
12/3/08

1

Professor Charles Rich
Computer Science Department
rich@wpi.edu

IMGD 400X (B 08) 1

Goal-Driven Agent Behavior

Artificial Intelligence for
Interactive Media and Games

[Based on Buckland, Chapter 9 and lecture by Robin Burke]

IMGD 400X (B 08) 2

6 Mon, Dec 1 Chapter 9 Goal-Driven Behavior

Tues, Dec 2 Chapter 9 Goal-Driven Behavior

Weds, Dec 3 9- Steal Health [5%]

Thu, Dec 4 Chapter 9 Goal-Driven Behavior

Fri, Dec 5 Brainstorming: Raven Bot Strategy

Sun, Dec 7 10 - Bot Design [3%]

7 Mon,Dec 8 Chapter 10 Fuzzy Logic

Tue, Dec 9 Chapter 10 Fuzzy Logic

Wed, Dec 10 11 - Game Brains [5%]

Thu, Dec 11 Presentations: Game Brains

Fri, Dec 12 Futures: Interactive Story Generation / Course Eval

Sun, Dec 14 12 - Tournament Bot [10%]

8 Mon, Dec 15 Futures: Planning

Tue, Dec 16 Raven Tournament (IMGD Lab)

Thu, Dec 18 Final Exam [30%]

12/3/08

2

IMGD 400X (B 08) 3

goals

Outline

  Goals and planning in AI
•  for more, see Russell & Norvig, AI textbook

  Goal tree execution
•  decomposing and monitoring goals

  Goal arbitration
•  choosing a toplevel goal

  Achitecture Extensions / Applications
•  player possession
•  interruptions
•  special path obstacles
•  command queuing
•  scripting

IMGD 400X (B 08) 4

12/3/08

3

Goals and Planning in AI

  Goals
•  intuitive and cognitively motivated concept
•  an abstraction that guides behavior
•  often formalized as a partial description of a

desired state of the world

IMGD 400X (B 08) 5

Goal Desired World State
go to the cinema I am at the cinema
attack (given bot) I am firing on the bot

Goals and Planning in AI

  Desired world state
•  is this the same notion of “state” as in state

machines?
–  no, states in FSM are part of mental states of agent
–  states in FSM more analogous to (can be used like) goals
–  some similar implementation features (see later)

•  degrees of formalization
1.  just the name of the goal, e.g., GoToCinema
2.  code/procedure to test if world is in desired state (goal

succeeded) or not (goal failed), e.g., test location
3.  declarative/logical representation (very difficult in

general)

IMGD 400X (B 08) 6

12/3/08

4

Goals and Planning in AI

  What is a plan ?
1.  a sequence of actions to achieve a goal, e.g.,

leave the house: [walk to closet, open closet door, remove
coat from coat hook, ...]

–  sequence: totally ordered
–  action: directly executable by agent (changes world state)
–  goal: desired world state

2.  a partially ordered set of actions, e.g.,

IMGD 400X (B 08) 7

buy sugar

buy flour
mix bake make a cake:

Goals and Planning in AI

  What is planning ?
•  given a goal
•  construct a plan to change current (or given) world state into

desired world state
•  usually involves search (in space of possible plans)
•  multiple solutions possible
•  plan may fail, especially if world changes due to other factors

than own actions (e.g., other agents)
•  example: path planning

–  given current and desired location
–  find sequence of movements from here to there

•  will talk about non-path applications of planning in games in
final futures lectures

IMGD 400X (B 08) 8

12/3/08

5

Goals and Planning in AI

  What is re-planning ?
•  when the current plan for a goal fails

–  you executed all the actions in the plan
–  but the world is not in the desired state

>  assumes you have some test for failure
–  or some planned action is not executable

>  e.g., cannot open door (because locked)
>  assumes actions have some test for block/failure
>  could be a faulty plan or world changed unexpectedly

•  need to construct another plan for same goal
–  starting with current world state
–  and maybe other constraints based on current failure

IMGD 400X (B 08) 9

Goals and Planning in AI

  Alternative to searching for plans ?
•  search can be expensive and error-prone

•  predefine specific plans for particular goals

•  quickly look up plan for goal

•  may be more than one choice (need to decide)

•  can be “manual” or cached from previous (e.g.,
offline) searches

•  already “knowing” a lot of plans for commonly
occurring goals in a domain makes you an “expert”

IMGD 400X (B 08) 10

12/3/08

6

Goals and Planning in AI

  Hierarchical plans
•  tree of goals and actions (aka “atomic” or “primitive” goals)
•  child/parent relationship called “subgoal” or “step”
•  actions appear only at leaves
•  all internal nodes are (“composite” / “abstract” / “nonprimitive”) goals
•  subgoals at each level may be totally or partially ordered
•  decomposition can be via planning (search) or predefined

IMGD 400X (B 08) 11

Traverse Edge

Buy Sword

Get Gold Go To Smithy

Follow Path Pick Up Nugget

Traverse Edge Traverse Edge

Goals and Planning in AI

  Hierarchical plans
•  when fully expanded (“decomposed”)

–  all leaves are actions
–  leaves constitute a sequential or partially ordered plan

•  often expanded (“decomposed”) incrementally
–  some leaf nodes are not actions
–  not “directly executable” by agent
– what is directly executable depends on level of modeling
–  not efficient or effective to expand goal nodes before

they are “live”, because
> will have more information later
>  e.g., to choose between alternative decompositions

IMGD 400X (B 08) 12

12/3/08

7

Goals and Planning in AI

IMGD 400X (B 08) 13

Goals and Planning in AI

  Hierarchical Task Networks (HTN’s)
•  AI term for predefined library of hierarchical plans
•  the library usually implemented using a declarative

representation

–  e.g., ANSI/CEA-2018 (http://ce.org/cea-2018)

 <task name=“Buy Sword>
 <subtask task=“Get Gold” .../>
 ...
 </task>

IMGD 400X (B 08) 14

12/3/08

8

Goals and Planning in AI

  “And/Or Tree”

IMGD 400X (B 08) 15

GoToWork

TakeTrainToWork DriveToWork

WalkToStation RideTrain WalkToOffice DriveToWaypoint ...

have car?

HTN in Raven

IMGD 400X (B 08) 16

AttackTarget

DodgeSideToSide SeekToPosition HuntTarget

MoveToPosition Explore

SeekToPosition FollowPath

TraverseEdge ...

SeekToPosition

TraverseEdge

FollowPath

...

space to strafe?
not visible?

last recorded position?

12/3/08

9

Goal/Behavior Trees

  What Buckland describes in Chapter 9 is
essentially a
•  procedural implementation of
•  hierarchical task networks (and/or trees)
•  with totally order subgoals

  This technique is becoming popular in AI
game dev community under the title of
“behavior trees”
•  see http://aigamedev.com/videos/behavior-trees-part1

IMGD 400X (B 08) 17

Goal/Behavior Tree Execution Issues

  choosing among alternative decompositions
of a goal (into subgoals and actions)

  sequencing of subgoals/actions

  monitoring of goal completion/failure
  re-planning after failure

IMGD 400X (B 08) 18

12/3/08

10

Goals

  Same base class used both for composite
and atomic goals (actions)

  Atomic goals (4) currently in Raven
•  Wander, SeekToPosition, TraverseEdge,

DodgeSideToSide

  Composite goals (7) currently in Raven
•  Think: special root node (discuss later)
•  Toplevel goals: GetItem(*), AttackTarget, Explore
•  Intermediate goals: MoveToPosition, FollowPath,

HuntTarget

IMGD 400X (B 08) 19

Key Properties of a Goal

  Status (enum)
•  inactive – waiting (e.g., due to predecessors not

completed); default initial status
•  active – can be processed on next update
•  completed – will be removed on next update
•  failed – will be re-planned or removed on next update

  Subgoals (std::list<Goal>)
•  for composite goals only
•  in order of required execution

IMGD 400X (B 08) 20

12/3/08

11

Key Methods of a Goal

  Activate

  Process
  Terminate
  HandleMessage

IMGD 400X (B 08) 21

Goal::Activate

  Analogous to State::Enter

  contains initialization code (see Terminate)

  for atomic steering goals (e.g,. Wander), turns on
steering behavior

  for composite goals, chooses subgoals (decomposition
method)

  may be called multiple times for re-planning

  set status to ‘active’
•  unless cannot decompose (e.g., target no longer exists)

•  then status set to ‘completed’, so goal removed

IMGD 400X (B 08) 22

12/3/08

12

Goal::Process

  analogous to State::Execute

  always starts with ActivateIfInactive()
•  gives Activate method a chance to re-plan

  for composite goals calls ProcessSubgoals

  returns goal status

IMGD 400X (B 08) 23

Goal::Terminate

  analogous to State::Exit

  cleanup code before goal destroyed

  for atomic steering goals, turns off steering
behavior

IMGD 400X (B 08) 24

12/3/08

13

Goal::HandleMessage

  analogous to State::HandleMessage
  for composite goals, if message not handled

by self, dispatch to first subgoal
  messages only used in goal code for

asynchronous (cf. time slicing) notification
from path finder
•  Msg_PathReady
•  Msg_NoPathAvailable

handled by MoveToPosition and Explore

IMGD 400X (B 08) 25

Code Walk

  Start at AbstRaven_Bot “brain”
  Goal_Composite::ProcessSubgoals
  Atomic Goals

•  Wander
•  TraverseEdge

  Composite Goals
•  FollowPath (TraverseEdge subgoals)
•  MoveToPosition (FollowPath subgoal)
•  AttackTarget

  Run demo with goal tree display on

IMGD 400X (B 08) 26

12/3/08

14

Goal Arbitration

  Six toplevel (“strategy”) goals
•  Explore
•  AttackTarget
•  GetItem

–  health
–  rocket launcher
–  shotgun
–  railgun

  How does bot decide which to pursue at any
given moment? (Only one at a time)

IMGD 400X (B 08) 27

IMGD 400X (B 08) 28

12/3/08

15

Goal Evaluators

  List of evaluators stored in “brain” (Goal_Think)
•  One for each toplevel goal

  CalculateDesirability method
•  returns value between 0 and 1 (inclusive)
•  evaluated on every update for each goal

–  allows “opportunistic” behavior
•  highest value becomes current goal

–  replaces current goal if different, even if not completed!

•  uses “helper functions”
–  static methods in Raven_Feature
–  each “extracts” useful features from game state
–  features combined with weights to compute desirability

IMGD 400X (B 08) 29

Feature Extractors (0,1)

  Health(pBot)
•  normalize health range to (0,1)

  DistanceToItem(pBot, int ItemType)
•  to nearest item of given type
•  if none, return 1

  IndividualWeaponStrength(pBot, int WeaponType)
•  how much ammo bot has for given weapon type
•  relative to max amount it can carry (return 1)

  TotalWeaponStrength(pBot)
•  combination of three individual weapon strengths

IMGD 400X (B 08) 30

12/3/08

16

GetHealthGoal_Evaluator

  the farther away health pack is, the less desirable
•  cannot divide by zero, since triggered if inside bounding radius

(and thus doesn’t exist any more)

  the less healthy, the more desirable
•  if at max health, desirability is zero

  k is source-level “tweak factor”

IMGD 400X (B 08) 31

€

Desirabilityhealth = k × 1−Health
DistToHealth










GetWeaponGoal_Evaluator

  the farther away weapon is, the less desirable
  the less healthy, the less desirable to get weapon
  the more ammo it has, the less desirable
  k is source-level “tweak factor”

IMGD 400X (B 08) 32

€

Desirabilityweapon = k ×
Health × 1−WeaponStrength()

DistToWeapon










12/3/08

17

Non-Linear Functions

IMGD 400X (B 08) 33

  relative “pull” of weapon becomes much stronger as
you get closer

€

Desirabilityweapon = k ×
Health × 1−WeaponStrength()

DistToWeapon2










1/x 1/xn

AttackTargetGoal_Evaluator

  the stronger you feel, the more desirable to attack
•  health
•  total weapon strength

  k is source-level “tweak factor”

IMGD 400X (B 08) 34

€

Desirabilityattack = k ×TotalWeaponStrength ×Health

12/3/08

18

ExploreGoal_Evaluator

  returns fixed value of 0.05
  last resort

IMGD 400X (B 08) 35

“Personalities”

  e.g., cautious versus aggressive
  Per-bot parameter file contains additional

tweak (“bias”) factor for each toplevel goal
  Easy to multiply in at end of desirability

calculation

IMGD 400X (B 08) 36

Bot_HealthGoalTweaker = 1.2
Bot_ShotgunGoalTweaker = 0.6
Bot_RailgunGoalTweaker = 0.5
Bot_RocketLauncherTweaker = 0.6
Bot_ExploreTweaker = 0.2
Bot_AggroGoalTweaker = 0.8

(Note inconsistent naming in Burke code )

12/3/08

19

Code Walk

  Goal_Think

  GetWeaponGoal_Evaluator

  Run demo with evaluator values displayed.

IMGD 400X (B 08) 37

Homework #9 – Due Weds Midnight

  Adding a new goal, StealHealth, with
associated evaluator

  Your bot should collect a health pack even if it
doesn't need it, when there is a nearby
opponent who does need it

  Detailed instructions online
  Familiarize you with goal code for tournament

IMGD 400X (B 08) 38

12/3/08

20

Architecture Extensions / Applications

  Player Possession

  Interruptions

  Special Path Obstacles

  Command Queuing

  Scripting

IMGD 400X (B 08) 39

Player Possession

  Player “possesses” bot
•  right click once to select
•  right click again to possess
•  sets isPossessed() flag

  Right click on map to indicate destination
•  adds MoveToPosition goal to brain
•  invokes path planner in Activate method
•  other goal arbitration turned off

IMGD 400X (B 08) 40

12/3/08

21

Interruptions

  Toplevel goal arbitration (desirability evaluation)
“throws away” the current goal when a
“better” (higher scoring) goal is detected
•  a “one-track mind”
•  you might return to the first goal when the new goal is done

(or before)---it all depends on the desirability evaluation at
each tick

•  but there is no memory of previous goal (or its state
information)

•  e.g., AttackTarget, GetHealth, AttackTarget
•  is this good or bad?
•  depends on what?

IMGD 400X (B 08) 41

Interruptions

  an alternative approach/mechanism
•  which can co-exist with toplevel arbitration
•  when a new goal becomes appropriate

–  as determined by some event or evaluation function
–  e.g., “incoming!”, or “gas tank low”

•  push it onto the front of the lowest level current
subgoal list

•  when the this new goal completes, the original
subgoals (and parents) will continue as before

•  the new goal will function as an interruption

IMGD 400X (B 08) 42

12/3/08

22

Interruptions

IMGD 400X (B 08) 43

Interruptions

  But what if interruption has changed the world state
enough to “break” the plan of the interrupted goal?
•  e.g., defending attacker has taken bot far from planned

waypoint path

  Plans already need to have code to check for failure
and trigger re-planning (recursively up the goal tree)

  Conclusion: Our bots are pretty simple and don’t
need interruptions, but a more “cognitively oriented”
game might benefit

IMGD 400X (B 08) 44

12/3/08

23

Special Path Obstacles

  bot calls the moving
platform and rides it
across the pit of
fire...

  underlying path
edge is specially
marked

  FollowPath adds
special subgoal
instead of usual
TraverseEdge

IMGD 400X (B 08) 45

Special Path Obstacles

  Sliding door example in Raven
•  code walk
•  demo

IMGD 400X (B 08) 46

12/3/08

24

Command Queuing

  How about letting the player put subgoals directly into
the tree?
•  gives the player a way to “instruct and forget” an NPC
•  e.g., “attack this house, then take down the flag, then retreat

to meeting area”
•  need some kind of user interface design

  Navigation waypoint example in Raven
•  holding down ‘Q’ key while clicking right
•  adds MovePosition goal to back of subgoal list (queue)
•  code walk
•  demo

IMGD 400X (B 08) 47

Scripting

  How about exposing the subgoal lists to Lua
scripting?

IMGD 400X (B 08) 48

function AddGenie (...)
 genie = CreateGenie(...)
 genie:SayPhrase(“Welcome...”)
 genie:SayPhrase(“Follow me...three wishes...)
 genie:LeadPlayerToPosition(...)
 genie:VanishInPuffOfSmoke
end

12/3/08

25

Scripting

  What do you need to do?
•  expose C methods in Lua to add subgoals to

current goal
•  call appropriate Lua method from C Activate

(planning) method of goal
•  optionally expose additional methods to create

objects, etc.

IMGD 400X (B 08) 49

The Road to Tournament

  Fri, Dec 5: Brainstorming Raven bot strategy

  Sun, Dec. 7: Bot Design (HW #10) due

  Sun, Dec. 14: Tournament bot (HW #11) due

  Tue, Dec. 16: Raven Tournament (IMGD Lab)

IMGD 400X (B 08) 50

