
4/22/10

1

Building a Better
Battle

The Halo 3 AI Objectives
System

Damián Isla
Bungie Studios

Building A Better Battle

Designer tools

AI is an integral part of it

An interesting Next-Gen problem

4/22/10

2

“Big Battle” Technology

Scalable perception
Flocking

Effects
Targeting groups

Encounter logic

Combat dialogue

Mission dialogue

Precombat

In-game cinematics

Ambient sound

Scalable AI

4/22/10

3

“Big Battle” Technology

Scalable perception
Flocking

Effects
Targeting groups

Encounter logic

Combat dialogue

Mission dialogue

Activities

In-game cinematics

Ambient sound

Scalable AI

4/22/10

4

Encounter Design
•  Encounters are systems
•  Lots of guys
•  Lots of things to do
•  The system reacts in

interesting ways
•  The system collapses in

interesting ways

An encounter is a complicated
dance with lots of dancers

 How is this dance
 choreographed?

Choreography 101

•  The dance is about the illusion of strategic intelligence

•  Strategy is environment- story- and pacing-dependent

AI acts smart within
the confines of the
plan provided by
the designer

Designer provides
the strategic
intelligence

4/22/10

5

The Canonical Encounter
Two-stage fallback
•  Enemies occupy a territory
•  Pushed to “fallback” point
•  Pushed to “last-stand” point
•  Player “breaks” them
•  Player finishes them off

... plus a little “spice”
•  snipers
•  turrets
•  dropships

Task
The mission designers’

language for telling
the AI what it should
be doing

Halo:
•  Territory
•  Behavior

–  aggressiveness
–  rules of engagement
–  player following

Changing task moves AI around the encounter space

4/22/10

6

The Control Stack

Mission-designers script
sequence of tasks

Within the task, the
AI behaves autonomously

AI engineers, AI designers

Mission designers

The Control Stack

Mission-designers script
sequence of tasks

Within the task, the
AI behaves autonomously

4/22/10

7

Halo 2: The Imperative Method

The Imperative Method

< 75% alive?

< 25% alive?

Give the designers an FSM construction tool

4/22/10

8

Problems with the Imperative
Method

Problems with the Imperative
Method

Explicit transitions  n2 complexity

Generator 2 Generator 3

Generator 1

4/22/10

9

Problems with the Imperative
Method

For Halo 3:
•  Larger encounters
•  More characters
•  More open spaces
•  More avenues of attack

Halo 3: The Declarative Method

4/22/10

10

The Declarative Method

The new approach:

Enumerate “tasks that need doing” in the
environment

Let the system figure out who should
perform them

The Declarative Method

Not without precedent

Similar to “affordances”

4/22/10

11

The Declarative Method

Tasks have structure

•  Relative priorities
–  “The most important thing is

to guard the door, but if you
can, also guard the hallway”

•  Are made up of sub-tasks
–  “Guarding the hallway

means guarding the front,
the middle and the rear of
the hallway.”

Behavior Trees

(Handling Complexity in the
Halo 2 AI, GDC 2005)

Takeaways:
1.  Prioritized-list decision

scheme
2.  Behaviors are self-describing

We are not making a single choice.
We are finding a distribution across all choices.

melee

shoot

grenade

uncover

pursue

cover

sleep

fight

search

hide

idle

root

4/22/10

12

Task Trees?

Generator 2 Generator 3

Generator 1

Task Trees?

root fallback

forward

laststand

fallback

forward

laststand

fallback

forward

laststand

generator 2

generator 3

generator 1

4/22/10

13

Halo 3 AI Objectives System
The structure:
•  A Tree of Prioritized Tasks
•  Tasks are self-describing

–  priority
–  activation script-fragments
–  capacities

The Algorithm:
•  Pour squads in at the top
•  Allow them to filter down to the

most important tasks to be filling
RIGHT NOW

Basically, it’s a plinko machine.

The Dynamic Plinko Machine

•  Tasks turn themselves on
and off

•  Squads pulled UP, on
activation of a higher-
priority task

•  Squads pushed DOWN,
on deactivation of the task
they’re in

4/22/10

14

g3 laststand

3 Generators
Revisited

g1_group g1 alive max 10

root

g1 forward >75%

g1 fallback >50%

g2_group g2 alive max 10

g2 fallback >50%

g2 forward >75%

g3_group g3 alive max10

g3 fallback >50%

g3 forward >75%

g1 laststand

g2 laststand

g1_group g1 alive max 10

root

g2_group g2 alive max 10

g2 fallback >50%

g2 forward >75%

g3_group

g3 alive max10

g1 forward >75%

g1 fallback >50%

g1 laststand

g2 laststand

g3 fallback >50%

g3 forward >75%

g3 laststand

Designer UI

•  Integration with HaloScript
•  Run-time feedback

4/22/10

15

The Algorithm

The Algorithm
•  Consider a subtree fragment
•  Determine which children are active

–  Squads in inactive tasks assigned back
up to parent

•  Consider top priority group
•  Collect squads to attempt to

distribute
–  Squads currently in parent
–  Squads in lower-priority tasks

•  Distribute Squads
•  Recurse for children in top priority-

group
•  Iterate to next “priority group”

4/22/10

16

Squad Distribution

Formally, we have
•  set S of n squads
•  set T of m tasks

Now, find a mapping

Two parts:
1.  Respect Task-Capacity Constraints
2.  Minimize cost function H(F)

Squad Distribution

1.  Respect Task-Capacity Constraints

guys assigned to task t ≤ capacity(t)

... but remember, we’re bucketing by squads.

This is called bin-packing. And it’s NP-Hard.

5 8
1

12 15 8

4/22/10

17

Squad Distribution

1.  Respect Task-Capacity Constraints

Fortunately
a)  there’s always Wikipedia
b)  we can live with sub-optimal
c)  we’re optimizing not for m, but for H(F)

Squad Distribution

2.  Minimize cost function H
(F)

Why a cost function?
•  Gives us a basis for choosing

one distribution over another
•  Weigh different concerns

–  don’t want to travel far
–  want to act coordinated
–  want to balance the tree
–  want to get near to the

player

4/22/10

18

Squad Distribution

2.  Minimize cost function H
(F)

DANGER: AI can look really
stupid with wrong H(f)

OPPORTUNITY: Designer
has abdicated his
decision-making authority

Squad Distribution

2.  Minimize cost function H(F)

A class of cost functions:

We use

4/22/10

19

A Greedy Approach

while (S is not empty)

 find pair (s,t) that give the minimum H
(s,t) for all S x T (where adding s to t
would not exceed t’s capacity)

 if (s,t)
 assign(s, t)
 capacity(t) = capacity(t) - size(s)
 S = S – s
 else
 end

A note on Perf

Our algorithm may be O(n2m), but we are
redeemed by the fact that n and m are small

Other perf measures
•  Cache H(s,t) results
•  Timeslice entire trees  Halo3
•  Timeslice nodes within trees

4/22/10

20

Refinements

Filters

Particular tasks only available to particular kinds of
guys

E.g.
–  Must be of character type X
–  Must be in vehicles
–  Must NOT be in vehicles
–  Snipers

“Filters”
•  Specify occupation conditions (as opposed to activation

conditions)
•  “Trivially” implemented as an inf return value from H(s, t)
•  Helpful for the “spice”

4/22/10

21

Further Task Refinements
Activation behavior
•  Latch on
•  Latch off / exhaustion

Exhaustion behavior
•  Death count
•  Living count

Assignment behavior
•  One-time assignment

All of these were designer requests

Case Studies

4/22/10

22

Case Study #1:
Leadership

Want to have leaders and
followers

•  Brute and three grunts
•  Brute Chieftan and brute

pack

Gameplay
•  Leaders provide structure to

encounter
•  Leader death “breaks”

followers

Case Study #1: Leadership

Two Parts:

1.  Leadership-based filters
–  Core task: “leader” filter
–  Peripheral tasks: “NO leader” filter

3.  Task “broken” state
–  Task does not allow redistribution in or out while

broken
–  NPCs have “broken” behaviors

4/22/10

23

Case Study #2: Player pickup

Vehicle encounters are not fun without a vehicle

Gameplay
•  When the player needs a vehicle, allies go pick him up

Case Study #2: Player pickup

Implementation: one dedicated player-pickup task
per encounter

Four parts:
1.  vehicle filter
2. player_needs_vehicle() script function
3.  “follow player” task option
4. driver player_pickup behavior

And that’s it!

4/22/10

24

Demo
(Max Dyckhoff, everybody)

Summaries

4/22/10

25

Badness Summary

•  Requires designer training

•  Sometimes awkward relationship between scripting
system and Objectives

•  Tying together allied and enemy “fronts” was
complicated.

•  The squad wasn’t always the best level at which to
do the bucketing
–  e.g. give a guy a sniper rifle ... shouldn’t he then be

allowed to occupy a “sniper” task?

Technique Summary

•  Declarative approaches are great
–  less direct control, more manageability

•  Hierarchies are great
–  more modular
–  better scalability

•  Self-describing tasks makes this whole thing O
(n) complexity rather than O(n2) (conceptually)

4/22/10

26

Production Summary
•  The Goal: provide a powerful tool for designers to control

strategy-level decision-making for a large group of
characters

•  Flexible enough to incorporate plenty of designer-
requested features / modifications

•  Great for Prototyping
–  became much more complicated as we neared shippable

encounter state

•  One-stop-shop for encounter construction

•  Design of the system driven from the UI outwards

Summary Summary

Not a problem isolated to Halo

As number of NPCs grows, these kinds of
techniques will become more and more

important

All you need ...
 ... is H(s,t)

