
Autonomous Robots manuscript No.
(will be inserted by the editor)

Simultaneous Learning of Hierarchy and Primitives
for Complex Robot Tasks

Anahita Mohseni-Kabir · Changshuo Li · Victoria Wu · Daniel Miller ·
Benjamin Hylak · Sonia Chernova · Dmitry Berenson · Candace Sidner ·
Charles Rich

Received: date / Accepted: date

Abstract We present a new interaction paradigm for robot
learning from demonstration, called simultaneous learning
of hierarchy and primitives (SLHAP), in which information
about hierarchy and primitives is naturally interleaved in a
single, coherent demonstration session. A key innovation in
the new paradigm is the human demonstrator’s narration of
primitives as he executes them, which allows the system to
identify the boundaries between primitives. Hierarchy is rep-
resented using hierarchical task networks; motion planning
constraints on the primitives are represented using task space
regions. We implemented SLHAP on an autonomous robot
and produced an interaction video illustrating its effective-
ness learning a complex task with five levels of hierarchy and
eight types of primitives. The underlying algorithms which
make SLHAP possible are described and evaluated.

Keywords learning from demonstration · hierarchical task
network · task space region · motion planning · tire rotation

1 Introduction

This work introduces a new interaction paradigm for robot
learning fromdemonstration (LfD), called simultaneous learn-
ing of hierarchy and primitives (SLHAP—pronounced “slap”),
which addresses an important gap in current LfD methods.
Generally speaking, LfD research has been divided into two
subproblems (Chernova and Thomaz 2014): learning low-
level motions and learning high-level tasks. With few excep-

This work is supported in part by the Office of Naval Research under
grant N00014-13-1-0735.

Charles Rich
Worcester Polytechnic Institute
100 Institute Rd, Worcester, MA 01609
Tel.: +1-508-831-5945
E-mail: rich@wpi.edu

tions,1 researchers have focused on one or the other subprob-
lem, with the resulting lack of natural interaction scenarios
for when both low-level and the high-level task knowledge
needs to be learned. In SLHAP, information about both task
levels is naturally interleaved in a single, coherent demon-
stration session.

Our approach to learning high-level tasks is based on
hierarchy, specifically using the hierarchical task network
formalism (HTN) discussed in Section 2.1. Hierarchy is im-
portant because humans deal with complex tasks by break-
ing them down into subtasks. Furthermore, the subtasks are
often reusable in other situations. For example, one of the
subtasks in rotating the tires on a car is to remove a single
tire; this is also the first step in changing a flat tire. The sub-
tasks also provide a vocabulary for communication between
a human and a an autonomous robot if they are performing
a task collaboratively, for example, to discuss delegation or
the completion status of a subtask. Our main contribution
to HTN learning is two domain-independent heuristics that
allow the robot to automatically suggest subtask groupings.

Our approach to learning low-level motions is based on
inferring the constraints on the motion, rather than trying to
directly generalize demonstrated trajectories. We represent
these constraints using the task space region (TSR) formal-
ism discussed in Section 6. This results in motion primitives
that are more reusable in other situations, especially with dif-
ferent obstacles. Our main contributions to motion learning
are an algorithm for identifying the boundaries of primitives
using narration and an algorithm for exploring the config-
uration space around a demonstrated trajectory to extract a
TSR.

Finally, to position our work yet another way within LfD
research, we are focused on interactive learning from human

1 Niekum et al (2015) learn both low-level motion trajectories and
high-level tasks (as state machines) from demonstration, but the high-
level tasks are not hierarchical.

2 Anahita Mohseni-Kabir et al.

narrations

dialogue

de
m

on
st

ra
tio

ns
na

rr
at

io
ns

motion
planner

(CBiRRT)

Learning Hierarchy (Sec. 4)

Identification
(Sec. 5)

TSR Constraints
(Sec. 6)

Learning Primitives

Pick up nut from table. 1
Screw nut on left hub stud 1.

2 Should I group pick up nut and screw
nut into a new task?

Primitives

Hierarchy

Yes.

3 What do you want to call this new task? Hierarchy

Add nut. 4

5 Are you going to repeat add nut on the
 other studs of the left hub?

Hierarchy

Yes.

Primitives
...

Unscrew nut from left hub stud 1.6
Place nut on table.

7 Should I group unscrew nut and
place nut into a new task?

Hierarchy

Yes.

8 What do you want to call this new task?

Hierarchy

Remove nut. 9

H
TN

 p
la

nn
e

(D

is
co

)

Learning... Human Robot

Fig. 1 Architecture of SLHAP proof-of-concept system and partial transcript of interaction in accompanying video.

teachers, which means that only one or a few demonstrations
are practical. Many LfD methods rely on large numbers of
demonstrations.

Section 2 presents an overview of our proof-of-concept
system implementing SLHAP, which produced the accom-
panying video. Section 3 reviews related work. Sections 4,
5 and 6 describe the underlying algorithms which make SL-
HAP possible, including a separate evaluation of each. Sec-
tion 7 concludes and briefly discusses future work.

2 System Overview

The left half of Fig. 1 shows the architecture of our SLHAP
proof-of-concept system, including section numbers indicat-
ing where each component is described in detail. The pho-
tograph in the upper-left corner represents the human-robot
interaction, which takes place inside a Vicon motion capture
cell in which the real-time poses of the human’s head,2 right
hand, and all the manipulable objects in the environment
are recorded. The full static geometry of the environment is
also known and used in the task learning process. The robot
employs text-to-speech to communicate with the human; the

2 The human’s head pose is only used to control where the robot
“looks”; it is not part of the task learning process.

human replies via speech recognition.3 The simultaneous na-
ture of the learning process is reflected in the two large blue
arrows indicating information flowing between the human-
robot interaction and the components for learning hierarchy
and learning primitives.

The photograph in the lower right corner of the architec-
ture represents the robot autonomously performing the task
it has learned, which entails interleaving HTN planning, im-
plemented using Disco (Rich and Sidner 2012), to sequence
through the primitives and motion planning, implemented
using CBiRRT (Berenson et al 2011), to apply the TSR con-
straints for each primitive.

The right half of Fig. 1 is a partial transcript of the
SLHAP human-robot interaction in the accompanying video.

2.1 Example Task: Tire Rotation

The example SLHAP interaction, as well as all of the tech-
nical discussion in rest of this paper, share the example tire
rotation task, one version of which is shown in Fig. 2. For our
purposes, tire rotation involves four primitives manipulating
nuts: PickUpNut (PUN), PutDownNut (PDN), Screw (S) and

3 Our speech recognition and understanding is not general-purpose;
we use a push-to-talk button operated offscreen and a predefined gram-
mar for the human utterances. Solutions to these limitations are beyond
the scope of this work.

Simultaneous Learning of Hierarchy and Primitives for Complex Robot Tasks 3

. . .

. . .

. . .

Rotate

(LFhub,Tire3,LRhub,Tire1, ...)

RotateTires

ScrewHubs

(LFhub,LRhub, …)

UnscrewHub

(?hub)

UnscrewStud

(?stud)

UnscrewStud

(?stud)

Unscrew

(?stud;?nut)

PutDownNut

(?nut)

UnhangHub

(?hub;?$re)

Unhang

(?hub;?$re)

PutDownTire

(?$re)

HangTire

(Tire3,LFhub)

HangTire

(Tire1,LRhub)

PickUpTire

(?$re)

Hang

(?$re,?hub)

ScrewHub

(?hub)

ScrewHub

(?hub)

ScrewStud

(?stud)

ScrewStud

(?stud)

PickUpNut

(?nut)

Screw

(?stud,?nut)

. . .

UnhangHubs

(LFhub, ...;Tire1,Tire3, ...)

. . .

. . .

. . .

. . .
. . .

. . .

frontRear xPa)ern

Recipe

Non-primi$ve Task

Primi$ve Task

Temporal Constraint

UnscrewHubs

(LFhub,LRhub, ...)

UnscrewHub

(?hub)

. . .

. . .

UnhangHub

(?hub;?$re). . .

Fig. 2 Hierarchical task network example for tire rotation. Using SLHAP, the robot learns both the non-primitive groupings and the motion
constraints on the primitives in an HTN.

Unscrew (US); and four primitives manipulating tires: Pick-
UpTire (PUT), PutDownTire (PDT), Hang (H) and Unhang
(UH). Each of these primitives occurs multiple times in tire
rotation. A tire goes on a hub which has three studs, each of
which receives a nut. In the simulated environment evalua-
tion described in Section 4, there are four hubs and four tires.
The proof-of-concept system described in Section 2 uses a
physical mockup with two hubs and one tire, in which the
studs are simple unthreaded posts onto which a nut slides.

The formalism in Fig. 2 is called a hierarchical task net-
work (HTN), and is widely used in artificial intelligence
(Erol et al 1994). An HTN is a tree in which the fringe nodes
denote primitive tasks, i.e., actions that can be directly exe-
cuted by the robot, and the other nodes denote non-primitive
tasks, which must be decomposed in order to be executed.
Both primitive and non-primitivesmay also have parameters,
corresponding to inputs and outputs.

2.2 Example SLHAP Interaction

Based on current LfD research, teaching a task such Fig. 2 to
a robot with no prior knowledge of either the primitives or the
hierarchy would require separately demonstrating each of the
primitives, and then demonstrating how they are composed.
This is not, however, how you would expect to teach tire
rotation to another human. Instead, as in the example SLHAP
interaction in Fig. 1, you would demonstrate the entire high-
level task once from beginning to end, interleaving learning
the task hierarchy with learning the primitives.

In SLHAP, the human basically performs the primitive
steps of the overall task in order starting at the beginning,

with the robot observing his motions. The key innovation in
our new paradigm is for the human to narrate primitives as
he performs them, as illustrated in turns 1O and 6O. At var-
ious points, for example 2O, 5O and 7O, the robot interrupts
the human to ask for information that will help it learn a
hierarchical task model (this kind of behavior is called ac-
tive learning (Cakmak et al 2010)). The rightmost column in
Fig. 1 highlights what the underlying algorithms are learn-
ing at various points in the interaction, but from the human’s
point of view, the whole interaction flows as a natural dia-
logue with an active learner.

Not shown here, but included in the video, the human
can also command the robot to execute an already learned
non-primitive, as long as the motion learning for all of the
constituent primitives has been completed. This can happen
even before the entire task has been learned, which can be
useful for collaboration. For example, in the video, rather
than adding three nuts for the second time, the human says
to the robot, “Please add three nuts to the right hub.” As the
robot executes this task, it narrates its own actions, both the
primitives and non-primitives, to exhibit that it has learned
not only the sequence of constituent primitives, but also the
hierarchy of this task.

Returning to the architecture diagram in Fig. 1, the learn-
ing hierarchy component uses the symbolic information in
the narrations (the name of the primitive and its parameters)
to start building the fringe of an HTN. The non-primitive
nodes of theHTN result fromhuman-robot dialogue,wherein
the system asks grouping questions, e.g., 2O and 7O, and the
human provides the names of non-primitives, e.g., 4O and 9O.
Questions such as 5O result in non-primitive nodes grouping
repeated subtasks.

4 Anahita Mohseni-Kabir et al.

The learning primitives component uses the timing of
the narrations synchronized with the motion trajectory data
of the demonstrations to, first, identify the section of the mo-
tion trajectory that is most representative of each primitive,
and then to learn from this trajectory the reusable motion
planning constraints for the primitive, expressed in the task
space region (TSR) formalism. The TSR learning step solves
the problem of retargeting the motion from the human to the
robot.

A significant limitation of our proof-of-concept system
is that the algorithms for learning primitives are not yet real-
time (the learning hierarchy algorithm is real-time). The
robot in the video executed motion primitives previously
learned offline from similar motion capture data.

3 Related Work

In this section,we review relatedwork in each of the key algo-
rithmic areas shown in Fig. 1. SLHAP builds on our previous
work reported inMohseni-Kabir et al (2015),Mohseni-Kabir
et al (2016), and Li and Berenson (2016).

3.1 Learning Hierarchy

There is extensive research on learning from demonstration
(Argall et al 2009), hierarchical task learning (Garland et al
2001), interactive task learning (Cakmak and Thomaz 2012;
Hayes and Scassellati 2014), and learning from a single task
iteration via instructions (Huffman and Laird 1995; Mohan
and Laird 2011). The closest work to ours is by Rybski et al
(2007), who developed an algorithm that combines spoken
language understanding, dialogue, and physical demonstra-
tion to learn complex tasks. Their task representation allows
non-primitives to be constructed from simpler tasks in or-
der to create hierarchical structures. Their robot also verifies
the HTN with the human by asking questions and allowing
the human to add additional conditionals. However, their ap-
proach differs from ours in that it does not leverage ordering
or data flow constraints (see below). Furthermore, the robot’s
questions are limited to filling in missing conditionals, while
our questions are suggestions are aimed at improving the task
quality and teaching efficiency (see evaluation below).

3.2 Learning Primitives: Identification

Other researchers, such as Kulic et al (2008) and Chiappa
and Peters (2010), have explored time series segmentation
using assumptions about the motion primitives. However,
our approach is unique in leveraging the human’s semantic
knowledge of the task via narration to aid in the primitive
identification process.

Identifying approximately recurrent unknown patterns in
time series is known as the motif discovery problem in the
data mining field, and has received a great deal of attention.
Many systems (Oates 2002; Minnen et al 2007; Moham-
mad and Nishida 2015; Senin et al 2014) discover motifs of
variable length. In this work, we use the GrammarViz motif
discovery tool (Senin et al 2014) due to its efficiency, easy
of use, and ability to find motifs of unknown length.

3.3 Learning Primitives: TSR Constraints

Previous methods for learning constraints from demonstra-
tion can be divided into two classes according to the type
of input: 1) kinesthetic demonstrations (Akgun et al 2012;
Phillips et al 2016), which bypass the retargeting problem,
but require the demonstrator to have a good understanding
of the robot’s kinematics to prevent noisy demonstrations;
and 2) observed human demonstrations (Baisero et al 2015;
Mollard et al 2015), perhaps with verbal comments (Par-
dowitz et al 2007), where the demonstrator can act naturally,
but retargeting the demonstrated motion to the robot is a
challenge.

Most methods that learn constraints from demonstration
require multiple demonstrations, which are often used to
compute the variance along the trajectory. Some additional
preprocessing, such as data alignment (Akgun et al 2012; Ye
and Alterovitz 2011), is also needed. Given the aligned data,
the multiple demonstration trajectories (Calinon et al 2007)
or key frames (Akgun et al 2012) are represented as Gaussian
mixture models and a solution is found using by Gaussian
mixture regression. The drawback of these methods is that
they do not generalize to new environments where the task
is similar but new obstacles are present and/or the start/goal
are moved. To overcome this limitation, Ye and Alterovitz
(2011) learn a cost function from multiple demonstrations,
and use a sampling-based planner to find a feasible path with
low cost.

What distinguishes our work is that: 1) we learn from
only a single demonstration; 2) our method does not require
transferring a human motion to the robot, i.e., solving the
retargeting problem; 3) the constraints we learn can transfer
to similar tasks, i.e. a different start/goal pose or additional
obstacles; and 4) our method scales to tasks in Euclidean
group SE(3).

4 Learning Hierarchy

The inputs to the learning hierarchy component in Fig. 1
are the human’s narration of primitives and answers to the
system’s questions. The outputs of the component are the
system’s questions and an HTN representing the learned task
hierarchy.

Simultaneous Learning of Hierarchy and Primitives for Complex Robot Tasks 5

4.1 Heuristics for Grouping

The key algorithmic content in this component is twodomain-
independent heuristics for creating new non-primitives in an
HTNby grouping (primitive and/or non-primitive) tasks. Be-
cause these are heuristics, they are not applied automatically,
but instead used to generate questions/suggestions to the hu-
man, such as 2O and 7O in Fig. 1. If the human answers yes
(accepts the suggestion), then the grouping is done and the
human is asked to provide a name for the new non-primitive
(see 3O and 8O).

The first heuristic, called the data flow heuristic, suggests
grouping two consecutive tasks whenever an output of the
first task is an input of the second task and the robot is holding
the object in question between the two tasks. Question 2O is
generated by this heuristic, because the nut that is the output4
of “pick up” is the same as the input to “screw,” and the robot
is holding the nut between the two actions.

The second heuristic, called the parts heuristic, relies on
knowing something about the structure of the environment.
Specifically, this heuristic suggests that, when an object has
multiple parts of the same type, such as the three studs of
a hub (or the four hubs of a car), when an action is applied
to one part, it is likely to be repeated on the other parts. It
is obviously easy to come up with counterexamples, but the
cost of asking is relatively low. Question 5O is generated by
this heuristic, because the human has just performed “add
nut” on one of the studs of a hub.

4.2 Evaluation

In order to investigate the value of the two heuristics above,
we conducted a between-participants study with 32 par-
ticipants in two conditions: No-Suggestions (15), in which
the robot provided no suggestions; and Suggestions (17), in
which suggestions based on either heuristic were made when
appropriate. The study was conducted in a simulated envi-
ronment in which the participants were asked to teach a robot
how to rotate the tires on car with four hubs and tires. All in-
teraction was via a graphical user interface (GUI), identical
in both conditions.

In order to develop familiarity with the GUI and the over-
all interaction style, each participant started with a training
activity involving teaching a robot how to build a tower of
blocks. The training process did not include any sugges-
tions from the system, to avoid biasing participants in the
No-Suggestions condition.

After training, participants performed the main study
activity in which they were asked to teach the robot how to
rotate tires. They were given a picture of the desired final

4 The output of a task is any objectwhose properties, such as location,
are changed by the task.

locations of the tires and detailed written descriptions of the
eight primitives described in Section 2.1, but no step-by-step
instructions on how to perform task. The only difference
between the two conditions was whether or not grouping
and/or repetition suggestions were provided.

4.2.1 Measures and Analysis

We used the following three objective measures to evaluate
participant performance:

– Teaching Effort:The effort expended by the teacher, mea-
sured as the number of commands (for executing both
primitives and non-primitives) made by the human dur-
ing the interaction.

– Task Quality: The quality of the learned tire rotation
HTN, measured as the number of non-primitives in the
HTN (considering only HTNs which correctly achieve
the specified final tire configuration). We chose this mea-
sure because hierarchy is a valuable property in complex
tasks for both communication and reuse.

– Teaching Efficiency: The efficiency of the interaction,
measured by dividing task quality by the teaching effort
(using the definitions above).

4.2.2 Hypotheses and Results

We formed the following hypotheses about the effect of sug-
gestions on the learning interaction.

– Hypothesis 1: Teaching effort will be less in the Sugges-
tions condition than in the No-Suggestions condition.

– Hypothesis 2: Task quality will be greater in the Sug-
gestions condition than in the No-Suggestions condition.

– Hypothesis 3: Teaching efficiency will be greater in the
Suggestions condition than in the No-Suggestions con-
dition.

– Hypothesis 4: In the Suggestions condition, participants
who acceptedmore suggestionswill have (a) lower teach-
ing effort and (b) higher task quality.

All four hypothesis were supported by our study.
Analysis of the number of commands showed that teach-

ing effort was significantly higher in the No-Suggestions
than in the Suggestions condition, supporting Hypothesis 1.
To further study the impact of suggestions on teaching ef-
fort, Fig. 3(a) shows via linear regression how the number of
commands decreases with the number of robot suggestions
accepted by the human, supporting Hypothesis 4(a).

Analysis of the number of non-primitives learned shows
that the task quality was significantly higher in the Sug-
gestions than in the No-Suggestions condition, supporting
Hypothesis 2. Additionally, Fig. 3(b) shows via linear re-
gression how the number of non-primitives learned increases

6 Anahita Mohseni-Kabir et al.

0 5 10 150

50

100

150

Ex
ec

ut
e

Bu
tto

n
Pr

es
se

s

Suggestions Accepted

Human Commands

(a) Teaching effort

0 5 10 150

4
6
8

10
12
14
16

 2

Non-primitives Learned

Suggestions Accepted

(b) Task quality

Fig. 3 Accepting more suggestions decreases teaching effort and in-
creases task quality.

with the number of robot suggestions accepted by the human,
supporting Hypothesis 4(b).

Analysis of the teaching efficiency measure provides in-
sight into how teaching effort and task quality vary in combi-
nation between conditions. Teaching efficiency was is signif-
icantly higher in the Suggestions than in the No-Suggestions
condition, supporting Hypothesis 3.

5 Learning Primitives: Identification

This section and the next describe the two subcomponents
in learning primitives (see Fig. 1), which deal only with
primitives and sequences of primitives–no hierarchy or non-
primitives.

The input to the first subcomponent, called identifica-
tion, is the synchronized time series of demonstration mo-
tion data and narrations for the primitives, as shown in Fig. 4
(not including the S1 and S2 markings). The output of iden-
tification is, for each primitive, a single motion trajectory
extracted from the input, which is provided to the second
subcomponent, TSR constraints, described in Section 6.

The fundamental insight underlying the algorithms in
this section is that the reusable5 primitive trajectories in the

5 Reusable by the human; retargeting the primitive for the robot is
addressed by the TSR constraint learning subcomponent.

Fig. 4 Narration points superimposed on motion data for distance be-
tween right hand and stud with enclosing sections indicated for two
occurrences of Screw primitive.

overall motion data are separated by transition motions that
depend on the context, in particular the preceding and fol-
lowing primitives. To give a concrete example, suppose that
in the overall task, one occurrence of screwing a nut onto
a stud is preceded by picking the nut up from the table,
while another occurence is preceded by unscrewing the nut
from another stud. The reusable trajectory for the unscrew
primitive should contain only the motions that are consistent
between these two occurrences.

Thus comparing demonstrations of the same primitive in
different preceding and following contexts is fundamentally
what enables the algorithms below to determine the bound-
aries of each primitive. Unfortunately, this also means that
if a given primitive is always preceded/followed by the same
primitive, it is impossible to identify the boundary between
them. In this situation, there are two choices: the system can
1) consider the two co-occurring adjacent primitives as a
single primitive until more demonstrations are provided, or
2) compute which context variations are missing and request
one or more specific short supplementary demonstration se-
quences to provide the needed variations (see Section 5.2).

Trimming transition motions from the identified prim-
itive trajectories is important not only because it removes
useless motions, but also because it increases the reusabil-
ity of the primitive in environments with different obstacles.
When the learned primitives are executed in sequence by the
robot, general-purpose motion planning is used to generate
new transition motions dynamically, based on the context,
including avoid obstacles that may not have been present
during the demonstration.

5.1 Steps in Identification Algorithm

Fig. 5 provides an overview of the identification algorithm,
which is applied for each primitive used in the overall task.

(A) Enclosing Section Extraction

The first step of our algorithm leverages narration to approxi-
mately identify the section of the motion data corresponding
to each primitive.We do not expect the human to start talking
exactly when he starts a primitive and stop talking exactly
when the primitive is over. Therefore, for each primitive, we
take the time between the end of the previous narration ut-
terance and the beginning of the next narration utterance as
a conservative first estimate of the section of the time se-
ries enclosing the narrated primitive. The sections labeled
S1 and S2 in Fig. 4 are examples of this first extraction step
for the Screw primitive in the given time series. These initial
enclosing sections obviously contain transition motions—
trimming them is the major goal of the remaining steps in
the algorithm.

Simultaneous Learning of Hierarchy and Primitives for Complex Robot Tasks 7

Fig. 5 Steps in the algorithm for identifying a single primitive.

To obtain the output of step A, we then concatenate the
enclosing sections for every occurence of the given primitive
into a new synthetic time series with a “spacer” (constant
value near zero) between each, as shown in Fig. 5.

(B) Time Series Pattern Mining

The next step of the algorithm uses GrammarViz to dis-
cover recurrent patterns (motifs). Since GrammarViz pro-
cesses only one-dimensional data, we cannot give it the full
3D trajectory of the manipulator (human’s right hand) and
the manipulated objects. Thus far, we have found it adequate
to use the distance between the manipulator and the refer-
ence object as our single dimension.6 The reference object
is explicitly mentioned in the narration, e.g., “Screw nut on
left hub stud 1,” and is extracted through some trivial natural
language processing.

GrammarViz converts the continuous motion data into a
sequence of symbols (essentially a text string) using two dis-
cretization parameters. Since GrammarViz’s motif discovery
is quite sensitive to the settings of these two parameters, we
run GrammarViz on a range of values for these parameters.
Each successful run identifies a different motif that recurs in
each occurrence of the primitive. For example, the third box
in Fig. 5 shows amotif, shaded in red, that has been identified
in three occurrences of the S primitive. The unshaded parts
of the data are either part of the preceding and following
primitives, or transition motions.

(C) Local Motif Ranking

The goal of the next two steps is to select the motif that best
abstracts the given primitive. We start by eliminating some
clearly invalid motifs that either 1) include part of the arti-
ficially added spacer, or 2) contain more shaded trajectories

6 It is clear that this solution will not work for all possible manipu-
lation primitives, and therefore needs further investigation. In learning
theory, this relates to the issue of automatic feature selection.

than there are primitive occurrences. We explored two utility
metrics to rank the remaining valid motifs:

– Length metric: This reflects the simple intuition that
longer motif occurrences are better because they cover
more of the data.

– Density metric: This metric looks in more detail at how
consistently a given motif explains the data. A density
histogram is generated for each data point by counting,
across all occurrences of a motif, the number of times
that data point is included in an occurrence. For each
motif occurrence, the area under the density function
in the occurrence’s data interval is the utility of that
occurrence.

For each of these metrics, we compute the net utility of
a motif by averaging the utility of all its occurrences.

(D) Global Motif Selection

Up to this point, each primitive was analyzed independently
(locally). However, this does not guarantee that the motifs for
adjacent primitives in the overall task sequence do not overlap
with each other (which would clearly be wrong). We there-
fore consider all possible permutations of motifs for each
primitive in the overall task sequence and eliminate those
that have any overlapping motif occurrences. Finally, among
the remaining valid permutations, we select the permutation
with the greatest sum over the sequence of primitives of net
motif utilities.

(E) Trajectory Selection

The preceding step selects a single motif for each primitive,
but each occurrence of this motif corresponds to a different
occurrence of the primitive with slightly different motion
trajectory data. As the last step in primitive identification
we need to select a single motion trajectory to pass on to
the next stage of processing, described in Section 6, which
is to learn a TSR from a single demonstration. In order to

8 Anahita Mohseni-Kabir et al.

find the most representative trajectory for this purpose, we
calculate the distance between each pair of occurrences using
dynamic time warping and choose the occurrence with the
least average distance from other occurrences. If there are
only two occurrences, we choose the shorter.

5.2 Evaluation

In the same mock-up environment used in the accompany-
ing video, we recorded motion data and synchronized video
for nine participants executing four task sequences (twomain
tasks and two supplementary sequences) containing a total of
24 occurrences of the eight tire rotation primitives. The par-
ticipants were given detailed written descriptions of the eight
primitives and each sequence. The first main task involved
mounting a tire on a hub with a single nut, unmounting it,
and then remounting it on another hub, and then finally un-
mounting it again: PUT, H, PUN, S, US, PDN, UH, H, PUN,
S, US, PDN, UH, PDT. A table was provided on which to put
down the nut. The second main task involved mounting and
unmounting a tire on a hub, but with the second hub used as
a storage location for the nut instead of the table: PUT, H,
US, S, US, S, UH, PDT.

We designed the two main tasks to provide at least two
different contexts (preceding and following primitives) for
the four most constrained primitives (see Section 6): Un-
screw, Screw, Unhang and Hang. Two short supplementary
sequences provide the needed additional contexts to identify
the remaining primitives: PUN, PDN and PUT, PDT.

We used the data gathered here to evaluate our identifi-
cation algorithms in three different ways. The results below
are aggregated across all participants.

5.2.1 Viable Trajectories

For our first evaluation, we had two expert judges (the first
and third authors) make a binary judgement about the trajec-
tory selected for each primitive by the identification subcom-
ponent (using the density heuristic for step C). The judges
viewed a video clip of each participant performing the se-
lected trajectory for each primitive and were told to reject
a trajectory only if it did not accomplish the primitive (ac-
cording to the written instructions) or contained more than
one primitive. The judges rejected only 14% of the selected
trajectories, which means that our system was 86% accurate
in identifying viable trajectories.

Primitives that involve large motions, such as PickUp-
Tire and PutDownTire, were identified with 100% accuracy.
Primitives with smallermotions, such as Screw andUnscrew,
were more challenging, resulting in 66% accuracy. One of
the reasons these primitive are more challenging is that small
variabilities in their execution can have a greater impact on
the overall trajectory. For example, our data contains Screw

and Unscrew occurrences both for an empty stud and for
a stud with a mounted tire. The resulting difference in stud
length led to variability within even a single person’s demon-
strations of the same primitive, making it difficult for the
algorithm to accurately determine the boundaries between
primitives.

5.2.2 Trajectory Trimming Errors

In the second stage of our evaluation, we lookedmore closely
at the trimming of trajectories. Our expert judges viewed the
original videos of the complete sequences and hand coded
what they considered to be the correct start and end times
for each primitive. The Cronbach’s alpha for the agreement
between the two experts was 0.94, which is strong. The nor-
malized mean error between the expert start/end values and
the system’s values was 0.12 with a standard deviation of
0.09. The errors were normalized by dividing, in each case,
by the length (time) of the enclosing section (as determined
by step A above). Thus an error of 0.12 could arise, for ex-
ample, by the start time being early by approximately 1/16
of the width of the section and the end time being late by
1/16. There was little variance in the error between different
primitives.

5.2.3 Comparing Algorithm Variants

Finally, we compared the performance of four variants of
our algorithm (letters refer to steps in Fig. 5) with respect
to the percentage of viable trajectories: ABC with the length
heuristic, ABCD with the length heuristic, ABCD with the
density heuristic, and ABCDE with the density heuristic.
The results for each variant for each primitive is shown in
the radar chart in Fig. 6.

Fig. 6 Radar chart showing the percentage of viable trajectories iden-
tified for each primitive using different variants of the algorithm.

Simultaneous Learning of Hierarchy and Primitives for Complex Robot Tasks 9

Learning Pose
Constraints

Exploring Task Space

Trajectory Segmentation

Primitive Trajectory

For Each Pose

Connect Check Local Sampling

Learning Guiding Constraints

For Each Segment

Constraint
Learning

Guiding
Constraint

A B

C D

Fig. 7 Steps in the TSR constraint learning algorithm for each primitive.

The chart shows that adding step D had no consistent im-
pact on algorithm performance. However, the density heuris-
tic is overall significantly better than the length heuristic.
Adding step E (using dynamic time warping to compare oc-
currences) improved performance for most primitives. Over-
all, the ABCDE-density variant of the algorithm outper-
formed all the other variants.

6 Learning Primitives: TSR Constraints

The second subcomponent in learning primitives (see Fig. 1)
is learning TSR constraints. The algorithm in this subcom-
ponent is applied independently to each primitive. For each
primitive, the input is a single demonstrated motion trajec-
tory and the output is the constraints that define the primi-
tive, represented as a task space region (TSR) sequence. The
algorithm also relies on a geometric model of the demon-
stration environment. A TSR (Berenson et al 2011) specifies
a volume in configuration space (SE(3)) using a reference
transform, an offset transform, and a matrix of dimensional
bounds.

Many manipulation tasks include primitives where the
robot must navigate an object through a narrow passage (e.g.,
sliding a nut onto a post) or obey a continuous pose constraint
(e.g., not tilting a cup of water while you are carrying it).
While motion planning algorithms capable of performing
such tasks exist, they tend to be very slow, because their

search cannot easily be biased to concentrate on the parts of
the configuration space that are most relevant to the narrow
passages.

Our approach is to focus the motion planner on relevant
parts of the configuration space, not by attempting to replay
the human demonstration, but by inferring constraints from
it. Basically, we explore regions around the demonstration
by sampling, analyzing the geometric properties of the sam-
ples, and then extracting relevant constraints, represented as
TSRs. The resulting TSRs allow a motion planner such as
CBiRRT (Berenson et al 2011) to generate feasible plans
much more quickly than without them and in a greater vari-
ety of new environments.

In our proof-of-concept system,we did not apply our TSR
learning algorithm to the four “pick and place” primitives
(picking up and putting down a tire or a nut), because they
do not involve a narrow passage, and are thus easily handled
by existing motion planning methods.

6.1 Steps in TSR Constraint Learning Algorithm

Fig. 7 provides an overview of the TSR constraint learning
algorithm. For this algorithm, a primitive is specified by a
moving object (e.g., a nut), a reference object (e.g., a stud),
and the start/goal poses of the moving object with respect
to the reference object. The information we extract from the
human demonstration of a primitive is a trajectory (series of

10 Anahita Mohseni-Kabir et al.

Fig. 8 (a) Results of smoothing and staircase fitting for Unhang. The horizontal axis is the time index in the demonstrated trajectory. The optimal
staircase function is in red in the segmentation graph. (b) Learned TSR of first segment. (c) Learned TSR of second segment.

poses) of the moving object in task space, which is SE(3).
This trajectory is assumed to be feasible (no collisions) and
connect the start and goal poses.

(A) Learning Pose Constraints

For learning pose constraints, we use Euler angles (roll, pitch
and yaw) as the parametrization of the orientations. Similar
to principle component analysis (PCA), we wish to find a
reference frame in which the components with the largest
weight are aligned with the axes. However, since Euler angle
space is not linear, we use a random volume descent (RDV)
method to find the reference frame inwhich the volume of the
axis-aligned bounding box of the demonstrated orientations
is smallest.

In the resulting reference frame, we calculate the range
of the demonstrated orientations in each dimension (roll,
pitch and yaw). Then we say a dimension is unconstrained if
the range of this dimension is greater than a predetermined
threshold; otherwise this dimension is constrained to the
range in the demonstration. These orientation constraints are
then added to a TSR with unbounded position constraints.

(B) Exploring Task Space

To explore the task space near the demonstration trajectory,
we first sample poses of the moving object around each
of the poses in the trajectory. Samples are generated using
small random rotations and translations of themoving object.
Samples are discarded if they are outside the learned pose
constraints computed in step A. Samples are also discarded
if they collide with the environment. This gives us an initial
set of feasible samples.

Next, the feasible samples are evaluated based on connec-
tivity. We use a local planner to try to connect each random
sample by a straight line in SE(3) to the demonstrated pose
it is based on. If this is not possible, the sample is discarded.

Finally, we calculate the feasible sample ratio, which
is the ratio of the final number of feasible connected sam-
ples versus the total original number of samples. This ratio
is computed for every demonstrated pose, thus obtaining a
series of ratios for the entire trajectory.

(C) Trajectory Segmentation

We segment the trajectory using the feasible sample ratio,
because different segments of a primitive have significantly
different constraints, and thus should be represented with
different TSRs. For example, when removing a nut from a
stud, the nut is highly constrained when it is on the stud,
and is free when it is off the stud. The key to segmenting
the trajectory is to identify points where there are significant
changes in the feasible sample ratio. First, we smooth the
series of ratios using total variation denoising (TDV) (Rudin
et al 1992). TDV has the advantage that it smooths noise in
relatively flat stages while not shifting step edges. Each step
change in the smoothed signal implies a significant change
in the feasible sample ratio and represents the start of a new
segment. We then fit a series of step functions (a staircase
function) to the smoothed signal (Levy-leduc and Harchaoui
2008). Each flat region of the staircase is a segment.

Fig. 8(a) shows the output of trajectory segmentation for
the Unhang primitive. The feasible sample ratio curve clearly
has a 3-step shape, as during the demonstration, the tire goes
from a highly constrained region (sliding off the studs), to a
region with some constraints (handling the tire close to the

Simultaneous Learning of Hierarchy and Primitives for Complex Robot Tasks 11

hub), and finally to a region with almost no constraints (free
space motion).

(D) Learning Guiding Constraints

For each segment determined in step C, we learn a guiding
constraint TSR from the samples in this segment. Similar to
stepA for pose constrains, our goal is to find the range bounds
in each dimension in task space: if the bounds are too large,
the power of TSRs to the narrow the search space is lost,
but if the bounds are too small, the TSR will not perform
well in new environments. In order to make sure the TSR
includes at least one solution, the bounds must include the
demonstrated poses. Since the output of this process depends
on the reference frame, we again use RDV to choose the
reference frame, since SE(3) is not linear.

If the feasible sample ratio of the entire segment is close
to 1, we assume there is no constraint on this segment, and
the guiding TSR is unbounded. Otherwise, we use an itera-
tive shrinking process to calculate the TSR bounds. We first
calculate the demonstrated TSR, which corresponds to the
smallest axis-aligned bounding box that includes only the
demonstrated poses. Then we iteratively shrink the feasible
TSR, which starts with the smallest TSR bounds that include
all of the connected feasible samples calculated in step B.
On each iteration, we remove the sample pose that is farthest
from the demonstration TSR, until either a predetermined
ratio between feasible samples and all samples been reached
or the feasible TSR has become the identical to the demon-
stration TSR.

Figures 8(b) and (c) show the guiding TSRs learned for
the first two segments of Unhang. Only the position bound-
aries are shown. The third segment has no translation con-
straints and therefore is not shown.

6.2 Evaluation

In the same mock-up environment used in the accompanying
video, we recorded motion data for a single, isolated demon-
stration of each of the four tire rotation primitives that have
a narrow passage: Unhang, Hang, Unscrew and Screw. We
manually trimmed the resulting trajectories.7

For each primitive, we compared four planning variants
using the CBiRRT sampling-based motion planner: 1) ordi-
nary sampling with no TSR constraints; 2) bridge sampling
(Hsu et al 2003), a competing method for sampling narrow
passages, with noTSR constraints; 3) ordinary samplingwith
learned TSR guiding constraints; and 4) ordinary sampling
with learned TSR pose and guiding constraints. The planner
was run in the OpenRAVE simulation environment with the

7 We also recorded motion data for a cup retrieval task to specifically
evaluate the pose constraint learning—see Li and Berenson (2016).

Planning Variant Unhang Hang Unscrew Screw
CBiRRT 0/50 0/50 0/50 0/50

CBiRRT with 0/50 0/50 0/50 0/50
bridge sampling
CBiRRT using 41/50 43/50 50/50 50/50

guiding constraints
CBiRRT using 50/50 50/50 50/50 50/50

pose & guiding constraints

Table 1 Success rates for planning variants.

same geometry as the mock-up, 50 trials for each primitive
for each variant. A trial that could not find a solution within
three minutes was considered a failure.

Table 1 shows the resulting success rates. The first two
planning variants did not succeed in planning any of primi-
tives in any of the trials. Thus TSR constraints of some kind
are necessary to successfully plan any primitive in under 3
minutes. Comparing the last two rows, we can see that using
both pose and guiding constraints has the best performance.
This is because pose constraints consider how themoving ob-
ject is manipulated by the demonstrator, and rule out many
poses that the robot’s end effector can not reach, even though
they are collision-free.

A disadvantage of our approach is that it cannot guaran-
tee completeness, for two reasons: First, because we learn
from only a single demonstration, we may learn spurious
pose constraints. For example, for unhanging a tire, we may
unnecessarily constrain the tire to be held in a particular
orientation while it is being manipulated in free space. En-
forcing this pose constraint significantly reduces planning
time, but we lose some reusability, e.g., to avoid new ob-
stacles. Second, because in building the TSR, we only ex-
plore a limited region around the demonstration trajectory,
planning solutions that are outside of this region will not
be considered. This limitation can be overcome by running
an unconstrained planner in parallel with the planner using
TSRs.

7 Conclusion

We have developed a new LfD interaction paradigm, called
simultaneous learning of hierarchy and primitives (SLHAP),
in which the information needed for a robot to learn the
structure of an HTN and the motion planning constraints of
its constituent primitives is provided by a human teacher in
a single coherent, natural interactive teaching session. A key
innovation in the new paradigm is the human demonstrator’s
narration of primitives as he executes them, which allows the
system to identify the boundaries between primitives.

The accompanying video illustrating SLHAP was gen-
erated using the proof-of-concept system we have imple-
mented. This system is made possible by algorithms, which

12 Anahita Mohseni-Kabir et al.

we also developed, for learning hierarchy, identifying primi-
tives, and learning TSR constraints. Each of these algorithms
has been separately described and evaluated.

A limitation of our proof-of-concept system is that move-
ment of the robot base is not autonomous; the base is con-
trolled by an offscreen joystick. Automated motion plan-
ning for the robot base in an uncluttered environment is well
within the current state of art. Applying our TSR learning
approach to learning robot basemovements from human nav-
igation in a constrained environment is a challenging topic
for future research.

There are also a number of additional human-robot inter-
action research questions to be explored in the future, such
as: Is it enough to simply tell demonstrators to “narrate what
you are doing”? How consistent will be the names chosen
for primitives and non-primitives? How natural will demon-
strators find the overall interaction?

References

Akgun B, Cakmak M, Jiang K, Thomaz AL (2012) Keyframe-
based learning from demonstration. International Journal of Social
Robotics 4(4):343–355

Argall BD,ChernovaS,VelosoM,BrowningB (2009)A survey of robot
learning from demonstration. Robotics and Autonomous Systems
57(5):469–483

Baisero A, Mollard Y, Lopes M, Toussaint M, Lutkebohle I (2015)
Temporal segmentation of pair-wise interaction phases in sequen-
tial manipulation demonstrations. In: IROS

Berenson D, Srinivasa SS, Kuffner J (2011) Task space regions: A
framework for pose-constrained manipulation planning. The Inter-
national Journal of Robotics Research

Cakmak M, Thomaz AL (2012) Designing robot learners that ask good
questions. In: ACM/IEEE International Conference on Human-
Robot Interaction, ACM, pp 17–24

CakmakM, Chao C, Thomaz A (2010) Designing interactions for robot
active learners. Autonomous Mental Development, IEEE Transac-
tions on 2(2):108–118

Calinon S, Guenter F, Billard A (2007) On learning, representing, and
generalizing a task in a humanoid robot. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics) 37(2):286–
298

Chernova S, Thomaz A (2014) Robot learning from human teachers.
Synthesis Lectures onArtificial Intelligence andMachine Learning
8(3):1–121

Chiappa S, Peters JR (2010) Movement extraction by detecting dynam-
ics switches and repetitions. In: Advances in neural information
processing systems, pp 388–396

Erol K, Hendler J, Nau D (1994) HTN planning: Complexity and ex-
pressivity. In: Proc. 12th National Conf. on Artificial Intelligence,
Seattle, WA

Garland A, Ryall K, Rich C (2001) Learning hierarchical task models
by defining and refining examples. In: International Conference on
Knowledge Capture, pp 44–51

Hayes B, Scassellati B (2014) Discovering task constraints through
observation and active learning. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems

Hsu D, Jiang T, Reif J, Sun Z (2003) The bridge test for sampling
narrow passages with probabilistic roadmap planners. In: ICRA

Huffman SB, Laird JE (1995) Flexibly instructable agents. Journal of
Artificial Intelligence Research 3:271–324

Kulic D, Lee D, Ott C, Nakamura Y (2008) Incremental learning of full
bodymotion primitives for humanoid robots. In:HumanoidRobots,
2008. Humanoids 2008. 8th IEEE-RAS International Conference
on, IEEE, pp 326–332

Levy-leduc C, Harchaoui Z (2008) Catching change-points with lasso.
In: Advances in Neural Information Processing Systems, pp 617–
624

Li C, Berenson D (2016) Learning object orientation constraints and
guiding constraints for narrow passages from one demonstration.
In: International Symposium on Experimental Robotics

Minnen D, Starner T, Essa IA, Isbell Jr CL (2007) Improving activ-
ity discovery with automatic neighborhood estimation. In: IJCAI,
vol 7, pp 2814–2819

Mohammad Y, Nishida T (2015) Exact multi-length scale and mean
invariant motif discovery. Applied Intelligence pp 1–18

Mohan S, Laird JE (2011) Towards situated, interactive, instructable
agents in a cognitive architecture. In: AAAI Fall Symposium Series

Mohseni-Kabir A, Rich C, Chernova S, Sidner CL, Miller D (2015) In-
teractive hierarchical task learning from a single demonstration. In:
Proceedings of the Tenth Annual ACM/IEEE International Con-
ference on Human-Robot Interaction, ACM, pp 205–212

Mohseni-Kabir A, Wu V, Chernova S, Rich C (2016) What’s in a prim-
itive? identifying reusable motion trajectories in narrated demon-
strations. In: IEEE International Symposium on Robot and Human
Interactive Comm. (ROMAN)

Mollard Y, Munzer T, Baisero A, Toussaint M, Lopes M (2015) Robot
programming from demonstration, feedback and transfer. In: IROS

Niekum S, Osentoski S, Konidaris GD, Chitta S, Marthi B, Barto
A (2015) Learning grounded finite-state representations from un-
structured demonstrations. International Journal of Robotics Re-
search 34(2):131–157

Oates T (2002) Peruse: An unsupervised algorithm for finding recur-
ring patterns in time series. In: Data Mining, 2002. ICDM 2003.
Proceedings. 2002 IEEE International Conference on, IEEE, pp
330–337

Pardowitz M, Knoop S, Dillmann R, Zollner R (2007) Incremental
learning of tasks from user demonstrations, past experiences, and
vocal comments. Systems, Man, and Cybernetics, Part B: Cyber-
netics, IEEE Transactions on 37(2):322–332

Phillips M, Hwang V, Chitta S, Likhachev M (2016) Learning to plan
for constrained manipulation from demonstrations. Autonomous
Robots 40(1):109–124

Rich C, Sidner CL (2012) Using collaborative discourse theory to par-
tially automate dialogue tree authoring. In: Proc. Int. Conf. on
Intelligent Virtual Agents, Santa Cruz, CA, pp 327–340

Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based
noise removal algorithms. Physica D: Nonlinear Phenomena
60(1):259–268

Rybski PE, Yoon K, Stolarz J, Veloso MM (2007) Interactive robot
task training through dialog and demonstration. In: ACM/IEEE
Int. Conf. on Human-Robot Interaction, pp 49–56

Senin P, Lin J, Wang X, Oates T, Gandhi S, Boedihardjo AP, Chen
C, Frankenstein S, Lerner M (2014) Grammarviz 2.0: a tool
for grammar-based pattern discovery in time series. In: Machine
Learning and Knowledge Discovery in Databases, Springer, pp
468–472

Ye G, Alterovitz R (2011) Demonstration-guided motion planning. In:
ISRR

