This Document Does Not Contain Controlled Technology or Technical Data

DRAPER

The Dover Architectur

Hardware Enforcement of
Software-Defined Security Policies

Team: Greg Sullivan (Draper) (presenting),
André DeHon (UPenn),
Eli Boling, Marco Ciaffi, Steve Milburn,
Nirmal Nepal, Jothy Rosenberg,
Andrew Sutherland (all Draper)

HERENTLY SECUR
PROCESSING

Date: November 28, 2016

New England Security Day Fall 2016
At Worcester Polytechnic Institute,
Worcester, MA

Sy
)
\
iy,

The Charles Stark Draper Laboratory, Inc.
555 Technology Square, Cambridge Mass. 02139-3563
CAGE Code: 51993

Hive

1. Brief history lesson and motivation
2. Brief overview of Dover hardware architecture.
3. Introduction to policies, as enforced on Dover

4. Motivation for discussion: more uses for policies.

DRAPER"

Dover pre-history

2010-2015 — DARPA CRASH program — Clean Slate Security

CRASH SAFE project (prime = BAE Systems) included U. Penn
(DeHon, Pierce, Smith), Harvard (Morrisett), Northeastern (Wand,
Shivers)

Clean slate hardware, ISA, programming languages, runtime

Tagged architecture — every word has metadata, every instruction
vetted by software-defined policies

Formal verification of security policies, with a focus on information
flow control (IFC)

ASPLOS 2015: Can we add tags and “PUMP” (Programmable Unit
for Metadata Policies) to conventional RISC processor?
papers at http://www.crash-safe.org/

Lots of earlier history: TIARA project (Knight, Shrobe, DeHon), other
tagged architectures (Intel 432, IBM System 38, Lisp Machines, etc.),
information flow PLs and Oses.

DRAPER"

Motivation — Software Security Problem

Virtually impossible to write C/C++ code without vulnerabilities

- Static analysis, formal verification: gets you part way.

- Testing: gets you part way.

» Software-based runtime security monitors: hopeless
— Signature-based: useless, by definition, for 0-days

— |IRMs, stack canaries, ASLR, etc. — subvertible
— “Eternal war on memory”

You can't fix buggy software with more (buggy) software.
»Need hardware as root of trust.

DRAPER"

[f@g] daia |
Dover: Parallel Metadata
PC
Y
|-Store
= _—I‘ Register Q‘
File
y
|-Store I
= ' Ty ‘ Memory
& s
25
Register File =
30
| L nS
' ‘ Memory ,
'u' t YW W
AL PIPE
Combine | | result tag
Tags
new PC tag

PIPE: Processor Interlocks for Policy
Enforcement

DRAPER" Dover 5

PC

Programmable Metadata ,
_—I¢ Regiilzter g

Metadata ,
Provenance “ Data \v'" ‘ Memory
Classification L 2 o
Pointer? " g2
Instruction? T |;|PE’{ ?;&
Return address? C%)_glgbsine] resulttag -0
etC. new PC tag

» Give each word a programmable tag
— Indivisible from word

— Uninterpreted by hardware
— Software can use as pointer to data structure

- Tags checked and updated on every operation
— Common case in parallel by PIPE “rule” cache

DRAPER" Dover 6

Abstract Function

- Every word may have
arbitrary metadata

* PIPE is a function from:

— Opcode, PC
RS1..,, RS2

* To:
— Allowed?
— PC

Instry,,

“9 VR

tag’ tag’ tag

tag

— Result,, (RD, memory result)

DRAPER"

— security
violation

\

PC

I-Store

= QI

Register

File

|

1
Memor
g
ALU

—

PIPE

Combine
Tags

resulttag ;
=

new PC tag

Policies

What operations are allowed and
how metadata is updated

Examples:
* Memory Safety

Control Flow Integrity

Taint tracking / Information Flow Control
Access Control (fine-grained)

» Mandatory Access Control
Types (including application-defined)
Fine-grained instruction permission

DRAPER"

— security
violation

\

PC

I-Store

Register

File

S

|

‘ Memory

| [
'
ALU

—

PIPE

Combine
Tags

new PC tag

resulttag ;
=

Composite Policies

Limiting if only support one policy
at a time
Use pointer tag to point to tuple of
upolicies
No hardware limit on number of
upolicies supported

— Support 0-1-< design principle

PC

Yy

I-Store

= S

Register

File

|
Memor
g
ALU

—

— security
violation

PIPE

Combine
Tags

resulttag ;
=

new PC tag

tag -2 type memsafe

cfi

taint

DRAPER"

38 Policy 'i -
. coton |
Separation — WG oy,
= regsier §
' A
Policy Execution Engine (PEX) Coprocessor| *
. e,
- Data and Metadata do not mix ‘ i

Metadata not addressable
Datapaths do not cross

No instructions read or write metadata
— No set-tag, no read-tag

All metadata transforms through PIPE

DRAPER"

10

Policy il _ ECCEE
& Execution
[Fc_] Engine [L e]

Project Status . -

[
\? Memory \v' ' ‘ peme
ALU
AL
‘ I PIPE result tag ;

Hardware i

 Building around RISC-V (open source ISA specitication)
— see https://riscv.org/

new PC tag

‘ [
Z5

38
82

* Implemented on FPGA.
— 1stversion used Bluespec/Verilog. Current version uses just Verilog
» Aiming for ASIC tape out June 2017.

— Both Application Processor (AP) and PEX based on 32b Rocket open
source RISC-V design

DRAPER’ Dover 11

Project Status, continued

Software

« simple “Dover Kernel” — useful for experimenting with policies.

— Most complicated bits: booting — initializing PEX and AP; loading ELF
images and applying tags to instruction words.

» modified GCC RISC-V cross-compiler to generate metadata used by
loader for CFl, stack safety policies.

« modified RISC-V software simulator (“spike”) to mimic AP+PEX
design

« Domain Specific Language for writing policies.
— generates C

DRAPER" 12

DRAPER"

Fun With Policies

Memory Safety uy-Policy

Goal: enforce spatial and temporal safety

0x00

+ Method: give each pointer a unique “color” Z 0x00
— color memory slots with this color on allocation

0x00
— recolor on free

0x07

* Policy:

0x00

(LOADI_I_IR]-I_IMR)-(MR,==R]-I_I_) 0x00

0x01
Require that tag (color) on pointer (R1)
equals tag on pointed-to word (MR)

0x00

malloc (2);
1= 0x09;
malloc (5) ;
] = 0x07;
malloc (3);
0x01;
Oxbad; //FAIL

— similar for STORE [

—

KONON KR XX
Nl w Il Ol

Reminder: (opcode, PC, INST, OP1, OP2, MR) = (allow?, PC, Result)

—
[—

DRAPER" Dover 14

Control Flow Integrity u-Policy

Goal: limit control transfers to those specified by program

- Policy: Copy tag from call instruction to PC tag

(CALL,none,tl,Rl1,-,-) = (true,tl,-)
(CALL,tl1l,t2,-,-,-) = (tl in t2,none,-)

foo {

If not a call instruction, and PC is tagged (e.g. t1),
check that tag on PC (t1) is in the list of “legal tl: bar() X control flow transfer

caller tags” (t2) on current instruction (which must ~ t4: - * 0. bar |
be the target of a call). Also, untag PC back to } '
none. has CFI t3: return;
metadata }
* Generalize for return t2 — {t1, 142, ...}

Reminder: (opcode, PC, INST, OP1, OP2, MR) = (allow?, PC, Result)

DRAPER" 15

Taint Tracking u-Policy

« Goal: track influences of values
— prevent untrusted values influencing critical decision

— limit flow of sensitive data
* Policy:
(ADDL, PC, INST,OP1,0P2,-)=
(true,PC,union(PC,INST,OPl,OPZ))

Tag (taint) on result is union of taints on operands.

Reminder: (opcode, PC, INST, OP1, OP2, MR) = (allow?, PC, Result)

DRAPER"

16

DRAPER

Questions for Discussion

Discussion Topics

How to use metadata to implement / enforce:

Least privilege compartmentalization
Information flow, a la MLS (multi-level security) or more general

Linear / Affine types (e.g. use at most once, cannot copy, etc.)
— Canonical example: A return address should not be copied.

Stack safety (vs. heap memory safety using colors)

Intra-structure safety (e.g. two arrays w/in same struct — prevent
overflow from one into another).

Fully abstract compilation (being pursued by Catalin Hritcu et al.
under ERC SECOMP project)

— call untrusted reverse — restrict access to contents of list elements.

— call untrusted sort — restrict access to calls to <= or compare on
elements.

DRAPER"

18

DRAPER

Q&A

Some pointers:

« CRASH SAFE papers: http://www.crash-safe.org/papers.htmi

» Draper Inherently Secure Processor project:
http://www.draper.com/solution/inherently-secure-processor

» RISC-V: https://riscv.org/

This Document Does Not Contain Controlled Technology or Technical Data Draper Proprietary

