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Why is non-equivocation important?

Public-key distribution
- HTTPS
- Secure messaging
- Security research often assumes a PKI

Tor Directory Servers

Software transparency schemes
- Apple vs. FBI
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Previous work

CoSi

"Liar, liar, coins on fire!" 
(CCS '15)

(S&P '16)

Can detect, but not prevent 
equivocation with gossip.

Must download 90 GB 
of blockchain data.

Requires a large, diverse, trustworthy 
set of witnesses.

Only disincentivizes equivocation. 
Vulnerable to malicious outsiders.
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Bitcoin blockchain

txi
txjtxa

txk

Block i Block j

1. The time-ordered log of valid transactions (PoW consensus)
2. No double spends: A transaction output can only be referred 

to by a single transaction input.

txb

Blockchain forks ⇔ Double-spent coins
Block n'

Block n
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Catena transaction format

txi
"Change" coins back to server
(public key)

Unspendable OP_RETURN 
output with arbitrary data

Coins from server 
for paying TX fees
(digital signature)

A single spendable output ⇒ No forks txjtxi

txk

<data>
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Catena 
log server

Catena design

s2

Block n

Advantages: 
(1) Hard to fork 
(2) Efficient to verify

Disadvantages: 
(1) 6-block confirmation delay
(2) 1 statement every 10 minutes

n TX1 TX2

Next, 

unique s3
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Client bandwidth

e.g., 440K block headers + 10K statements = ~41 MB 
(80 bytes each) (around 600 bytes each)
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Conclusions

- Efficient Bitcoin witnessing is possible!
- ~40 MB instead of 90 GB bandwidth overhead

- Important applications
- Public-key directories
- Tor Consensus Transparency
- Software transparency schemes

- Publicly-verifiable consensus like Bitcoin 
should be leveraged by applications, efficiently.



The end.
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Block n

Malicious blockchain fork.

Attacker has to fork Bitcoin. Attacker needs to 
mine at least 6 blocks on one of the forks.
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Violates Bitcoin's 
security against 
double spends.
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Key idea

Q: How can we prove to a thin client that there's no s'2?
A: Leverage Bitcoin's mechanism against double-spends!



Graveyard
...where old slides rest in peace.
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prev: H( block1 )
txns: H( merkle2 )

prev: H( block2 )
txns: H( merkle3 )

block2 block3

prev: null
txns: H( merkle1 )

genesis block1

Membership proof for tx2

tx2
txd

txa

txb

txc

3Ƀ for PKEva
(unspent)

tx2

TX inputs:
Signatures

Carol's signature 
under her PK

2Ƀ for PKDan
(spent)

PKCarol


