document is then folded in by appending the k-dimensional vector U7Tj

as a new column of the k x d matrix EkVkT. Because the latter matrix product is not

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

356 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

actually computed, the folding-in is carried out implicitly by appending _TUEk-I as
a new row of Vk to form a new matrix Vk'. The implicit product EkVk' is then the
desired result. Note that the matrix Vk' is no longer orthonormal. In addition, the
row space of the matrix Vk does not represent the row space of the new term-by-
document matrix. Furthermore, if the new document p is nearly orthogonal to the
columns of Uk, most information about that document is lost in the projection step.

Similarly, to fold in a d x 1 term vector wb whose elements specify the documents
associated with a term, wb is projected into the row space of Ak. Let w represent the
term projection of w-; then

W = VkVkThw.

The coordinates V Tw of the projected vector w are then appended to the matrix Uk
as a new row. In this case, the orthogonal representation of the column space of the
term-by-document matrix breaks down [9, 44].

8.2.2. SVD-Updating. An alternative to folding-in that accounts for the effects
that new terms and documents might have on term-document associations while still
maintaining orthogonality was first described in [9] and [44]. This approach comprises
the following three steps: updating terms, updating documents, and updating term
weights. As pointed out by Simon and Zha [54], the operations discussed in [9] and
[44] may not produce the exact SVD of the modified reduced-rank LSI model (i.e., Ak
from section 4.) Those authors provide alternative algorithms for all three steps of
SVD-updating, and we now review them. For consistency with our earlier discussion,
we use column pivoting in the QR factorizations, although it is not used in [9], [44],
and [54].

Updating Terms. Suppose that r term vectors are added to an existing LSI database
of d documents. If T is the r x d matrix of new term vectors, the new term-by-
document matrix is formed by appending T to the rows of the rank-k t x d matrix
Ak = UkZkV T. The result is the (t + r) x d matrix

(T)

By construction, the rank of B is greater than or equal to the rank k of Ak. An
approximation to the SVD of B is used to obtain a new rank-k factorization Bk =
UBEB V, reflecting the change in semantic structure of the database caused by the
addition of terms.

The factorization of B proceeds in two stages. In the first, we create a block
trapezoidal matrix pre- and postmultiplied by matrices with orthonormal columns
and rows, respectively. In the second, we modify that factorization to produce the
approximate SVD of B. To begin, we replace Ak by its SVD and factor out the
singular vector matrices:

VT ~ V

B (Ak) (Ukzkig k)

Uk- ? 0 Ek ? 0

0 O IJ TVk- I T(I - kV T

(8.3) (~~Uk ?) k ? (0 (-kVk)

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 357

At this point, the interior matrix in the matrix product is triangular and the left
exterior matrix is orthogonal, but the right exterior matrix is not. While the columns
of Vk are orthonormal, the columns of Vk = (I - VkV T)TT are not. It is, however, ~~~~~~~~~
the case that the columns of Vk belong to the orthogonal complement of the column
space of Vk. (Each column of that matrix is formed by subtracting the projection of
a column of TT into the column space of Vk, from that column of TT.) The remedy
comes in the form of a variant of the QR factorization. Let rv be the rank of Vk; then
Vk can be factored into the product VkrIv = VkRr, where rlv is an r x r permutation
matrix, Vk is a d x rv matrix having orthonormal columns, and Rr is an rv x r upper
trapezoidal matrix.

Then, in (8.3),

(Vk (I-VkV f)TT) = (Vk ViTRrTIT),

so that

Uk
? I

k
) (T/ I)(VrIIT)T

(Uk) (f k R A(KT)
0 1 gT Vk rIvRrJ tVkT

In this factorization, the left matrix is a (t + r) x (k + r) matrix with orthonormal
columns, the interior matrix is a (k + r) x (k + rv) block lower trapezoidal matrix,
and the right matrix is a (k + rv) x d matrix having orthonormal rows. (Note that
when column pivoting is used, the small elements of Rr are pushed toward the lower
right corner. As discussed in section 3, it may be possible to ignore those elements
and thereby reduce the cost of the SVD computation in the following step.)

If we define the SVD of the interior matrix by

k VRr)(k)(? Ek (Qk Qf)T7

where Pk is a (k + r) x k matrix with orthonormal columns, Qk is a (k + rv) x k
matrix with orthonormal columns, and Sk is a k x k diagonal matrix, then the best
rank-k approximation of B is

(8.4) Bk = k (1)Pk Sk((Vk Vk) Qk)

Using (8.4), the new factors of rank-k approximation of the updated term-by-document
matrix B are

UB UQO)) Pk and VB (Vk V/k) Qk,

respectively, and its singular values are EB = Zk.

Updating Documents. Adding s documenit vectors to a database is similar to adding
r term vectors. Let D denote the t x s document vectors, where t is the number of
terms. The matrix D is appended to the columns of the original Ak matrix so that

B= (Ak D))

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

358 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

where B is a t x (d + s) matrix of rank at least k. An approximation to the SVD of
B given by Bk = UBEBVB then accounts for changes in the document set [9]. If the
QR factorization of (I - UkUkT)D is represented as

(I - UkUk[)DriU = UkRS,

where R, is an s x s upper triangular (or trapezoidal) matrix, then it follows [54] that

B=(Ak D) =(Uk Uk)(T VkT

Using the SVD of

(Zk UkTD P)(k 0Q T
(U) R)(Pk k) o (Qk Qkh)

s U

where Pk and Qk are (s + k) x k matrices with orthonormal columns and Zk is again
a k x k diagonal matrix, the best rank-k approximation of B is given by

(8.5) Bk =Uk Uk) Pk k [(0) Qkl

Using (8.5), the term and document vectors for the updated LSI model are

UB= (Uk Uk) Pk and VB O I) Qkv

respectively, and the updated singular values are the diagonal elements of EB = Sk.
Updating Term Weights. The weights assigned to j of the terms can be changed by

computing the matrix sum

B = Ak + yZT,

where the elements of the d x j matrix Z specify the differences between the old and
new weights for the j terms, and the elements of the t x j matrix Y are either 0 or 1,
depending on which elements of Ak are to be updated [9].

This updating procedure also depends on the QR factorization. In particular, by
substituting the two factorizations

(I - UkUk)Yrly = QyRy,
(I - VkVkT)Zrlz = QzRz,

we can write the updated matrix as the product [54]

[(k ? 0 Uk T) (ZTVk TR Vk(T)

() ^ (VkT)

In this product, the left matrix is a t x (k + j) matrix with orthonormal columns, the
interior matrix B is a rank-' update to a (k + j) x (k + j) diagonal matrix, and the
right matrix is a (k + j) x d matrix having orthonormal rows. rly and rlz are j x j
permutation matrices. If the SVD of B is

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 359

the best rank-k approximation of the SVD of B is found by setting EY to zero, resulting
in

Bk = ((Uk QY) Uk)k((Vk QZ)Vk)T = UBEBVBT

The new singular values and singular vectors computed from any of the updating
steps reflect changes in the vector space due to the addition of terms and documents.
SVD-updating, in one sense, is a dynamic IR model that can accurately reflect the
impact that new or modified information can have on a current index of terms and
documents.

8.2.3. Downdating. Using SVD-downdating, the LSI model can be modified to
reflect the removal of terms and documents and any subsequent changes to term
weights. Downdating can be useful for information filtering [24] (e.g., parental screen-
ing of Internet sites) and evaluating the importance of a term or document with respect
to forming or breaking clusters of semantically related information. See [12] and [60]
for more details on the effects of downdating and how it can be implemented.

8.3. Sparsity. The sparsity of a term-by-document matrix is a function of the
word usage patterns and topic domain associated with the document collection. The
more new terms each document brings to the global dictionary, the sparser is the
matrix overall. The sample IR matrices studied in [5] are typically no more than 1%
dense; that is, the ratio of nonzeros to the product of the row and column dimensions
is barely 0.01. Experience has shown that these matrices typically lack any regular
nonzero pattern, but some recent efforts in the use of both spectral (based on the
eigendecomposition or SVD) and nonspectral (usually graph-theoretic) approaches to
generate banded or envelope matrix forms are promising [11].

In order to compute the SVD of sparse term-by-document matrices, it is important
to store and use only the nonzero elements of the matrix. Special matrix storage
formats (e.g., Harwell-Boeing) have been developed for this purpose (see [3]). Special
techniques for computing the SVD of a sparse matrix include iterative methods such
as Arnoldi [37], Lanczos [34, 45], subspace iteration [47, 45], and trace minimization
[51]. All of these methods reference the sparse matrix A only through matrix-vector
multiplication operations, and all can be implemented in terms of the sparse storage
formats.

Implementations of the aforementioned methods are available at www.netlib.org.
These include software for Arnoldi-based methods (ARPACK) as discussed in [36]
and [37] and implementations of Lanczos, subspace iteration, and trace minimization
(SVDPACK (Fortran 77) [6] and SVDPACKC (ANSI C) [8]), as discussed in [5].
Simple descriptions of Lanczos-based methods with MATLAB examples are available
in [3], and a good survey of public-domain software for Lanczos-type methods is
available in [7]. Whereas most of the iterative methods mentioned thus far are serial
in nature, an interesting asynchronous technique for computing several of the largest
singular triplets of a sparse matrix on a network of workstations is described in [59].

For relatively small-order term-by-document matrices, it may be most convenient
to ignore sparsity altogether and consider the matrix A as dense. One Fortran li-
brary including the SVD of dense matrices is LAPACK [1]. MATLAB also provides
a dense SVD routine called by [U, Sigma,VI =svd (A) if A is stored as a dense ma-
trix or by [U,Sigma,VI=svd(full(A)) if A is stored as a sparse matrix. MATLAB
(version 5.1) also provides a function to compute a few of the largest singular values
and corresponding singular vectors of a sparse matrix. If the k largest singular val-
ues and corresponding left and right singular vectors are required, the MATLAB call

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

360 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP

is [Uk,Sigmak,Vk] = SVDS(A,k). The sparse SVD function SVDS is based on the
Arnoldi methods described in [36]. Note that, for practical purposes, less expensive
factorizations such as QR or ULV may suffice in place of the SVD [10].

Presently, no effort is made to preserve sparsity in the SVD of the sparse term-
by-document matrices. Since the singular vector matrices are often dense, the storage
requirements for Uk, Zk, and Vk can vastly exceed those of the original term-by-
document matrix. For example, a sparse 5, 526 x 1, 033 term-by-document matrix A
generated from the MEDLINE collection [41] of medical abstracts requires 0.4 Mbytes
to store the original matrix, whereas the storage needed for the corresponding single
precision matrices Uk,k,Vk is 2.6 Mbytes when k = 100.

The semidiscrete decomposition (or SDD) [32] provides one means of reducing the
storage requirements of LSI. In SDD, only the three values -1, 0, 1 (represented by two
bits each) are used to define the elements of Uk and Vk, and an integer programiming
problem is solved to produce the decomposition. Another possible way to remedy the
problem of fill is to replace the singular vector matrix with a less accurate but more
compact form. In particular, we can replace small elements of the matrices Uk and
Vk with zeros and store the results in sparse formats. In the MEDLINE example, if
we replace all entries of less than 0.0025 with zero we reduce Uk from 100% dense to
61% dense. It can be shown that the error in computing the cosines using the sparser
approximation in place of Uk is equal to 0.0976, which may be acceptable in some
circumstances.

9. Further Reading. In addition to the numerous LSI-related journal articles and
technical reports cited in this paper, two recommended sources of background material
on IR systems are the textbooks by Frakes and Baeza-Yates [25] and Kowalski [33].
Both of these books are used in undergraduate and graduate courses in IR, and both
provide good references on the design and performance of IR systems. While the
book by Frakes and Baeza-Yates [25] does provide some accompanying C software,
Kowalski's [331 does not elaborate on the computational (or software) issues associated
with automatic indexing. Foundational concepts in IR are covered in Salton's book
[48]. Salton and McGill later published a more modern study of IR methods in [501.

Certainly, more data and information management tutorials and handbooks will
be available in the near future, as the need for skills in information-based technologies
continues to grow. We hope that our presentation of the more mathematical side
of information modeling will spur new interest in computational mathematics and
attract students and faculty to pursue interdisciplinary research in linear algebra and
information science.

Acknowledgments. The authors thank Mark Anderson, Laura Mather, and Jim
Martin for their reviews of a draft of this paper. The Website www.amazon.com
was a source of material for the examples in this paper. The numerical results were
computed using MATLAB.

REFERENCES

[1] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. Du CROZ, A. GREENBAUM,

S. HAMMARLING, A. MCKENNEY, S. OSTROUCHOV, AND D. SORENSEN, LAPACK Users'
Guide, 2nd ed., SIAM, Philadelphia, PA, 1995.

[2] H. ANDREWS AND C. PATTERSON, Outer product expansions and their uses in digital image
processing, Amer. Math. Monthly, 82 (1975), pp. 1-13.

[3] R. BARRETT, M. BERRY, T. F. CHAN, J. DEMMEL, J. DONATO, J. DONGARRA, V. EIJKHOUT,
R. Pozo, C. ROMINE, AND H. VAN DER VORST, Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, 1994.

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

MATRICES, VECTOR SPACES, AND INFORMATION RETRIEVAL 361

[4] D. BERG, A Guide to the Oxford English Dictionary, Oxford University Press, Oxford, UK,
1993.

[5] M. BERRY, Large scale singular value computations, Internat. J. Supercomputer Applications,
6 (1992), pp. 13-49.

[6] M. BERRY, SVDPACK: A Fortran 77 Software Library for the Sparse Singular Value Decom-
position, Tech. Rep. CS-92-159, University of Tennessee, Knoxville, TN, June 1992.

[7] M. BERRY, Survey of public-domain Lanczos-based software, in Proceedings of the Cornelius
Lanczos Centenary Conference, J. Brown, M. Chu, D. Ellison, and R. Plemmons, eds.,
1997, SIAM, Philadelphia, PA, pp. 332-334.

[8] M. BERRY, T. Do, G. O'BRIEN, V. KRISHNA, AND S. VARADHAN, SVDPACKC: Version 1.0
User's Guide, Tech. Rep. CS-93-194, University of Tennessee, Knoxville, TN, October
1993.

[9] M. W. BERRY, S. T. DUMAIS, AND G. W. O'BRIEN, Using linear algebra for intelligent infor-
mation retrieval, SIAM Rev., 37 (1995), pp. 573-595.

[10] M. BERRY AND R. FIERRO, Low-rank orthogonal decompositions for information retrieval ap-
plications, Numer. Linear Algebra Appl., 3 (1996), pp. 301-328.

[11] M. BERRY, B. HENDRICKSON, AND P. RAGHAVAN, Sparse matrix reordering schemes for brows-
ing hypertext, in Lectures in Appl. Math. 32: The Mathematics of Numerical Analysis,
J. Renegar, M. Shub, and S. Smale, eds., AMS, Providence, RI, 1996, pp. 99-123.

[12] M. BERRY AND D. WITTER, Intelligent information management using latent semantic index-
ing, in Proceedings of Interface'97, Interface of North America Foundation, Fairfax Station,
VA, 1997.

[13] K. BHARAT AND A. BRODER, Estimating the relative size and overlap of public web search
engines, in 7th International World Wide Web Conference, paper FP37, Elsevier Science,
New York, 1998.

[14] A. BJ6RCK, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[15] D. BOGARD, ED., The Bowker Annual Library and Book Trade Almanac, 43rd ed., R.R. Bowker,

New Providence, NJ, 1998.
[16] Books in Print, R.R. Bowker, New York, 1997/1998.
[17] R. BORDING, A. GERTSZTENKORN, L. LINES, J. SCALES, AND S. TREITEL, Applications of

seismic travel-time tomography, Geophys. J. R. Astr. Soc., 90 (1987), pp. 285-304.
[18] C. BUCKLEY, G. SALTON, J. ALLAN, AND A. SINGHANL, Automatic query expansion using

SMART: TREC 3, in Overview of the Third Text REtrieval Conference, D. Harman,
ed., National Institute of Standards and Technology Special Publication 500-226, NIST,
Gaithersburg, MD, April 1995, pp. 69-80.

[19] S. DEERWESTER, S. DUMAIS, G. FURNAS, T. LANDAUER, AND R. HARSHMAN, Indexing by latent
semantic analysis, J. American Society for Information Science, 41 (1990), pp. 391-407.

[20] S. DUMAIS, Improving the retrieval of information from external sources, Behavior Research
Methods, Instruments, & Computers, 23 (1991), pp. 229-236.

[21] S. DUMAIS, LSI meets TREC: A status report, in The First Text REtrieval Conference, D. Har-
man, ed., National Institute of Standards and Technology Special Publication 500-207,
NIST, Gaithersburg, MD, March 1993, pp. 137-152.

[22] S. DUMAIS, Latent Semantic Indexing (LSI) and TREC-2, in The Second Text REtrieval Con-
ference, D. Harman, ed., National Institute of Standards and Technology Special Publica-
tion 500-215, NIST, Gaithersburg, MD, March 1994, pp. 105-116.

[23] C. ECKART AND G. YOUNG, The approximation of one matrix by another of lower rank, Psy-
chometrika, 1 (1936), pp. 211-218.

[24] P. FOLTZ AND S. DUMAIS, Personalized information delivery: An analysis of information fil-
tering methods, Comm. ACM, 35 (1992), pp. 51-60.

[25] W. FRAKES AND R. BAEZA-YATES, Information Retrieval: Data Structures & Algorithms,
Prentice-Hall, Englewood Cliffs, NJ, 1992.

[26] G. GOLUB AND C. VAN LOAN, Matrix Computations, 3rd ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[27] G. H. GOLUB, V. KLEMA, AND G. WV. STEWART, Rank Degeneracy and Least Squares Problems,
Tech. Rep. TR-456, Department of Computer Science, University of Maryland, College
Park, 1976.

[28] D. HARMAN, Overview of the third text REtrieval conference (TREC-3), in Overview of the
Third Text REtrieval Conference, D. Harman, ed., National Institute of Standards and
Technology Special Publication 500-226, NIST, Gaithersburg, MD, April 1995, pp. 1-21.

[29] D. HARMAN AND E. VOORHEES, Overview of the fifth text REtrieval conference (TREC-5),
in Information Technology: The Fifth Text REtrieval Conference (TREC-5), D. Harman
and E. Voorhees, eds., National Institute of Standards and Technology Special Publication
500-238, NIST, Gaithersburg, MD, November 1996, pp. 1-28.

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

362 M. W BERRY, Z. DRMAC, AND E. R. JESSUP

[30] W. JONES AND G. FURNAS, Pictures of relevance: A geometric analysis of similarity measures,
J. American Society for Information Science, 38 (1987), pp. 420-442.

[31] W. KAHAN, Conserving Confluence Curbs Ill-Conditioning, Tech. Rep. 6, Computer Science
Department, University of California, Berkeley, 1972.

[32] T. KOLDA AND D. O'LEARY, A semi-discrete matrix decomposition for latent semantic indexing
in information retrieval, ACM Trans. Inform. Systems, 16 (1998), pp. 322-346.

[33] G. KOWALSKI, Information Retrieval Systems: Theory and Implementation, Kluwer Academic
Publishers, Boston, 1997.

[34] C. LANCZOS, An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators, J. Res. Nat. Bur. Standards, 45 (1950), pp. 255-282.

[35] S. LAWRENCE AND C. GILES, Searching the world wide web, Science, 280 (1998), pp. 98-100.
[36] R. LEHOUCQ, Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration, Ph.D.

Thesis, Rice University, Houston, TX, 1995.
[37] R. LEHOUCQ AND D. SORENSEN, Deflation techniques for an implicitly restarted Arnoldi itera-

tion, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 789-821.
[38] T. LETSCHE AND M. BERRY, Large-scale information retrieval with latent semantic indexing,

Inform. Sci., 100 (1997), pp. 105-137.
[39] Library of Congress, http://lcweb.loc.gov/, April 24, 1998.
[40] J. LOVINS, Development of a stemming algorithm, Mechanical Translation and Computational

Linguistics, 11 (1968), pp. 22-31.
[41] MEDLINE, ftp://ftp.cs.cornell.edu/pub/smart/med/, May 27, 1998.
[42] L. MIRSKY, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math., 11

(1960), pp. 50-59.
[43] C. MOLER AND D. MORRISON, Singular value analysis of cryptograms, Amer. Math. Monthly,

90 (1983), pp. 78-87.
[44] G. O'BRIEN, Information Management Tools for Updating an SVD-Encoded Indexing Scheme,

Master's Thesis, University of Tennessee, Knoxville, TN, 1994.
[45] B. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[46] L. RABINER AND R. SCHAFER, Digital Processing of Speech Signals, 1st ed., Prentice-Hall,

Englewood Cliffs, NJ, 1978.
[47] H. RUTISHAUSER, Simultaneous iteration method for symmetric matrices, Numer. Math., 16

(1970), pp. 205-223.
[48] G. SALTON, Automatic Information Organization and Retrieval, McGraw-Hill, New York, 1968.
[49] G. SALTON AND C. BUCKLEY, Improving retrieval performance by relevance feedback, J. Amer-

ican Society for Information Science, 41 (1990), pp. 288-297.
[50] G. SALTON AND M. MCGILL, Introduction to Modern Information Retrieval, McGraw-Hill, New

York, 1983.
[51] A. H. SAMEH AND J. A. WISNIEWSKI, A trace minimization algorithm for the generalized

eigenvalue problem, SIAM J. Numer. Anal., 19 (1982), pp. 1243-1259.
[52] J. SCALES, P. DOCHERY, AND A. GERSZTERNKORN, Regularization of nonlinear inverse prob-

lems: Imaging the near-surface weathering layer, Inverse Problems, 6 (1990), pp. 115-131.
[53] Search Engine Watch, http://www.searchenginewatch.com/, March 25, 1998.
[54] H. SIMON AND H. ZHA, On Updating Problems in Latent Semantic Indexing, Tech. Rep. CSE-

97-011, The Pennsylvania State University, University Park, PA, 1997.
[55] K. SPARCK JONES, A statistical interpretation of term specificity and its applications in re-

trieval, J. Documentation, 28 (1972), pp. 11-21.
[56] G. W. STEWART, Rank degeneracy, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 403-413.
[57] TIPSTER, http://www.tipster.org, May 28, 1998.
[58] Ulrich's International Periodicals Directory, R.R. Bowker, New York, 1998.
[59] S. VARADHAN, M. BERRY, AND G. GOLUB, Approximating dominant singular triplets of large

sparse matrices via modified moments, Numer. Algorithms, 13 (1996), pp. 123-152.
[60] D. WITTER, Downdating the Latent Semantic Indexing Model for Information Retrieval, Mas-

ter's Thesis, University of Tennessee, Knoxville, TN, 1997.

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 335
	p. 336
	p. 337
	p. 338
	p. 339
	p. 340
	p. 341
	p. 342
	p. 343
	p. 344
	p. 345
	p. 346
	p. 347
	p. 348
	p. 349
	p. 350
	p. 351
	p. 352
	p. 353
	p. 354
	p. 355
	p. 356
	p. 357
	p. 358
	p. 359
	p. 360
	p. 361
	p. 362

	Issue Table of Contents
	SIAM Review, Vol. 41, No. 2 (Jun., 1999), pp. i-viii+197-413
	Front Matter [pp. i-viii]
	Survey and Review
	Introduction [pp. 197]
	Fast Marching Methods [pp. 199-235]
	The Riemann Zeros and Eigenvalue Asymptotics [pp. 236-266]

	Problems and Techniques
	Introduction [pp. 267-268]
	On the Approximate and Null Controllability of the Navier-Stokes Equations [pp. 269-277]
	Parallel Multilevel k-Way Partitioning Scheme for Irregular Graphs [pp. 278-300]

	Sigest
	Introduction [pp. 301]
	Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer [pp. 303-332]

	Education
	Introduction [pp. 333]
	Matrices, Vector Spaces, and Information Retrieval [pp. 335-362]
	Bubbles in Wet, Gummed Wine Labels [pp. 363-372]

	Book Reviews
	Introduction [pp. 373]
	Featured Review: So You Have Been Asked to Give a Lecture Course on the Applications of Nonlinear Dynamics... [pp. 375-382]
	Review: untitled [pp. 382-383]
	Review: untitled [pp. 383-384]
	Review: untitled [pp. 384-386]
	Review: untitled [pp. 386-387]
	Review: untitled [pp. 387-389]
	Review: untitled [pp. 389-391]
	Review: untitled [pp. 391]
	Review: untitled [pp. 392-393]
	Review: untitled [pp. 393-395]
	Review: untitled [pp. 395-398]
	Review: untitled [pp. 398-399]
	Review: untitled [pp. 399-400]
	Review: untitled [pp. 400-401]
	Review: untitled [pp. 401-403]
	Review: untitled [pp. 403-405]
	Review: untitled [pp. 405-407]
	Review: untitled [pp. 407-409]
	Review: untitled [pp. 409-411]
	Selected Collections [pp. 411-413]
	Later Editions [pp. 413]

	Back Matter

