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SIAM REVIEW (?) 1999 Society for Industrial and Applied Mathematics 
Vol. 41, No. 2, pp. 335-362 

Matrices, Vector Spaces, and 
Information Retrieval* 

Michael W. Berryt 
Zlatko Drmacf 

Elizabeth R. Jessupt 

Abstract. The evolution of digital libraries and the Internet has dramatically transformed the pro- 
cessing, storage, and retrieval of information. Efforts to digitize text, images, video, and 
audio now consume a substantial portion of both academic anld industrial activity. Even 
when there is no shortage of textual materials on a particular topic, procedures for in- 
dexing or extracting the knowledge or conceptual information contained in them can be 
lacking. Recently developed information retrieval technologies are based on the concept 
of a vector space. Data are modeled as a matrix, and a user's query of the database is 
represented as a vector. Relevant documents in the database are then identified via simple 
vector operations. Orthogonal factorizations of the matrix provide mechanisms for han- 
dling uncertainty in the database itself. The purpose of this paper is to show how such 
fundamental mathematical concepts from linear algebra can be used to manage and index 
large text collections. 

Key words. information retrieval, linear algebra, QR factorization, singular value decomposition, 
vector spaces 

AMS subject classifications. 15-01, 15A03, 15A18, 65F50, 68P20 

PlI. S0036144598347035 

1. Problems in Indexing Large Text Collections. Traditional indexing mech- 
anisms for scientific research papers are constructed from information such as their 
titles, author lists, abstracts, key word lists, and subject classifications. It is not 
necessary to read any of those items in order to understand a paper: they exist pri- 
marily to enable researchers to find the paper in a literature search. For example, 
the key words and subject classifications listed above enumerate what we consider to 
be the major mathematical topics covered in this paper. In particular, the subject 
classification 68P20 identifies this paper as one concerned with information retrieval 
(IR). Before the advent of modern computing systems, researchers seeking particular 
information could only search through the indexing information manually, perhaps 
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in a card catalog. If an abstract or key word list were not provided, a professional 
indexer or cataloger could have written one. 

These manual methods of indexing are succumbing to problems of both capacity 
and consistency. At the time of this writing, about 156,000 periodicals are published 
in print worldwide, with roughly 12,000 periodicals being added to that number each 
year [58]. There are nearly 1.4 million books in print in the United States alone, with 
approximately 60,000 new titles appearing there annually [15, 16]. The Library of 
Congress maintains a collection of more than 17 million books and receives new items 
at a rate of 7, 000 per working day [39]. While these numbers irnply daunting indexing 
problems, the scale is even greater in the digital domain. There are currently about 
300 million Web pages on the Internet [13, 35], and a typical search engine updates or 
acquires pointers to as many as 10 million Web pages in a single day [53]. Because the 
pages are indexed at a much slower rate, the indexed collection of the largest search 
engine presently totals about 100 million documents [13, 53, 35]. 

Even when subsets of data can be managed manually, it is difficult to maintain 
consistency in human-generated indexes: the extraction of concepts and key words 
from documentation can depend on the experiences and opinions of the indexer. De- 
cisions about important key words and concepts can be based on such attributes as 
age, cultural background, education, language, and even political bias. For instance, 
while we chose to include only higher-level concepts in this paper's key word list, a 
reader might think that the words vector and matrix should also have been selected. 
Our editor noted that the words expository and application did not appear in the list 
even though they describe the main purpose of this paper. Experiments have shown 
that there is a 20% disparity on average in the terms chosen as appropriate to describe 
a given document by two different professional indexers [28]. 

These problems of scale and consistency have fueled the development of auto- 
mated IR techniques. When implemented on high-performance computer systems, 
such methods can be applied to extremely large databases, and they can, without 
prejudice, model the concept-document association patterns that constitute the se- 
mantic structure of a document collection. Nonetheless, while automated systems 
are the answer to some concerns of information management, they have their own 
problems. Disparities between the vocabulary of the systems' authors and that of 
their users pose difficulties when information is processed without human interven- 
tion. Complexities of language itself present other quandaries. Words can have many 
meanings: a bank can be a section of computer memory, a financial institution, a steep 
slope, a collection of some sort, an airplane maneuver, or even a billiard shot. It can 
be hard to distinguish those meanings automatically. Similarly, autlhors of medical 
literature may write about myocardial infarctions, but the person who has had a mi- 
nor heart attack may not realize that the two phrases are synonymous when using the 
public library's on-line catalog to search for information on treatments and prognosis. 
Formally, polysemy (words having multiple meanings) and synonymy (multiple words 
having the same meaning) are two major obstacles to retrieving relevant information 
from a database. 

Polysemy and synonymy are two of the ftindamental problems that any conceptual 
indexing scheme must overcome. Other issues such as the breadth and depth of 
concept extraction, zoning (indexing of parts of a document like its title, abstract, 
or first few paragraphs, as opposed to the entire document), and term or phrase 
weighting may also affect retrieval performance [33]. Indexing approaches (automated 
and otherwise) are generally judged in terms of their recall and precision ratings. 
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Recall is the ratio of the number of relevant documents retrieved to the total number 
of relevant documents in the collection, and precision is the ratio of the number of 
relevant documents retrieved to the total number of documents retrieved. 

Standardized evaluation of IR began in 1992 with the initiation of the annual 
Text REtrieval Conference (TREC) sponsored by the Defense Advanced Research 
Projects Agency (DARPA) and the National Institute of Standards and Technology 
(NIST) [29]. TREC participants competitively index a large text collection (gigabytes 
in size) and are provided search statements and relevancy judgments in order to judge 
the success of their approaches. Another DARPA-sponsored effort in standardization 
is being lead by the TIPSTER working group [57]. The focus of this group is to 
specify an architecture of an IR system (a set of protocols for document processing) 
without legislating how that architecture should be implemented. Participants try to 
determine ways of integrating new methods of IR using a consistent interface. 

The purpose of this paper is to show how linear algebra can be used in automated 
IR. The most basic mechanism is the vector space model [50, 18] of IR, in which each 
document is encoded as a vector, where each vector component reflects the importance 
of a particular term in representing the semantics or meaning of that document. The 
vectors for all documents in a database are stored as the columns of a single matrix. 
In section 2 of this paper, we show how to translate a collection of documents into a 
matrix and how to compare a user's query to those documents through basic vector 
operations. The SMART (System for the Mechanical Analysis and Retrieval of Text) 
system, introduced in 1983 [50], was one of the first to use the vector space model. 
The SMART system [18], tuned using sophisticated heuristic techniques, has been a 
top performer at TREC conferences. 

The newer method of latent semantic indexing (LSI) or latent semantic analysis 
(LSA) is a variant of the vector space model in which a low-rank approximation to the 
vector space representation of the database is employed [9, 19]. That is, we replace 
the original matrix by another matrix that is as close as possible to the original matrix 
but whose column space is only a subspace of the column space of the original matrix. 
Reducing the rank of the matrix is a means of removing extraneous information or 
noise from the database it represents. Rank reduction is used in various applications 
of linear algebra and statistics [14, 27, 31] as well as in image processing [2], data com- 
pression [46], cryptography [43], and seismic tomography [17, 52]. LSI has achieved 
average or above average performance for several TREC collections [21, 22]. 

In this paper, we do not review LSI but rather show how to apply the vector 
space model directly to a low-rank approximation of the database matrix. The oper- 
ations performed in this version of the vector space model admit an easier geometric 
interpretation than do those underlying LSI. We refer the interested reader to [9] and 
[19] for the details of LSI. 

We begin our exposition with the QR factorization, the orthogonal factorization 
with which most students are familiar. While this factorization has not actually been 
used in IR methods tested to date, it suffices for showing the features of rank reduction, 
while being simpler than the singular value decomposition (SVD). In section 3, we 
show how the QR factorization of the database matrix can be used to provide a 
geometric interpretation of the vector space model. In section 4, we demonstrate 
how using the factorization to reduce the rank of the matrix can help to account for 
uncertainties in the database. 

In sections 5 and 6, we move on to combine the vector space model with the 
SVD. The SVD is a form of orthogonal matrix factorization that is more powerful 
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than the QR factorization. Although the SVD is not often included in introductory 
linear algebra courses, students comfortable with the QR factorization should be able 
to read and understand these sections. We first introduce the SVD and compare the 
low-rank approximations computed from the SVD and the QR factorization. We then 
explain how to formulate the comparison of queries and documents via the SVD. 

In section 7, we explain what motivates the use of the SVD in place of the QR 
factorization in practice by showing how relationships between terms can be discovered 
in the vector space model. Such comparisons aid in the refinement of searches based 
on the vector space model. The SVD allows such comparisons of terms with terms 
as well as documents with documents, while the QR factorization permits only the 
latter. In section 8, we depart from the basic mathematics to cover the more advanced 
techniques necessary to make vector space and SVD-based models work in practice. 
Finally, in section 9, we provide a brief outline of further reading material in IR. 

Sections 2-7 of this paper should be accessible to anyone familiar with orthogonal 
factorization (like the QR factorization). Section 8 is more difficult; the recent research 
results and questions about the practical implementation details of SVD-based models 
in it may be challenging reading for students. 

2. The Vector Space Model. 

2.1. A Vector Space Representation of Information. In the vector space IR 
model, a vector is used to represent each item or document in a collection. Each com- 
ponent of the vector reflects a particular concept, key word, or term associated with 
the given document. The value assigned to that component reflects the importance of 
the term in representing the semantics of the document. Typically, the value is a func- 
tion of the frequency with which the term occurs in the document or in the document 
collection as a whole [20, 55]. Suppose a document is described for indexing purposes 
by the three terms applied, linear, and algebra. It can then be represented by a 
vector in the three corresponding dimensions. Figure 2.1 depicts that vector when 
the terms have respective weights 0.5, 2.5, and 5.0. In this case, the word algebra is 
the most significant term in the document, with linear of secondary importance and 
applied of even less importance. 

A database containing a total of d documents described by t terms is represented 
as a t x d term-by-docutment matrix A. The d vectors representing the d documents 
form the columns of the matrix. Thus, the matrix element aij is the weighted fre- 
quency at which term i occurs in document j [9]. In the parlance of the vector space 
model, the columns of A are the document vectors, and the rows of A are the term 
vectors. The semantic content of the database is wholly contained in the column 
space of A, meaning that the document vectors span that content. Not every vector 
represented in the column space of A has a specific interpretation in terms of the 
document collection itself (i.e., a linear combination of vectors corresponding to two 
document titles may not translate directly into a meaningful document title). What 
is important from an IR perspective, however, is that we can exploit geometric rela- 
tionships between document vectors to model similarities and differences in content. 
We can also compare term vectors geometrically in order to identify similarities and 
differences in term usage. 

A variety of schemes are available for weighting the matrix elements. The elements 
aij of the term-by-document matrix A are often assigned two-part values aij = lijgi. 
In this case, the factor gi is a global weight that reflects the overall value of term 
i as an indexing term for the entire collection. As one example, consider a very 
common term like computer within a collection of articles on personal computers. 
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Fig. 2.1 Vector representation of applied linear algebra. 

It is not important to include that term in the description of a document as all of 
the documents are known to be about computers (whether or not they use the actual 
term computer) so a small value of the global weight gi is appropriate. 

The factor lij is a local weight that reflects the importance of term i within 
document j itself. Local weights range in complexity from simple binary values (0 or 
1) to functions involving logarithms of term frequencies. The latter functions have a 
smoothing effect in that high-frequency terms having limited discriminatory value are 
assigned low weights. Global weighting schemes range from simple normalizations to 
advanced statistics-based approaches. See [20] and [55] for more details about term 
weighting. 

For text collections spanning many contexts (e.g., an encyclopedia), the number 
of terms is often much greater than the number of documents: t >> d. In the case of 
the Internet, the situation is reversed. A term-by-document matrix using the content 
of the largest English language dictionary as terms and the set of all Web pages 
as documents would be about 300, 000 x 300, 000, 000 [4, 13, 35]. As a document 
generally uses only a small subset of the entire dictionary of terms generated for a 
given database, most of the elements of a term-by-document matrix are zero. 

In a vector space IR scheme, a user queries the database to find relevant docu- 
ments, somehow using the vector space representation of those documents. The query 
is a set of terms, perhaps with weights, represented just like a document. Again, it 
is likely that many of the terms in the database do not appear in the query, mean- 
ing that many of the query vector components are zero. Query matching is finding 
the documents most similar to the query in use and weighting of terms. In the vec- 
tor space model, the documents selected are those geometrically closest to the query 
according to some measure. 

One common measure of similarity is the cosine of the angle between the query and 
docuinent vectors. If the term-by-document matrix A has columns a4,j = 1,... ,d, 
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those d cosines are computed according to the formula 

aT q _ aijjqi (2.1) CosO % lflqfl 3~ L-q 
(2.1) cos(}j ~11 aj 112||1 q 11 2 0/tte2,, q 

for j = 1,... ,d, where the Euclidean vector norm X 2 is defined by X 2 

xTx = E= x2 for any real t-dimensional vector x. Because the query and docu- 
ment vectors are typically sparse, the dot product and norms in (2.1) are generally 
inexpensive to compute. Furthermore, the document vector norms 11 aj 112 need be 
computed only once for any given term-by-document matrix. Note that multiplying 
either aj or q by a constant does not change the cosine value. Thus, we may scale the 
document vectors or queries by any convenienit value. Other similarity measures are 
reviewed in [30]. 

2.2. An Example. Figure 2.2 demonstrates how a simple collection of five titles 
described by six terms leads to a 6 x 5 term-by-document matrix. Because the content 
of a document is determined by the relative frequencies of the terms and not by the 
total number of times particular terms appear, the matrix elements in this example 
are scaled so that the Euclidean norm of each column is 1. That is, 11 aj 112 = 1 fOr 
columns aj, j = 1, . . . , 5. In this way, we use term frequency as the local weight lj 
and apply no global weighting (i.e., gi = 1). 

The choice of terms used to describe the database determines not only its size but 
also its utility. In our example, we used only the terms directly related to cooking, 
meaning that the reader interested in French cooking in particular would have no 
way of retrieving relevant documents. In this case, adding the terms French and 
Viennese to describe the nationalities covered would broaden the representation of 
the database semantics in a helpful way. On the other hand, including very common 
terms like to or the would do little to improve the quality of the term-by-document 
matrix. The process of excluding such high-frequency words is known as stoplisting 
[25]. 

In constructing a term-by-document matrix, terms are usually identified by their 
word stems [33]. In our example, the word pastries counts as the term pastry, and 
the word baking counts as the term bake. The use of stemming in IR dates back to 
the 1960s [40]. Stemming reduces storage requirements by decreasing the number of 
words maintained [48]. 

2.3. Query Matching. Using the small collection of titles from Figure 2.2, we can 
illustrate query matching based on angles in a six-dimensional vector space. Suppose 
that a user in search of cooking information initiates a search for books about baking 
bread. The corresponding query would be written as the vector 

q(1) = ( 1 0 1 0 0 0) 

with nonzero entries for the terms baking and bread. The search for relevant doc- 
uments is carried out by computing the cosines of the angles Oj between the query 
vector q(1) and the document vectors aj by (2.1). A document is returned as relevant 
only if the cosine of the angle it makes with the query vector is greater than some 
threshold or cutoff value. A practical implementation might use a stringent cutoff like 
0.9 [9], but for our small example we use a cosine threshold of 0.5. 

For the query q(l), the only nonzero cosines are cos01 = 0.8165 and COS04 
0.5774. Hence, all of the documents concerning baking bread (the first and fourth) 
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The t = 6 terms: 

Ti: bak(e,ing) 
T2: recipes 
T3: bread 
T4: cake 
T5: pastr(y,ies) 
T6: pie 

The d= 5 document titles: 

DI: How to Bake Bread Without Recipes 
D2: The Classic Art of Viennese Pastry 
D3: Numerical Recipes: The Art of Scientific Computing 
D4: Breads, Pastries, Pies and Cakes: Quantity Baking Recipes 
D5: Pastry: A Book of Best French Recipes 

The 6 x 5 term-by-document matrix before normalization, where the 
element aij is the number of times term i appears in document title j: 

I 0 0 1 0\ 
1 0 1 1 1 
I 0 0 1 0 

A O O 0 1 0 
0 1 0 1 1 
O O 0 1 0 

The 6 x 5 term-by-document matrix with unit columns: 

0.5774 0 0 0.4082 0 
0.5774 0 1.0000 0.4082 0.7071 

A- 0.5774 0 0 0.4082 0 
_ 0 0 0 0.4082 0 

0 1.0000 0 0.4082 0.7071 
0 0 C 0.4082 0 

Fig. 2.2 The constructi'on of a term-by-document matri'x A. 

are returned as relevant. The second, third, and fifth documents, which concern 
neither of these topics, are correctly- ignored. 

If the user had simply requested books about baki'ng, however, the results would 
have been markedly different. In this case, the query vector is given by 

q (2) = ( 1 0 0 ? ? ?)T 

and the cosines of the angles between the query and five document vectors are, in 
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order, 0.5774, 0, 0, 0.4082, and 0. Only the first document, a book about baking bread, 
makes the cosine cutoff. The fourth document, which is in fact a more comprehensive 
reference about baking, is not returned as relevant. 

The IR community has developed a variety of approaches to respond to such 
failures of the basic vector space model. Those techniques typically affect how the data 
are represented in the term-by-document matrix. Examples include term weighting 
schemes, use of a controlled vocabulary (a specified set of allowed terms [33]), and 
replacing the exact term-by-document matrix by a low-rank approximation to that 
matrix. The latter approach is the basis of the method of LSI [9, 19] and of the new 
method described in this paper. In sections 3 to 6 of this paper, we work through 
the process of rank reduction, first using the QR factorization and then proceeding 
to the perhaps less familiar SVD used in LSI. In both cases, we use the factorizations 
to illustrate the geometry of query matching and to explain what can constitute a 
reasonable approximation to the term-by-document matrix. The latter is important 
as proponents of LSI argue that the rank-reduction step serves to remove noise from 
the database representation. 

3. The QR Factorization. In this section, we show how the QR factorization can 
be used to identify and remove redundant information in the matrix representation of 
the database. In linear algebra terms, we identify the rank of the term-by-document 
matrix. This process leads us directly to a geometric interpretation of the vector space 
model. In section 4, we show how to lower the rank of the matrix further by removing 
components that can be attributed to the natural uncertainties present in any large 
database. The rank-reduction steps allow us to set portions of the matrix to zero and 
thus to ignore them in subsequent computations. Doing so lowers the cost of query 
matching and helps to recoup some of the expense of computing the factorization. 

Note that the 6 x 5 term-by-document matrix of the example in Figure 2.2 is of 
rank 4 because column 5 is the sum of columns 2 and 3. Even greater dependence can 
be expected in practice: a database of library materials can contain different editions 
of the same book, and a database of Internet sites can contain several mirrors of 
the same Web page. As in our example, dependencies can also involve more than 
simple copies of information: binary vectors representing the documents applied 
linear algebra and computer graphics sum to the binary vector representing 
linear algebra applied to computer graphics (where the preposition to is not 
considered to be a term), so any database containing all three documents would have 
dependencies among its columns. 

3.1. Identifying a Basis for the Column Space. Our first step in the rank- 
reduction process is to identify dependence between the columns or rows of the term- 
by-document matrix. For a rank rA matrix, the rA basis vectors of its column space 
serve in place of its d column vectors to represent its column space. One set of basis 
vectors is found by computing the QR factorization of the term-by-document matrix 

A= QR, 

where R is a t x d upper triangular matrix and Q is a t x t orthogonal matrix. A 
square matrix Q is orthogonal if its columns are orthonormal. That is, if qj represents a 
column of an orthogonal matrix Q, it has unit Euclidean norm (I| q 112 qj qT 1 

for j 1,... , t) and it is orthogonal to all other columns of Q ( qqi 0 for all 
i j). The rows of Q are also orthonormal, meaning that QTQ QQT I. 
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This factorization exists for any matrix A. See [26] for methods of computing the 
QR factorization. The relation A = QR shows that the columns of A are all linear 
combinations of the columns of Q. Thus, a subset of rA of the columns of Q forms a 
basis for the column space of A. 

We now demonstrate how to identify the basis vectors of the example term-by- 
document matrix A from Figure 2.2 by using the QR factorization. If A = QR, the 
factors are 

-0.5774 0 -0.4082 0 -0.7071 0 
-0.5774 0 0.8165 0 0.0000 0 

(3.1) Q- -0.5774 0 -0.4082 0 0.7071 0 
(3.1) ~ 0 0 0 -0.7071 0 -0.7071 

0 -1.0000 0 0 0 0 
0 0 0 -0.7071 0 0.7071/ 

-1.0001 0 -0.5774 -0.7070 -0.4082 
0 - 1.0000 0 -0.4082 -0.7071 

(3.2) R = | 0.8165 0 0.5774 
0 0 0 -0.5774 0) 

In (3.1), we have partitioned the matrix Q to separate the first four column vectors 
from the remaining columns. In (3.2), we have partitioned the matrix R to separate 
the nonzero part from the 2 x 5 zero part. We now rewrite the factorization A = QR as 

A= (QA Q) (RA) 

(3.3) QARA + QA * ? = QARA, 

where QA is the 6 x 4 matrix holding the first four columns of Q, Q' is the 6 x 2 
remaining submatrix of Q, and RA covers the nonzero rows of R. This partitioning 
clearly reveals that the columns of QA1 do not contribute to the value of A and that 
the ranks of A, R, and RA are equal. Thus, the four columns of QA constitute a basis 
for the column space of A. 

It is important to note here that the clear partitioning of R into zero and nonzero 
parts is a feature of the particular matrix A. In general, it is necessary to use column 
pivoting during the QR factorization to ensure that the zeros appear at the bottom 
of the matrix [26]. When column pivoting is used, the computed factorization is 
AP = QR, where P is a permutation matrix. With column pivoting, the first rA 
columns of Q form a basis for the column space of the rank rA matrix A, and the 
elements of the first rA rows of R provide the coefficients for the linear combinations of 
those basis vectors that constitute the columns of A. In particular, if QA is the t x rA 
matrix having the basis vectors as columns and if rj represents the jth column of the 
matrix R, the jth column of AP is given by the matrix-vector product APej = QArj. 
The remaining columns of Q (the columns of Q') are a basis for the orthogonal 
complement of the column space of AP and so of the column space of A. Column 
pivoting provides important numerical advantages without changing the database, as 
permuting the columns of A results only in a reordering of the document vectors. 
Because they describe the same constructs, we henceforth use the matrix A in place 
of AP for clarity of presentation. 
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The semantic content of a database is fully described by any basis for the column 
space of the associated term-by-document matrix, and query matching proceeds with 
the factors QR in place of the matrix A. The cosines of the angles O. between a query 
vector q and the document vectors aj are then given by 

T _ Qr)Tq T r(QTq 
(3.4) cosO 3 a3. q _ Q_ _ _A _ _ _ _ q_ _ _ _ __W (34) Cos 

||= 1 aj 11211 q 112 | QAr- 11211 q 112 | r- 11211 q 112 

for j = 1, ... , d. In this relation, we have used the fact that multiplying a vector by 
any matrix with orthonormal columns leaves the vector norm unchanged; that is, 

1W QArj 112 = r(QAr)Qr QArj r=Lr ,r[rj =lrj 11f2 

We now revisit the example term-by-document matrix from Figure 2.2 using the query 
vector q(l) (baking bread) and observe that there is no loss of information in using 
its factored form. As expected, the cosines computed via (3.4) are the same as those 
computed using (2.1): 0.8165, 0, 0, 0.5774, and 0. 

3.2. The Geometry of the Vector Space Model. The partitioned representation 
of the term-by-document matrix in (3.3) also aids in a geometric interpretation of the 
query matching procedure. Note that, for the orthogonal matrix Q, 

QQT = (QA Q')(QA Q )T = QAQT + QI(QI)T. 

Therefore, we can write the query vector q as the sum of its components in the column 
space of A and in the orthogonal complement of the column space as follows: 

q=Jq =QQT 

[QAQT +QI(QI)]q = [QA A +A( A) =QA QT q + Q 1jQ 
I 
)Tq 

(3.5) =qA+qqI 

The column space component qA = QAQQTq is called the orthogonal projection of q 
into the space spanned by the columns of QA. Note that qA is in fact the closest 
approximation of the query vector q in the column space of A. More precisely, 

jl q-qAfj2 =min{fjq-Xjl2, x from the column space of A}. 

The proof relies on the fact that if the vectors qA and x are both in the column space 
of A, the vector qA - x is also. The vector q - qA q is orthogonal to any vector in 
that space by definition. Using the Pythagorean theorem, 

llq-X112 = llq-qA + qA-X112 = llq-qAf12 + |qA-X112 llq-qAL12. 

Substituting (3.5) into (3.4) reveals that only the component qA actually con- 
tributes to the dot products used to compute the cosines between the query and 
document vectors: 

a.qA + aj qA a[ qA +a. A A q 

11 a- 11211 q 112 11 aj 11211 q 112 

Because a is a column of A, it is orthogonal to the columns of QA, which implies 
that a.QA 0 and that the cosine formula simplifies to 

cs a qA + 0 * (QA)T q afTqA 

J flaj fl2flqfl2 flaj fl2flqfl2 
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One interpretation of this result is that the user's imperfect query is automatically 
replaced in the dot product computation with its best approximation from the content 
of the database. The component q , which cannot share content with any part of the 
column space of A, is ignored. If we take that observation one step farther, we can 
replace q with its projection altogether and compute a new measure of similarity: 

aTq 
(3.6) cos0 = a qA 

11aj 12 11 A 12 

That is, we compare the projection of the user's query to the document vectors. For 
a given index j,the two cosines are related by 

(3.7) cosO3 = cos i = cosqA2 1 qA 112 
1l q 112 j|| qA 2 + 11 qA 112 

As the ratio of norms on the right-hand side of (3.7) is bounded above by 1, the 
cosines computed using q are always less than or equal to those computed using qA. 
As a result, a query vector nearly orthogonal to the column space of A is more likely 
to be judged relevant when using qA than when using q, even though such a vector has 
only a tiny component in that space. In other words, while use of (3.6) may help to 
identify more of the relevant documents, it may also increase the number of irrelevant 
ones. In IR terminology, this phenomenon is referred to as an increase in recall at the 
risk of reduced precision [33]. 

4. The Low-Rank Approximation. Up to this point, we have used the QR fac- 
torization to explain the geometry of the query matching procedure. In addition, the 
QR factorization gives us a means of dealing with uncertainties in the database. Just 
as measurement errors can lead to uncertainty in experimental data, the very process 
of indexing the database can lead to uncertainty in the term-by-document matrix. A 
database and its matrix representation may be built up over a long period of time, by 
many people with different experiences and different opinions about how the database 
content should be categorized. For instance, in the example of Figure 2.2, one could 
argue that the fifth document is relevant to baking since it is about pastry recipes, 
which are simply instructions for baking pastry. Under that interpretation the (un- 
normalized) term-by-document matrix A would have the entry A15 = 1. Because the 
best translation from data to matrix is subject to interpretation, a term-by-document 
matrix A might be better represented by a mnatrix sum A + E, where the uncertainty 
matrix E may have any number of values reflecting missing or incomplete information 
about documents or even different opinions on the relevancy of documents to certain 
subjects. 

Now, if we accept the fact that our matrix A is only one representative of a whole 
family of relatively close matrices representing the database, it is reasonable to ask if 
it makes sense to attempt to determine its rank exactly [56]. For instance, if we find 
the rank rA and, using linear algebra, conclude that changing A by adding a small 
change E would result in a matrix A + E of lesser rank k, then we may as well argue 
that our problem has a rank-k matrix representation and that the column space of 
A is not necessarily the best representation of the semantic content of the database. 
Next we show how lowering the rank may help to remove extraneous information or 
noise from the matrix representation of the database. 

To proceed, we need a notion of the size of a matrix. In particular, we need to be 
able to say when a matrix is small in comparison to another matrix. If we generalize 
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the Euclidean vector norm to matrices, the result is the so-called Frobenius matrix 
norm, which is defined for the real t x d matrix X by 

t d 

(4.1) ||X||F = E EXAj 
i=1 j=l 

The Frobenius norm can also be defined in terms of the matrix trace Trace(X), which 
equals the sum of the diagonal elements of the matrix XTX: 

(4.2) IIXIIF Trace(XTX) Trace(XXT). 

Using the latter definition, we show that premultiplying the matrix X by a t x t 
orthogonal matrix 0 leaves the Frobenius norm unchanged: 

IIOXIIF Trace((OX)T (OX)) Trace(XTOTOX) = TFace(XTX) =IXfF. 

Similarly, IIXVIIF = |lXIIF for any orthogonal d x d matrix V. 
Our aim is to find a reasonable low-rank approximation to the matrix A. We focus 

on the upper triangular matrix R, recalling that the ranks of R and A are equal. While 
the rank of A is not generally obvious, the rank of R is easy to determine, as it is 
equal to the number of nonzero entries on its diagonal. The QR factorization with 
column pivoting aids us in manipulating the rank of R, as it tends to separate the 
large and small parts of the matrix, pushing the larger entries toward the upper left 
corner of the matrix and the smaller ones toward the lower right. If this separation 
is successful, the matrix R can be partitioned to isolate the small part. For example, 
the factor R for our example problem can be partitioned as follows: 

( -1.0001 0 -0.5774 -0.7070 -0.4082 
0 -1.0000 0 -0.4082 -0.7071 
0 0 0.8165 0 0.5774 R,, R12 R= ~0 0 0 -0.5774 0 0 R22. 

00 0 0 0 
00 0 0 0 

Under this partitioning, the submatrix R22 is a relatively small part of the matrix R. 
Specifically, || R22 |IFIII R IIF = 0.5774/2.2361 = 0.2582. 

We now create a new upper triangular matrix R by setting the small matrix 
R22 equal to the zero matrix. The new matrix R? has rank 3, as does the matrix 
A + E = QR. The uncertainty matrix E is then given by the difference 

E= (A + E)-A 

QR,, R12)Q(, R12) 

=Q ( ?)Q ( R22) 

0Q(O -R22) 

Note that 

1f E IIF 0 R) F R22 IIF 
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Because 11 A IIF = 11 R IF' 11 E F/ 1l A IIF = || R22 ||F/|| R IIF = 0.2582. In words, 
making a 26% relative change in the value of R makes the same-sized change in A, 
and that change reduces the ranks of both matrices by 1. Recall that uncertainties of 
roughly this order may be introduced simply by disagreement between indexers [28]. 
Thus, we may deem it acceptable to use the rank-3 approximation A + E in place 
of the original term-by-document matrix A for query matching. If we compute the 
cosines using (3.4), we need never compute the matrix A + E explicitly but rather 
can use, from its QR factors, the first three columns of Q and the triangular matrix 
R which has three zero rows. 

To verify that we have not caused undue loss of accuracy, we return to the example 
of Figure 2.2 using the matrix A+ E in place of the original term-by-document matrix 
A. The cosines computed for query q(l) (baking bread) are 0.8165, 0, 0, 0.7071, and 
0, and the cosines computed for query q2 (baking) are 0.5774, 0, 0, 0.5000, and 0. 
In both of these cases, the results are actually improved, meaning that our rank-3 
approximation A + E appears to be a better representation of our database than is 
the original term-by-document matrix A. 

To push the rank reduction farther, we repartition the matrix R so that its third 
row and column are also included in R22. In this case, 11 R22 IIF!II R IIF = 0.5146, 
and discarding R22 to create a rank-2 approximation of the term-by-document matrix 
introduces a 52% relative change in that matrix. The cosines for q(1) are now 0.8165, 
0, 0.8165, 0.7071, and 0.4082, and for q2, they are 0.5774, 0, 0.5774, 0.5000, and 
0.2887. In both cases, some irrelevant documents are incorrectly identified, meaning 
that the 52% relative change in R and A is unacceptably large. 

In general, it is not possible to explain why one variant of the term-by-document 
matrix works better than another for a given set of queries. We have seen, however, 
that it can be possible to improve the performance of the method by reducing the rank 
of the term-by-document matrix. Note that even the 26% change that we've chosen 
as acceptable in our example is quite large in the context of scientific or engineering 
applications where accuracies of three or more decimal places (0.1% error or better) 
are typically required. 

5. The Singular Value Decomposition. In sections 3 and 4, we show how to 
use the QR factorization in the context of a vector space model of IR. Note that 
while that approach gives us a reduced-rank basis for the column space of the term- 
by-document matrix, it gives us no such information about its row space. Thus, 
there is no mechanism for term-term comparison (as described in section 7 of this 
paper). In this section, we introduce an alternate approach, based on the SVD, that, 
while more expensive computationally than the QR factorization [26], simultaneously 
gives us reduced-rank approximations to both spaces. Furthermore, the SVD has the 
additional mathematical feature of allowing us to find a rank-k approximation to a 
matrix A with minimal change to that matrix for a given value of k. 

The fundamental mathematical construct underlying this new approach is the 
SVD of the term-by-document matrix A. That decomposition is written 

A= UEVT, 

where U is the t x t orthogonal matrix having the left singular vectors of A as its 
columns, V is the d x d orthogonal matrix having the right singular vectors of A as its 
columns, and Z is the t x d diagonal matrix having the singular values a1 ?> 2 > * * * > 
amin(t,d) of A in order along its diagonal. This factorization exists for any matrix A. 
See [26] and the papers cited in section 8.3 of this paper for methods for computing 
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t > d: 

* * * * * * * * . ~ L* * 

V T 

A UZ 

t<d: 

A U , 
V T 

Fig. 5.1 IThe singular value arid si'ngular vector matrices. 

the SVD. Figure 5.1 shows the relative sizes of the matrices U, E, and V when t > d 
and when t < d. All entries not explicitly listed in the singular value matrices are 
zero. 

The rank rA of the matrix A is equal to the number of nonzero singular values. 
It then follows directly from the orthogonal invariance of the Frobenius norm that 
A IF is defined in terms of those values: 

tAHFUZVT F T Z E(2 
j=1 

There are many parallels between the SVD A U VT and the QR factorization 
ARh QR. Just as the rankerA of the matrix A equals the number of nonzero diagonal 
elements of R, so does it equal the number of nonzero diagonal elements of v. Just 
as the first rA columns of Q are a basis for the column space of A, so are the first 
rA COlUMnS Of U. (In addition, the first rA rows of VT are a basis for the row space 
of A.) Just as we created a rank-k approximation to A, where k < rA, by setting all 
but the first k rows of R equal to zero, so can we create a rank-k approximation Ak 
to the matrix A by setting all but the k largest singular values of A equal to zero. 

A fundamental difference between the two factorizations is in the theoretical un- 
derpinnings of that approximation. More precisely, a classic theorem by Eckart and 
Young [23, 42] states that the distance between A and its rank-k approximations is 
minimized by the approximation Ak. The theorem further shows how the norm of 
that distance is related to singular values of A. It reads 

(5.1) IA -AkHlF min IIA -XIF ~ cT 1+c2 
rank(X)<k rA 
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Here Ak =UkkV,T, where Uk is the t x k matrix whose columns are the first k 
columns of U, Vk is the d x k matrix whose columns are the first k columns of V, and 
Sk is the k x k diagonal matrix whose diagonal elements are the k largest singular 
values of A. 

We return now to the example matrix from Figure 2.2. The SVD of that matrix 
is A= UYVT where 

(0.2670 -0.2567 0.5308 -0.2847 -0.7071 0 
0.7479 -0.3981 -0.5249 0.0816 0 0 

u- 0.2670 -0.2567 0.5308 -0.2847 0.7071 0 0.1182 -0.0127 0.2774 0.6394 0 -0.7071 
0.5198 0.8423 0.0838 -0.1158 0 0 
0.1182 -0.0127 0.2774 0.6394 0 0.7071 / 
1.6950 0 0 0 0 

0 1.1158 0 0 0 

S- 0 0 0.8403 0 0 
_ 0 0 0 0.4195 01 

( 0.4366 -0.4717 0.3688 -0.6715 0 
0.3067 0.7549 0.0998 -0.2760 -0.5000 

v= 0.4412 -0.3568 -0.6247 0.1945 -0.5000 
0.4909 -0.0346 0.5711 0.6571 0 
0.5288 0.2815 -0.3712 -0.0577 0.7071/ 

This rank-4 matrix has four nonzero singular values, and the two zero rows of Z signal 
that the first four columns of U constitute a basis for the column space of A. 

Using (5.1), we establish that IIA - A31F = 74 =0.4195 and that, since flAHIF 
2.2361, IIA-A3 1F/IIA11F 0.1876. Similarly, jjA-A2jHF/IIAHIF 0.4200. Therefore, 
only a 19% relative change is required to reduce the rank of A from 4 to 3, while 
it would take a 42% relative change to reduce it from 4 to 2. If we consider 19% a 
reasonably small change and 42% too large compared to the initial uncertainty in our 
model, then we can accept rank 3 as the best for our model. 

The columns of A3 span a three-dimensional subspace of the column space of A. 
This subspace is a good choice because a relatively small change is required to lower 
the rank of A by 1 (thereby obtaining A3), while a relatively large one is required 
to lower its rank one unit farther. In our model, we believe that this subspace and 
the corresponding matrix A3 represent the structure of the database well. In other 
words, we assume that the true content of the database cannot be easily reduced to 
a lower dimensional subspace. Thus, in our small example, we are able to identify a 
rank (k = 3) that provides a reasonable compromise between accuracy and problem 
size. How to choose the rank that provides optimal performance of LSI for any given 
database remains an open question and is normally decided via empirical testing [9]. 
For very large databases, the number of dimensions used usually ranges between 100 
and 300 [38], a choice made for computational feasibility as opposed to accuracy. Using 
the SVD to find the approximation Ak, however, guarantees that the approximation 
is the best we can create for any given choice of k. 

As expected, the relative changes of 19% and 42% required to reduce the rank 
of the matrix via the SVD are less than the corresponding changes of 26% and 52% 
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The original term-by-document matrix: 

0.5774 0 0 0.4082 0 
0.5774 0 1.0000 0.4082 0.7071 

A- 0.5774 0 0 0.4082 0 
_ 0 0 0 0.4082 0 

0 1.0000 0 0.4082 0.7071 
0 0 0 0.4082 0 

The rank-3 approximation computed using the QR factorization: 

0.5774 0 0 0.4082 0 
0.5774 0 1.0000 0.4082 0.7071 
0.5774 0 0 0.4082 0 

A 0 0 0 0 0 
0 1.0000 0 0.4082 0.7071 
0 0 0 0 0 

The rank-3 approximation computed using the SVD: 

0.4971 -0.0330 0.0232 0.4867 -0.0069' 
0.6003 0.0094 0.9933 0.3858 0.7091 
0.4971 -0.0330 0.0232 0.4867 -0.0069 

A3 = 0.1801 0.0740 -0.0522 0.2320 0.0155 
-0.0326 0.9866 0.0094 0.4402 0.7043 
0.1801 0.0740 -0.0522 0.2320 0.0155 

Fig. 5.2 The term-by-document matrix A and its two rank-3 approximations. 

required to do it by the QR factorization. Keeping these numbers in mind, it is inter- 
esting to make a visual comparison of the original term-by-document matrix A and 
the two rank-3 approximations. As shown in Figure 5.2, the QR-based approximation 
A looks a lot more like the original matrix than does the more accurate SVD-based ap- 
proximation A3. These results demonstrate the danger of making assumptions about 
accuracy based on appearance. 

Recall that the original term-by-document matrix A was constructed from term 
frequencies, thus all of its entries are nonnegative. The presence of negative elements 
in Ak is not a problem but rather a reflection of the fact that the entries are linear 
combinations of the entries of A. Keep in mind that the database content is modeled 
by the geometric relationships between the document vectors (columns of Ak), not by 
the individual components of those vectors. 

6. The Reduced-Rank Vector Space Model. Just as we did for the QR factor- 
ization, we can develop a formulation of query matching based on the SVD. One form 
of the vector space model that uses the SVD is LSI, as defined in [9] and [19]. In this 
section, we introduce a new SVD-based variant of the vector space model that follows 
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more directly from the preceding discussion than does LSI. We compare a query vec- 
tor q to the columns of the approximation Ak to the term-by-document matrix A. If 
we define ej to be the jth canonical vector of dimension d (the jth column of the d x d 
identity matrix), the jth column of Ak is given by Akej. The cosines of the angles 
between the query vector q and approximate document vectors are then computed by 

cosO0 - (Akej)Tq (UkYkV1[e )Tq eTVk(UT q) 
|| Akeflj 11 12 q 2 UkkVk7ej 112 1f q 112 || fkVk Ej 112 || q 112 

for j 1,... , d. If we define the vector sj = kVkT ej, the formula reduces to 

(6.1) S~~~~~~~T VUkT q) (6.1) CosOj - 1U'j) j 1 ...,Idi 
- 1 Sj 112 11 12 

and the cosines can be computed without explicitly forming the t x d matrix Ak. The 
norms 11 sj 112 are computed once for each term-by-document matrix and subsequently 
used for all queries. 

Equation (6.1) is rich in geometry. The k elements of the vector sj are the coordi- 
nates of the jth column of Ak in the basis defined by the columns of Uk. In addition, 
the k elements of the vector Uk7q are the coordinates in that basis of the projection 
Uk UkTq of the query vector q into the column space of Ak. These observations parallel 
those made for the QR factorization in section 3.2 and so imply that an alternative 
formula for the comparison could be formed solely from the projected query vector: 

(6.2) COS S(UT q)d. 
Sj 1 2 11Uk7jq 1 

In this case, the cosine computation uses only k-dimensional vectors after the one- 
time computation of U, q. Because the query vector q is typically very sparse, the 
cost of computing UTjq iS itself low. For all document vectors, cos Oj' > cos 0, so that 
recall may be improved at the expense of precision if (6.2) is used in place of (6.1). 

Just as was the case for the QR factorization, lowering the rank lowers the cost 
of query matching. In practice (for LSI), lowering the rank also lowers the cost of the 
factorization itself. It is never necessary to compute the full SVD of A it is sufficient 
to compute only the select singular values and singular vectors that make up Sk, Uk, 
and Vk. 

Let us now revisit the query q(l) for books about baking bread in the example 
of Figure 2.2. Using the rank-3 approximation A3 (k = 3) and (6.1), the cosines are 
0.7327, -0.0469, 0.0330, 0.7161, and -0.0097. The first and fourth books are still 
correctly identified this time with nearly equal relevance ratings. The remaining 
cosines are no longer zero but are still tiny with respect to the cutoff of 0.5, meaning 
that no irrelevant books are incorrectly returned. Using the second query vector 
q(2) about baking and A3 results in the cosines 0.5181, -0.0332, 0.0233, 0.5064, 
and -0.0069, so that both books about baking are returned, again with very similar 
relevance ratilngs. 

Running the same tests with the rank-2 approximation A2 leads to the cosines 
0.5181, -0.1107, 0.5038, 0.3940, and 0.2362 for the query vector q(l) (baking bread). 
Now the unlikely title Numerical Recipes is ranked as highly as the appropriate first 
document, but the fourth document (perhaps the best match) does not make the 0.5 
cutoff. The cosines computed for the query vector q(2) (baking) are all less than 
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0.5. These nonsensical results conifirm our suspicion that A2 is not a reasonable 
approximation to A. 

We note again that, unlike the QR factorization, the SVD provides us with a 
mechanism for low-rank representation of both the row and column spaces of the 
term-by-document matrix A. Thus, the SVD-based method can be used both for 
the query-document comparison just described and for a reduced-ranlk version of the 
term-term comparison that is the subject of section 7. 

7. Term-Term Comparison. Up to this point, we have been concerned with 
the vector space model as a mechanism for comparing queries with documents. With 
minor variation, the model can also be used to compare terms with terms. When 
implemented as part of a search engine, term-term comparison provides a tool to help 
refine the results of a search automatically. An example is presented in Figure 7.1. 
The five titles listed in that figure are the results of a search of a large and diverse 
collection of book titles using the single polysemous key word run as the query. 
The titles reflect three of the mniany meanings of the key word. We use term-term 
comparison to help focus the result. 

To begin, we create a new 7 x 5 term-by-document matrix G using the docu- 
ment vectors returned in the search. Term-term comparison is then carried out by 
computing the cosines of the angles Wij between all pairs of term vectors i and j: 

(7.1) cos wii = || GT )( 112 || GTej 112 

for i, j = 1, . . . , 7, where el denotes the Ith canonical vector of dimension t (the Ith 
column of the t x t identity matrix). The cosines are listed in the matrix C, where 
Cij = coswij. For clarity of presentation, only the entries in the top half of the 
symmetric matrix C are shown. 

The entry Cij reveals how closely term i is associated with term j. If the entry 
is near 1, the term vectors for the two terms are nearly parallel and the terms are 
closely correlated. In this case, the terms are similarly used across the collection of 
documents and so have similar functions in describing the semantics of those docu- 
ments. Geometrically, the vectors occupy nearby locations in the row space of the 
term-by-document matrix. If the entry Cij is near zero, the vectors are nearly orthog- 
onial and the corresponding terms are not related. As expected, the cosine matrix C 
shows a nonzero cosine for the angles between the term vector for run and all other 
term vectors. It is the cosines of the angles between the remaining term vectors that 
are more interesting. They show that the remaining term vectors divide into three 
geometrically distinct groups, where the first group corresponds to terms 2 through 
4, the second to terms 5 and 6, and the third to term 7 alone. 

The geometric separation of the term vectors translates into three semantically 
independent groups of terms. The terms bike, endurance, and training identify 
documents about the sport of running, while the other two groups of terms are associ- 
ated with other meanings of the term run. The process of grouping terms according 
to their related content in this way is known as clustering [33]. Using these results, anl 
automated indexing tool can prompt the user to idenitify which of the three meanings 
of run is of interest and so help the user to refinie the search. Clustering thus serves 
as one mechanisin for dealing with polysemy. 

It is this application of the vector space model that justifies use of the SVD for 
the reduced-rank method when Ak = UkEkV1T replaces A. Recall that the columns 
of Uk formed a basis for the column space of Ak, and so those columns could be used 
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The t = 7 terms: 

TI: runi(niing) 
T2: bike 
T3: endurance 
T4: training 
T5: band 
T6: music 
T7: fishes 

The d= 5 document titles: 

D1: Complete Triathlon Endurance Training Manual: Swim, Bike, Run 
D2: Lake, River and Sea-Run Fishes of Canada 
D3: Middle Distance Runininig: Training and Competition 
D4: Music Law: How to Run Your Band's Businiess 
D5: Running: Learniing, Training, Competing 

The 7 x 5 term-by-document matrix with unit columns: 

0.5000 0.7071 0.7071 0.5774 0.7071 
0.5000 0 0 0 0 
0.5000 0 0 0 0 

G 0.5000 0 0.7071 0 0.7071 
0 0 0 0.5774 0 
0 0 0 0.5774 0 
0 0.7071 0 0 0 

Cosines of angles between term vectors: 

1.0000 0.3464 0.3464 0.7746 0.4000 0.4000 0.4899 
1.0000 1.0000 0.4472 0 0 0 

1.0000 0.4472 0 0 0 
C= 1.0000 0 0 0 

1.0000 1.0000 0 
1.0000 0 

1.0000 

Fig. 7.1 Identifying polysemy via term cornparison. 

in place of the columns of Ak for query matching. In the same way, the rows of Vk 
are a basis for the row space of Ak anid so can replace the rows of Ak in (7.1). Thus, 
in a reduced-rank approximation, the cosine becomes 

(e[T UkZ Ek VkT) (Vk Sk Ukjej) (eT Uk Sk) (E k UkCJ) 
| VkEkU Uei 112 VkkUkC 2 T EkUTei II2 ,1kUk ej U 2 
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for i =1,...,t and j =1,...,d. Defining bj =kUk ej, we have 

bT b 
cos wij = 

b 12 11b 12 

for i = 1, ... .,t and j=1,.. ,d. 
In addition to the geometric measure of similarity used in Figure 7.1, techniques 

based on graph-theoretic concepts (e.g., links, cliques, connected components) are 
sometimes used to produce approximate clusters directly from the term frequencies 
stored in the original term-by-document matrix. Clusters formed by any method may 
be merged or split depending on the level of similarity among clusters. Clustering 
information can be used to generate statistical thesauri in which terms are grouped 
according to how often they co-occur under the assumption that terms that typically 
appear together should be associated with similar concepts. Such thesauri are used 
for query expansion and refinement. See [33] for a more thorough discussion of term 
(and document) clustering techniques. 

8. What We Do to Really Make IR Work. Scientific computing is rarely a 
straightforward application of textbook algorithms. Implementing vector space meth- 
ods in IR is no different. In this section, we discuss some techniques used in practice to 
index and manage large collections of documents using LSI. They also apply directly 
to the SVD-based method described in section 6. Most of the material in this section 
is more advanced than that covered in the preceding sections, so we review only the 
basic ideas and provide references to more detailed explanations. 

8.1. Relevance Feedback. An ideal IR system would achieve high precision for 
high levels of recall. That is, it would identify all relevant documents without also 
returning any irrelevant ones. Unfortunately, due to problems such as polysemy and 
synonymy (described in section 1), a list of documents retrieved for a given query is 
almost never perfect, and the user has to ignore some of the items. 

In practice, precision can be improved using relevance feedback [49], that is, spec- 
ifying which documents from a returned set are most relevant to the information 
sought and using those documents to clarify the intent of the original query. The 
term-term comparison procedure described in section 7 provides one mechanism for 
relevance feedback by which the user can improve a query based on term cluster- 
ing information. Relevance feedback can also be carried out in the column space of 
the term-by-document matrix. In particular, the query can be supplemented with 
or replaced by the vector sum of the most relevant documents returned in order to 
focus the search nearer to those document vectors. We now provide a mathematical 
description of the latter relevance feedback procedure. 

Because we are concerned only with information contained within the column 
space of Ak, we assume that the original query vector q lies within that space. If 
not, we replace the query vector with its projection into that space (q *- UkUTkq). 
To provide a common ground for the query and document vectors, it is convenient 
to describe them both in terms of the same basis for the rank-k approximation to 
the column space. We choose the basis given by the columns of Uk and then work 
directly with the k-dimensional vectors that provide the coordillates of the vectors 
in that basis instead of working directly with the much larger t-dimnensional query 
and document vectors. The coordinates of the query vector are the elements of the 
vector U7Tq, and the coordinates of the jth column UkEkV Tej of the matrix Ak are 
the elements of the vector EkVk ie. 
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Suppose that the most relevant result of a user's search is the single document 
aj. The new and improved query is then the sum 

qew = UkUj T+ a 
UkUk q + UkEkVjkej 
Uk(U q + YkVk ej). 

(If the document vector aj is not in the column space of Ak, it should also be replaced 
with its projection into that space, a. +- UkUj aj.) If a larger collection of documents 
is relevant, the new query can be written as 

d 

(8.1) qnew = q + , wjaj = Uk(UTq + kVkIW), 
,}=1 

where the vector element wj is 1 if ai is relevant and 0 otherwise. If the query vector 
is replaced by the sum of document vectors, the vector q is replaced by zero in (8.1). 
The vector UkTq was formed in the original cosine computation, so the new query 
is formed efficiently via the sum of vectors of dimension k. We can now repeat the 
comparison using qnew in place of q. If (as we did for (6.1)) we define the vector 
3] =ZkVkTe., the cosine formula is now 

sT(U Tqnew) 

Sj 11 2 || qnew 112 

for j 1,.. , d. There is empirical evidence that replacing the query with a combi- 
nation of a few of the most relevant documents returned can markedly improve the 
performance of LSI in some cases [20]. 

8.2. Managing Dynamic Collections. Like the weather, databases rarely stay 
the same. Information is constantly added or removed, meaning that catalogs and 
indexes become obsolete or incomplete (sometimes in a matter of seconds). For the 
LSI model, the most obvious approach to accommodating additions (new terms or 
documents) is to recompute the SVD of the new term-by-document matrix, but, for 
large databases, this procedure is very costly in time and space. Less expensive 
alternatives, folding-in and SVD-updating, have been examined in [9], [44], and [54]. 
The first of these procedures is very inexpensive computationally but results in an 
inexact representation of the database. It is generally appropriate to fold documents 
in only occasionally. Updating, while more expensive, preserves (or restores) our 
representation of the database. In this section, we briefly review both procedures. 

8.2.1. Folding-In. Folding a new document vector into the column space of an 
existing term-by-document matrix amounts to finding coordinates for that document 
in the basis Uk. The first step in folding a new t x 1 document vector p into the 
column space is to project it onto that space. Let p represent the projection of p; 
then, following the discussions in section 6, 

(8.2) p=UkUTjp. 

This equation shows that the coordinates of p in the basis Uk are given by the elements 
of the vector UT p. 

The new document is then folded in by appending the k-dimensional vector U7Tj 

as a new column of the k x d matrix EkVkT. Because the latter matrix product is not 
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actually computed, the folding-in is carried out implicitly by appending _TUEk-I as 
a new row of Vk to form a new matrix Vk'. The implicit product EkVk' is then the 
desired result. Note that the matrix Vk' is no longer orthonormal. In addition, the 
row space of the matrix Vk does not represent the row space of the new term-by- 
document matrix. Furthermore, if the new document p is nearly orthogonal to the 
columns of Uk, most information about that document is lost in the projection step. 

Similarly, to fold in a d x 1 term vector wb whose elements specify the documents 
associated with a term, wb is projected into the row space of Ak. Let w represent the 
term projection of w-; then 

W = VkVkThw. 

The coordinates V Tw of the projected vector w are then appended to the matrix Uk 
as a new row. In this case, the orthogonal representation of the column space of the 
term-by-document matrix breaks down [9, 44]. 

8.2.2. SVD-Updating. An alternative to folding-in that accounts for the effects 
that new terms and documents might have on term-document associations while still 
maintaining orthogonality was first described in [9] and [44]. This approach comprises 
the following three steps: updating terms, updating documents, and updating term 
weights. As pointed out by Simon and Zha [54], the operations discussed in [9] and 
[44] may not produce the exact SVD of the modified reduced-rank LSI model (i.e., Ak 
from section 4.) Those authors provide alternative algorithms for all three steps of 
SVD-updating, and we now review them. For consistency with our earlier discussion, 
we use column pivoting in the QR factorizations, although it is not used in [9], [44], 
and [54]. 

Updating Terms. Suppose that r term vectors are added to an existing LSI database 
of d documents. If T is the r x d matrix of new term vectors, the new term-by- 
document matrix is formed by appending T to the rows of the rank-k t x d matrix 
Ak = UkZkV T. The result is the (t + r) x d matrix 

( T) 

By construction, the rank of B is greater than or equal to the rank k of Ak. An 
approximation to the SVD of B is used to obtain a new rank-k factorization Bk = 
UBEB V, reflecting the change in semantic structure of the database caused by the 
addition of terms. 

The factorization of B proceeds in two stages. In the first, we create a block 
trapezoidal matrix pre- and postmultiplied by matrices with orthonormal columns 
and rows, respectively. In the second, we modify that factorization to produce the 
approximate SVD of B. To begin, we replace Ak by its SVD and factor out the 
singular vector matrices: 

VT ~ V 

B (Ak) (Ukzkig k) 

Uk- ? 0 Ek ? 0 

0 O IJ TVk- I T(I - kV T 

(8.3) ( ~~Uk ? ) k ? (0 (-kVk) 
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At this point, the interior matrix in the matrix product is triangular and the left 
exterior matrix is orthogonal, but the right exterior matrix is not. While the columns 
of Vk are orthonormal, the columns of Vk = (I - VkV T)TT are not. It is, however, ~~~~~~~~~ 
the case that the columns of Vk belong to the orthogonal complement of the column 
space of Vk. (Each column of that matrix is formed by subtracting the projection of 
a column of TT into the column space of Vk, from that column of TT.) The remedy 
comes in the form of a variant of the QR factorization. Let rv be the rank of Vk; then 
Vk can be factored into the product VkrIv = VkRr, where rlv is an r x r permutation 
matrix, Vk is a d x rv matrix having orthonormal columns, and Rr is an rv x r upper 
trapezoidal matrix. 

Then, in (8.3), 

( Vk (I-VkV f)TT ) = ( Vk ViTRrTIT), 

so that 

Uk 
? I 

k 
) (T/ I)( VrIIT )T 

(Uk ) (f k R A(KT) 
0 1 gT Vk rIvRrJ tVkT 

In this factorization, the left matrix is a (t + r) x (k + r) matrix with orthonormal 
columns, the interior matrix is a (k + r) x (k + rv) block lower trapezoidal matrix, 
and the right matrix is a (k + rv) x d matrix having orthonormal rows. (Note that 
when column pivoting is used, the small elements of Rr are pushed toward the lower 
right corner. As discussed in section 3, it may be possible to ignore those elements 
and thereby reduce the cost of the SVD computation in the following step.) 

If we define the SVD of the interior matrix by 

k VRr)( k )( ? Ek (Qk Qf )T7 

where Pk is a (k + r) x k matrix with orthonormal columns, Qk is a (k + rv) x k 
matrix with orthonormal columns, and Sk is a k x k diagonal matrix, then the best 
rank-k approximation of B is 

(8.4) Bk = k ( 1)Pk Sk(( Vk Vk ) Qk) 

Using (8.4), the new factors of rank-k approximation of the updated term-by-document 
matrix B are 

UB UQO )) Pk and VB (Vk V/k ) Qk, 

respectively, and its singular values are EB = Zk. 

Updating Documents. Adding s documenit vectors to a database is similar to adding 
r term vectors. Let D denote the t x s document vectors, where t is the number of 
terms. The matrix D is appended to the columns of the original Ak matrix so that 

B= (Ak D)) 
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where B is a t x (d + s) matrix of rank at least k. An approximation to the SVD of 
B given by Bk = UBEBVB then accounts for changes in the document set [9]. If the 
QR factorization of (I - UkUkT)D is represented as 

(I - UkUk[)DriU = UkRS, 

where R, is an s x s upper triangular (or trapezoidal) matrix, then it follows [54] that 

B=(Ak D) =(Uk Uk)( T VkT 

Using the SVD of 

(Zk UkTD P )(k 0Q T 
( U) R)( Pk k) o (Qk Qkh) 

s U 

where Pk and Qk are (s + k) x k matrices with orthonormal columns and Zk is again 
a k x k diagonal matrix, the best rank-k approximation of B is given by 

(8.5) Bk =Uk Uk ) Pk k [(0 ) Qkl 

Using (8.5), the term and document vectors for the updated LSI model are 

UB= (Uk Uk ) Pk and VB O I) Qkv 

respectively, and the updated singular values are the diagonal elements of EB = Sk. 
Updating Term Weights. The weights assigned to j of the terms can be changed by 

computing the matrix sum 

B = Ak + yZT, 

where the elements of the d x j matrix Z specify the differences between the old and 
new weights for the j terms, and the elements of the t x j matrix Y are either 0 or 1, 
depending on which elements of Ak are to be updated [9]. 

This updating procedure also depends on the QR factorization. In particular, by 
substituting the two factorizations 

(I - UkUk)Yrly = QyRy, 
(I - VkVkT)Zrlz = QzRz, 

we can write the updated matrix as the product [54] 

[ ( k ? 0 Uk T ) ( ZTVk TR Vk( T) 

( ) ^ ( VkT ) 

In this product, the left matrix is a t x (k + j) matrix with orthonormal columns, the 
interior matrix B is a rank-' update to a (k + j) x (k + j) diagonal matrix, and the 
right matrix is a (k + j) x d matrix having orthonormal rows. rly and rlz are j x j 
permutation matrices. If the SVD of B is 
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the best rank-k approximation of the SVD of B is found by setting EY to zero, resulting 
in 

Bk = ((Uk QY) Uk)k((Vk QZ)Vk)T = UBEBVBT 

The new singular values and singular vectors computed from any of the updating 
steps reflect changes in the vector space due to the addition of terms and documents. 
SVD-updating, in one sense, is a dynamic IR model that can accurately reflect the 
impact that new or modified information can have on a current index of terms and 
documents. 

8.2.3. Downdating. Using SVD-downdating, the LSI model can be modified to 
reflect the removal of terms and documents and any subsequent changes to term 
weights. Downdating can be useful for information filtering [24] (e.g., parental screen- 
ing of Internet sites) and evaluating the importance of a term or document with respect 
to forming or breaking clusters of semantically related information. See [12] and [60] 
for more details on the effects of downdating and how it can be implemented. 

8.3. Sparsity. The sparsity of a term-by-document matrix is a function of the 
word usage patterns and topic domain associated with the document collection. The 
more new terms each document brings to the global dictionary, the sparser is the 
matrix overall. The sample IR matrices studied in [5] are typically no more than 1% 
dense; that is, the ratio of nonzeros to the product of the row and column dimensions 
is barely 0.01. Experience has shown that these matrices typically lack any regular 
nonzero pattern, but some recent efforts in the use of both spectral (based on the 
eigendecomposition or SVD) and nonspectral (usually graph-theoretic) approaches to 
generate banded or envelope matrix forms are promising [11]. 

In order to compute the SVD of sparse term-by-document matrices, it is important 
to store and use only the nonzero elements of the matrix. Special matrix storage 
formats (e.g., Harwell-Boeing) have been developed for this purpose (see [3]). Special 
techniques for computing the SVD of a sparse matrix include iterative methods such 
as Arnoldi [37], Lanczos [34, 45], subspace iteration [47, 45], and trace minimization 
[51]. All of these methods reference the sparse matrix A only through matrix-vector 
multiplication operations, and all can be implemented in terms of the sparse storage 
formats. 

Implementations of the aforementioned methods are available at www.netlib.org. 
These include software for Arnoldi-based methods (ARPACK) as discussed in [36] 
and [37] and implementations of Lanczos, subspace iteration, and trace minimization 
(SVDPACK (Fortran 77) [6] and SVDPACKC (ANSI C) [8]), as discussed in [5]. 
Simple descriptions of Lanczos-based methods with MATLAB examples are available 
in [3], and a good survey of public-domain software for Lanczos-type methods is 
available in [7]. Whereas most of the iterative methods mentioned thus far are serial 
in nature, an interesting asynchronous technique for computing several of the largest 
singular triplets of a sparse matrix on a network of workstations is described in [59]. 

For relatively small-order term-by-document matrices, it may be most convenient 
to ignore sparsity altogether and consider the matrix A as dense. One Fortran li- 
brary including the SVD of dense matrices is LAPACK [1]. MATLAB also provides 
a dense SVD routine called by [U, Sigma,VI =svd (A) if A is stored as a dense ma- 
trix or by [U,Sigma,VI=svd(full(A)) if A is stored as a sparse matrix. MATLAB 
(version 5.1) also provides a function to compute a few of the largest singular values 
and corresponding singular vectors of a sparse matrix. If the k largest singular val- 
ues and corresponding left and right singular vectors are required, the MATLAB call 

This content downloaded from 130.215.28.139 on Tue, 4 Feb 2014 14:34:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


360 M. W. BERRY, Z. DRMAC, AND E. R. JESSUP 

is [Uk,Sigmak,Vk] = SVDS(A,k). The sparse SVD function SVDS is based on the 
Arnoldi methods described in [36]. Note that, for practical purposes, less expensive 
factorizations such as QR or ULV may suffice in place of the SVD [10]. 

Presently, no effort is made to preserve sparsity in the SVD of the sparse term- 
by-document matrices. Since the singular vector matrices are often dense, the storage 
requirements for Uk, Zk, and Vk can vastly exceed those of the original term-by- 
document matrix. For example, a sparse 5, 526 x 1, 033 term-by-document matrix A 
generated from the MEDLINE collection [41] of medical abstracts requires 0.4 Mbytes 
to store the original matrix, whereas the storage needed for the corresponding single 
precision matrices Uk,k,Vk is 2.6 Mbytes when k = 100. 

The semidiscrete decomposition (or SDD) [32] provides one means of reducing the 
storage requirements of LSI. In SDD, only the three values -1, 0, 1 (represented by two 
bits each) are used to define the elements of Uk and Vk, and an integer programiming 
problem is solved to produce the decomposition. Another possible way to remedy the 
problem of fill is to replace the singular vector matrix with a less accurate but more 
compact form. In particular, we can replace small elements of the matrices Uk and 
Vk with zeros and store the results in sparse formats. In the MEDLINE example, if 
we replace all entries of less than 0.0025 with zero we reduce Uk from 100% dense to 
61% dense. It can be shown that the error in computing the cosines using the sparser 
approximation in place of Uk is equal to 0.0976, which may be acceptable in some 
circumstances. 

9. Further Reading. In addition to the numerous LSI-related journal articles and 
technical reports cited in this paper, two recommended sources of background material 
on IR systems are the textbooks by Frakes and Baeza-Yates [25] and Kowalski [33]. 
Both of these books are used in undergraduate and graduate courses in IR, and both 
provide good references on the design and performance of IR systems. While the 
book by Frakes and Baeza-Yates [25] does provide some accompanying C software, 
Kowalski's [331 does not elaborate on the computational (or software) issues associated 
with automatic indexing. Foundational concepts in IR are covered in Salton's book 
[48]. Salton and McGill later published a more modern study of IR methods in [501. 

Certainly, more data and information management tutorials and handbooks will 
be available in the near future, as the need for skills in information-based technologies 
continues to grow. We hope that our presentation of the more mathematical side 
of information modeling will spur new interest in computational mathematics and 
attract students and faculty to pursue interdisciplinary research in linear algebra and 
information science. 
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