
The Charles Stark Draper Laboratory, Inc.
555 Technology Square, Cambridge Mass. 02139-3563
CAGE Code: 51993

The Dover Architecture

Team: Greg Sullivan (Draper) (presenting),
André DeHon (UPenn),
Eli Boling, Marco Ciaffi, Steve Milburn,
Nirmal Nepal, Jothy Rosenberg,
Andrew Sutherland (all Draper)

Hardware Enforcement of
Software-Defined Security Policies

New England Security Day Fall 2016
At Worcester Polytechnic Institute,
Worcester, MA

Date: November 28, 2016

This Document Does Not Contain Controlled Technology or Technical Data Draper Proprietary

1. Brief history lesson and motivation

2. Brief overview of Dover hardware architecture.

3.  Introduction to policies, as enforced on Dover

4. Motivation for discussion: more uses for policies.

2 Dover

Dover pre-history

2010-2015 – DARPA CRASH program – Clean Slate Security
 •  CRASH SAFE project (prime = BAE Systems) included U. Penn

(DeHon, Pierce, Smith), Harvard (Morrisett), Northeastern (Wand,
Shivers)

•  Clean slate hardware, ISA, programming languages, runtime
•  Tagged architecture – every word has metadata, every instruction

vetted by software-defined policies
•  Formal verification of security policies, with a focus on information

flow control (IFC)
•  ASPLOS 2015: Can we add tags and “PUMP” (Programmable Unit

for Metadata Policies) to conventional RISC processor?
•  papers at http://www.crash-safe.org/
•  Lots of earlier history: TIARA project (Knight, Shrobe, DeHon), other

tagged architectures (Intel 432, IBM System 38, Lisp Machines, etc.),
information flow PLs and Oses.

3 Dover

Motivation – Software Security Problem

Virtually impossible to write C/C++ code without vulnerabilities

•  Static analysis, formal verification: gets you part way.
•  Testing: gets you part way.
•  Software-based runtime security monitors: hopeless

–  Signature-based: useless, by definition, for 0-days
–  IRMs, stack canaries, ASLR, etc. – subvertible
–  “Eternal war on memory”

Ø Need hardware as root of trust.

4

You can’t fix buggy software with more (buggy) software.

Dover

5

PIPE

PIPE: Processor Interlocks for Policy
Enforcement

Dover: Parallel Metadata

Dover

Programmable Metadata

•  Give each word a programmable tag
–  Indivisible from word
–  Uninterpreted by hardware
–  Software can use as pointer to data structure

•  Tags checked and updated on every operation
–  Common case in parallel by PIPE “rule” cache

6

Data Tag

PIPE

Metadata
•  Provenance
•  Classification
•  Pointer?
•  Instruction?
•  Return address?
•  etc.

Dover

Abstract Function

7

PIPE

•  Every word may have
arbitrary metadata

•  PIPE is a function from:
–  Opcode, PCtag, Instrtag,

RS1tag, RS2tag, MRtag
•  To:

–  Allowed?
–  PCtag
–  Resulttag (RD, memory result)

Dover

Policies

What operations are allowed and
how metadata is updated

•  Memory Safety
•  Control Flow Integrity
•  Taint tracking / Information Flow Control
•  Access Control (fine-grained)

•  Mandatory Access Control

•  Types (including application-defined)
•  Fine-grained instruction permission

Examples:

8

PIPE

Dover

Composite Policies

•  Limiting if only support one policy
at a time

•  Use pointer tag to point to tuple of
µpolicies

•  No hardware limit on number of
µpolicies supported

–  Support 0-1-∞ design principle

9

tag type memsafe cfi taint

PIPE

Dover

Separation

•  Data and Metadata do not mix
•  Metadata not addressable
•  Datapaths do not cross
•  No instructions read or write metadata

–  No set-tag, no read-tag
•  All metadata transforms through PIPE

10

PIPE

Policy
Execution

Engine
(PEX)

Policy Execution Engine (PEX) Coprocessor

Dover

Project Status

Hardware
•  Building around RISC-V (open source ISA specification)

–  see https://riscv.org/

•  Implemented on FPGA.
–  1st version used Bluespec/Verilog. Current version uses just Verilog

•  Aiming for ASIC tape out June 2017.
–  Both Application Processor (AP) and PEX based on 32b Rocket open

source RISC-V design

11

PIPE

Policy
Execution

Engine
(PEX)

Dover

Project Status, continued

12

Software
•  simple “Dover Kernel” – useful for experimenting with policies.

–  Most complicated bits: booting – initializing PEX and AP; loading ELF
images and applying tags to instruction words.

•  modified GCC RISC-V cross-compiler to generate metadata used by
loader for CFI, stack safety policies.

•  modified RISC-V software simulator (“spike”) to mimic AP+PEX
design

•  Domain Specific Language for writing policies.
–  generates C

Dover

Fun With Policies

Memory Safety µ-Policy

Goal: enforce spatial and temporal safety

•  Method: give each pointer a unique “color”

–  color memory slots with this color on allocation

–  recolor on free

•  Policy:

–  similar for STORE

(LOAD,-,-,R1,-,MR)➡ ︎(MR==R1,-,-)

Require that tag (color) on pointer (R1)
equals tag on pointed-to word (MR)

Tag Data

0x09

0x00

0x00

0x00

0x00

0x07

0x00

0x00

0x01

0x00

x

y

z

x = malloc(2);
x[0]= 0x09;
y = malloc(5);
y[3] = 0x07;
z = malloc(3);
z[1] = 0x01;
x[2] = 0xbad; //FAIL

Reminder: (opcode, PC, INST, OP1, OP2, MR) ➡︎ (allow?, PC, Result)

14 Dover

Control Flow Integrity µ-Policy

Goal: limit control transfers to those specified by program
 •  Policy:

•  Generalize for return

15

(CALL,none,t1,R1,-,-) ➡ ︎ (true,t1,-)
(CALL,t1,t2,-,-,-) ➡ ︎ (t1 in t2,none,-)

Reminder: (opcode, PC, INST, OP1, OP2, MR) ➡︎ (allow?, PC, Result)

Copy tag from call instruction to PC tag

If not a call instruction, and PC is tagged (e.g. t1),
check that tag on PC (t1) is in the list of “legal
caller tags” (t2) on current instruction (which must
be the target of a call). Also, untag PC back to
none.

 foo {
 …
t1: bar();
t4: …
 } t2: bar {

 …
t3: return;
 }

t2 → {t1, t42, …}

control flow transfer

has CFI
metadata

Dover

Taint Tracking µ-Policy

•  Goal: track influences of values
–  prevent untrusted values influencing critical decision

–  limit flow of sensitive data

•  Policy:
(ADDL,PC,INST,OP1,OP2,-)➡ ︎

(true,PC,union(PC,INST,OP1,OP2))

16

Tag (taint) on result is union of taints on operands.

Dover

Reminder: (opcode, PC, INST, OP1, OP2, MR) ➡︎ (allow?, PC, Result)

Questions for Discussion

Discussion Topics

How to use metadata to implement / enforce:

•  Least privilege compartmentalization

•  Information flow, à la MLS (multi-level security) or more general

•  Linear / Affine types (e.g. use at most once, cannot copy, etc.)
–  Canonical example: A return address should not be copied.

•  Stack safety (vs. heap memory safety using colors)

•  Intra-structure safety (e.g. two arrays w/in same struct – prevent
overflow from one into another).

•  Fully abstract compilation (being pursued by Cătălin Hriţcu et al.
under ERC SECOMP project)

–  call untrusted reverse – restrict access to contents of list elements.

–  call untrusted sort – restrict access to calls to <= or compare on
elements.

18 Dover

Q&A

This Document Does Not Contain Controlled Technology or Technical Data Draper Proprietary

Some pointers:
•  CRASH SAFE papers: http://www.crash-safe.org/papers.html
•  Draper Inherently Secure Processor project:

http://www.draper.com/solution/inherently-secure-processor
•  RISC-V: https://riscv.org/

