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Goal-Driven Agent Behavior 

Artificial Intelligence for  
Interactive Media and Games 

[Based on Buckland, Chapter 9 and lecture by Robin Burke] 
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6 Mon, Dec 1 Chapter 9 Goal-Driven Behavior

Tues, Dec 2 Chapter 9 Goal-Driven Behavior

Weds, Dec 3 9- Steal Health [5%]

Thu, Dec 4 Chapter 9 Goal-Driven Behavior

Fri, Dec 5 Brainstorming: Raven Bot Strategy

Sun, Dec 7 10 - Bot Design [3%]

7 Mon,Dec 8 Chapter 10 Fuzzy Logic

Tue, Dec 9 Chapter 10 Fuzzy Logic

Wed, Dec 10 11 - Game Brains [5%]

Thu, Dec 11 Presentations: Game Brains

Fri, Dec 12 Futures: Interactive Story Generation / Course Eval

Sun, Dec 14 12 - Tournament Bot [10%]

8 Mon, Dec 15 Futures: Planning

Tue, Dec 16 Raven Tournament (IMGD Lab)

Thu, Dec 18 Final Exam [30%]
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goals 

Outline 

  Goals and planning in AI 
•  for more, see Russell & Norvig, AI textbook 

  Goal tree execution 
•  decomposing and monitoring goals 

  Goal arbitration 
•  choosing a toplevel goal 

  Achitecture Extensions / Applications 
•  player possession 
•  interruptions 
•  special path obstacles 
•  command queuing 
•  scripting 
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Goals and Planning in AI 

  Goals 
•  intuitive and cognitively motivated concept 
•  an abstraction that guides behavior 
•  often formalized as a partial description of a 

desired state of the world 
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Goal Desired World State 
go to the cinema I am at the cinema 
attack (given bot) I am firing on the bot 

Goals and Planning in AI 

  Desired world state 
•  is this the same notion of “state” as in state 

machines? 
–  no, states in FSM are part of mental states of agent 
–  states in FSM more analogous to (can be used like) goals 
–  some similar implementation features (see later) 

•  degrees of formalization 
1.  just the name of the goal, e.g., GoToCinema 
2.  code/procedure to test if world is in desired state (goal 

succeeded) or not (goal failed), e.g., test location 
3.  declarative/logical representation (very difficult in 

general) 
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Goals and Planning in AI 

  What is a plan ? 
1.  a sequence of actions to achieve a goal, e.g.,  

leave the house:  [walk to closet, open closet door, remove 
coat from coat hook, ...] 

–  sequence:  totally ordered 
–  action:  directly executable by agent (changes world state) 
–  goal: desired world state 

2.  a partially ordered set of actions, e.g., 
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buy sugar 

buy flour 
mix bake make a cake: 

Goals and Planning in AI 

  What is planning ? 
•  given a goal 
•  construct a plan to change current (or given) world state into 

desired world state 
•  usually involves search (in space of possible plans) 
•  multiple solutions possible 
•  plan may fail, especially if world changes due to other factors 

than own actions (e.g., other agents) 
•  example:  path planning 

–  given current and desired location 
–  find sequence of movements from here to there 

•  will talk about non-path applications of planning in games in 
final futures lectures 

IMGD 400X (B 08) 8 



12/3/08 

5 

Goals and Planning in AI 

  What is re-planning ? 
•  when the current plan for a goal fails 

–  you executed all the actions in the plan 
–  but the world is not in the desired state  

>  assumes you have some test for failure 
–  or some planned action is not executable 

>  e.g., cannot open door (because locked) 
>  assumes actions have some test for block/failure 
>  could be a faulty plan or world changed unexpectedly 

•  need to construct another plan for same goal 
–  starting with current world state 
–  and maybe other constraints based on current failure 
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Goals and Planning in AI 

  Alternative to searching for plans ? 
•  search can be expensive and error-prone 

•  predefine specific plans for particular goals 

•  quickly look up plan for goal 

•  may be more than one choice (need to decide) 

•  can be “manual” or cached from previous (e.g., 
offline) searches 

•  already “knowing” a lot of plans for commonly 
occurring goals in a domain makes you an “expert” 
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Goals and Planning in AI 

  Hierarchical plans 
•  tree of goals and actions (aka “atomic” or “primitive” goals)  
•  child/parent relationship called “subgoal” or “step” 
•  actions appear only at leaves 
•  all internal nodes are (“composite” / “abstract” / “nonprimitive”) goals 
•  subgoals at each level may be totally or partially ordered 
•  decomposition can be via planning (search) or predefined 
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Traverse Edge 

Buy Sword 

Get Gold Go To Smithy 

Follow Path Pick Up Nugget 

Traverse Edge Traverse Edge 

Goals and Planning in AI 

  Hierarchical plans 
•  when fully expanded (“decomposed”) 

–  all leaves are actions 
–  leaves constitute a sequential or partially ordered plan 

•  often expanded (“decomposed”) incrementally 
–  some leaf nodes are not actions 
–  not “directly executable” by agent 
– what is directly executable depends on level of modeling 
–  not efficient or effective to expand goal nodes before 

they are “live”, because 
> will have more information later 
>  e.g., to choose between alternative decompositions 
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Goals and Planning in AI 

IMGD 400X (B 08) 13 

Goals and Planning in AI 

  Hierarchical Task Networks (HTN’s) 
•  AI term for predefined library of hierarchical plans 
•  the library usually implemented using a declarative 

representation 

–  e.g., ANSI/CEA-2018 (http://ce.org/cea-2018)  

     <task name=“Buy Sword> 
            <subtask task=“Get Gold” .../> 
            ... 
     </task> 
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Goals and Planning in AI 

  “And/Or Tree” 
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GoToWork 

TakeTrainToWork DriveToWork 

WalkToStation RideTrain WalkToOffice DriveToWaypoint ... 

have car? 

HTN in Raven 
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AttackTarget 

DodgeSideToSide SeekToPosition HuntTarget 

MoveToPosition Explore 

SeekToPosition FollowPath 

TraverseEdge ... 

SeekToPosition 

TraverseEdge 

FollowPath 

... 

space to strafe? 
not visible? 

last recorded position? 
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Goal/Behavior Trees 

  What Buckland describes in Chapter 9 is 
essentially a 
•  procedural implementation of 
•  hierarchical task networks (and/or trees) 
•  with totally order subgoals 

  This technique is becoming popular in AI 
game dev community under the title of 
“behavior trees” 
•  see http://aigamedev.com/videos/behavior-trees-part1 
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Goal/Behavior Tree Execution Issues 

  choosing among alternative decompositions 
of a goal (into subgoals and actions) 

  sequencing of subgoals/actions 

  monitoring of goal completion/failure 
  re-planning after failure 
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Goals 

  Same base class used both for composite 
and atomic goals (actions) 

  Atomic goals (4) currently in Raven 
•  Wander, SeekToPosition, TraverseEdge, 

DodgeSideToSide 

  Composite goals (7) currently in Raven 
•  Think: special root node (discuss later) 
•  Toplevel goals: GetItem(*), AttackTarget, Explore 
•  Intermediate goals: MoveToPosition, FollowPath, 

HuntTarget 
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Key Properties of a Goal 

  Status (enum) 
•  inactive – waiting (e.g., due to predecessors not 

completed); default initial status 
•  active – can be processed on next update 
•  completed  – will be removed on next update 
•  failed  – will be re-planned or removed on next update 

  Subgoals (std::list<Goal>) 
•  for composite goals only 
•  in order of required execution 
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Key Methods of a Goal 

  Activate 

  Process 
  Terminate 
  HandleMessage 
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Goal::Activate 

  Analogous to State::Enter 

  contains initialization code (see Terminate) 

  for atomic steering goals (e.g,. Wander), turns on 
steering behavior 

  for composite goals, chooses subgoals (decomposition 
method) 

  may be called multiple times for re-planning 

  set status to ‘active’  
•  unless cannot decompose (e.g., target no longer exists)  

•  then status set to ‘completed’, so goal removed 
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Goal::Process 

  analogous to State::Execute 

  always starts with ActivateIfInactive() 
•  gives Activate method a chance to re-plan 

  for composite goals calls ProcessSubgoals 

  returns goal status 
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Goal::Terminate 

  analogous to State::Exit 

  cleanup code before goal destroyed 

  for atomic steering goals, turns off steering 
behavior 
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Goal::HandleMessage 

  analogous to State::HandleMessage 
  for composite goals, if message not handled 

by self, dispatch to first subgoal 
  messages only used in goal code for 

asynchronous (cf. time slicing) notification 
from path finder 
•  Msg_PathReady 
•  Msg_NoPathAvailable 

handled by MoveToPosition and Explore 
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Code Walk 

  Start at AbstRaven_Bot “brain” 
  Goal_Composite::ProcessSubgoals 
  Atomic Goals 

•  Wander 
•  TraverseEdge 

  Composite Goals 
•  FollowPath (TraverseEdge subgoals) 
•  MoveToPosition (FollowPath subgoal) 
•  AttackTarget  

  Run demo with goal tree display on 
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Goal Arbitration 

  Six toplevel (“strategy”) goals 
•  Explore 
•  AttackTarget 
•  GetItem 

–  health 
–  rocket launcher 
–  shotgun 
–  railgun 

  How does bot decide which to pursue at any 
given moment?   (Only one at a time) 

IMGD 400X (B 08) 27 
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Goal Evaluators 

  List of evaluators stored in “brain” (Goal_Think) 
•  One for each toplevel goal 

  CalculateDesirability method 
•  returns value between 0 and 1 (inclusive) 
•  evaluated on every update for each goal 

–  allows “opportunistic” behavior 
•  highest value becomes current goal  

–  replaces current goal if different, even if not completed! 

•  uses “helper functions”   
–  static methods in Raven_Feature 
–  each “extracts” useful features from game state 
–  features combined with weights to compute desirability 
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Feature Extractors (0,1) 

  Health(pBot) 
•  normalize health range to (0,1) 

  DistanceToItem(pBot, int ItemType) 
•  to nearest item of given type 
•  if none, return 1 

  IndividualWeaponStrength(pBot, int WeaponType) 
•  how much ammo bot has for given weapon type 
•  relative to max amount it can carry (return 1) 

  TotalWeaponStrength(pBot) 
•  combination of three individual weapon strengths 

IMGD 400X (B 08) 30 



12/3/08 

16 

GetHealthGoal_Evaluator 

  the farther away health pack is, the less desirable 
•  cannot divide by zero, since triggered if inside bounding radius 

(and thus doesn’t exist any more) 

  the less healthy, the more desirable 
•  if at max health, desirability is zero 

  k is source-level “tweak factor”  
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€ 

Desirabilityhealth = k × 1−Health
DistToHealth
 

 
 

 

 
 

GetWeaponGoal_Evaluator 

  the farther away weapon is, the less desirable 
  the less healthy, the less desirable to get weapon 
  the more ammo it has, the less desirable 
  k is source-level “tweak factor”  
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€ 

Desirabilityweapon = k ×
Health × 1−WeaponStrength( )

DistToWeapon
 

 
 

 

 
 
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Non-Linear Functions 
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  relative “pull” of weapon becomes much stronger as 
you get closer 

€ 

Desirabilityweapon = k ×
Health × 1−WeaponStrength( )

DistToWeapon2
 

 
 

 

 
 

1/x 1/xn 

AttackTargetGoal_Evaluator 

  the stronger you feel, the more desirable to attack 
•  health 
•  total weapon strength 

  k is source-level “tweak factor”  
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€ 

Desirabilityattack = k ×TotalWeaponStrength ×Health
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ExploreGoal_Evaluator 

  returns fixed value of 0.05 
  last resort 
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“Personalities”  

  e.g., cautious versus aggressive 
  Per-bot parameter file contains additional 

tweak (“bias”) factor for each toplevel goal 
  Easy to multiply in at end of desirability 

calculation 

IMGD 400X (B 08) 36 

Bot_HealthGoalTweaker     = 1.2 
Bot_ShotgunGoalTweaker  = 0.6 
Bot_RailgunGoalTweaker    = 0.5 
Bot_RocketLauncherTweaker = 0.6 
Bot_ExploreTweaker               = 0.2 
Bot_AggroGoalTweaker          = 0.8 

(Note inconsistent naming in Burke code ) 
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Code Walk 

  Goal_Think 

  GetWeaponGoal_Evaluator 

  Run demo with evaluator values displayed. 
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Homework #9 – Due Weds Midnight 

  Adding a new goal, StealHealth, with 
associated evaluator 

  Your bot should collect a health pack even if it 
doesn't need it, when there is a nearby 
opponent who does need it 

  Detailed instructions online 
  Familiarize you with goal code for tournament 
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Architecture Extensions / Applications 

  Player Possession 

  Interruptions 

  Special Path Obstacles 

  Command Queuing 

  Scripting 
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Player Possession 

  Player “possesses” bot 
•  right click once to select 
•  right click again to possess 
•  sets isPossessed() flag 

  Right click on map to indicate destination 
•  adds MoveToPosition goal to brain 
•  invokes path planner in Activate method 
•  other goal arbitration turned off 
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Interruptions 

  Toplevel goal arbitration (desirability evaluation) 
“throws away” the current goal when a 
“better” (higher scoring) goal is detected 
•  a “one-track mind” 
•  you might  return to the first goal when the new goal is done 

(or before)---it all depends on the desirability evaluation at 
each tick 

•  but there is no memory of previous goal (or its state 
information) 

•  e.g., AttackTarget, GetHealth, AttackTarget 
•  is  this good or bad?  
•  depends on what? 
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Interruptions 

  an alternative approach/mechanism 
•  which can co-exist with toplevel arbitration 
•  when a new goal becomes appropriate 

–  as determined by some event or evaluation function 
–  e.g., “incoming!”, or “gas tank low” 

•  push it onto the front of the lowest level current 
subgoal list 

•  when the this new goal completes, the original 
subgoals (and parents) will continue as before 

•  the new goal will function as an interruption 
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Interruptions 
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Interruptions 

  But what if interruption has changed the world state 
enough to “break” the plan of the interrupted goal? 
•  e.g., defending attacker has taken bot far from planned 

waypoint path 

  Plans already need to have code to check for failure 
and trigger re-planning (recursively up the goal tree) 

  Conclusion:  Our bots are pretty simple and don’t 
need interruptions, but a more “cognitively oriented” 
game might benefit 
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Special Path Obstacles 

  bot calls the moving 
platform and rides it 
across the pit of 
fire...  

  underlying path 
edge is specially 
marked 

  FollowPath adds 
special subgoal 
instead of usual 
TraverseEdge 
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Special Path Obstacles 

  Sliding door example in Raven 
•  code walk 
•  demo 
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Command Queuing 

  How about letting the player put subgoals directly into 
the tree? 
•  gives the player a way to “instruct and forget” an NPC 
•  e.g., “attack this house, then take down the flag, then retreat 

to meeting area”  
•  need some kind of user interface design 

  Navigation waypoint example in Raven 
•  holding down ‘Q’ key while clicking right 
•  adds MovePosition goal to back of subgoal list (queue) 
•  code walk 
•  demo 
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Scripting 

  How about exposing the subgoal lists to Lua 
scripting? 
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function AddGenie (...) 
   genie = CreateGenie(...) 
   genie:SayPhrase(“Welcome...”) 
   genie:SayPhrase(“Follow me...three wishes...) 
   genie:LeadPlayerToPosition(...) 
   genie:VanishInPuffOfSmoke 
end 
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Scripting 

  What do you need to do? 
•  expose C methods in Lua to add subgoals to 

current goal 
•  call appropriate Lua method from C Activate 

(planning) method of goal 
•  optionally expose additional methods to create 

objects, etc. 
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The Road to Tournament 

  Fri, Dec 5:  Brainstorming Raven bot strategy 

  Sun, Dec. 7: Bot Design (HW #10) due 

  Sun, Dec. 14: Tournament bot (HW #11) due 

  Tue, Dec. 16: Raven Tournament (IMGD Lab) 

IMGD 400X (B 08) 50 


