
Building a Better Battle
The Halo 3 AI Objectives System

Damián Isla
Bungie Studios

Building A Better Battle

Designer tools

AI is an integral part of it

An interesting Next‐Gen problem

“Big Battle” Technology

Scalable perception
Flocking

Effects
Targeting groups

Encounter logic

Combat dialogue

Mission dialogue

Precombat

In‐game cinematics

Ambient sound

Scalable AI

“Big Battle” Technology

Scalable perception
Flocking

Effects
Targeting groups

Encounter logic

Combat dialogue

Mission dialogue

Activities

In‐game cinematics

Ambient sound

Scalable AI

Encounter Design

• Encounters are systems
• Lots of guys
• Lots of things to do
• The system reacts in interesting

ways
• The system collapses in

interesting ways

An encounter is a complicated dance
with lots of dancers

How is this dance
choreographed?

Choreography 101

• The dance is about the illusion of strategic intelligence

• Strategy is environment‐ story‐ and pacing‐dependent

AI acts smart within
the confines of the
plan provided by
the designer

Designer provides
the strategic
intelligence

The Canonical Encounter

Two‐stage fallback
• Enemies occupy a territory
• Pushed to “fallback” point
• Pushed to “last‐stand” point
• Player “breaks” them
• Player finishes them off

... plus a little “spice”
• snipers
• turrets
• dropships

Task
The mission designers’

language for telling the AI
what it should be doing

Halo:
• Territory
• Behavior

– aggressiveness
– rules of engagement
– player following

Changing task moves AI around the encounter space

The Control Stack

Squad

Task

Encounter
Logic Mission‐designers script

sequence of tasks

Within the task, the
AI behaves autonomously

AI engineers, AI designers

Mission designers

The Control Stack

Squad

Task

Encounter
Logic Mission‐designers script

sequence of tasks

Within the task, the
AI behaves autonomously

Halo 2: The Imperative Method

The Imperative Method

< 75% alive?

< 25% alive?

Give the designers an FSM construction tool

Problems with the Imperative Method

Problems with the Imperative Method

Explicit transitions  n2 complexity

Generator 2Generator 3

Generator 1

Problems with the Imperative Method

For Halo 3:
• Larger encounters
• More characters
• More open spaces
• More avenues of attack

Halo 3: The Declarative Method

The Declarative Method

The new approach:

Enumerate “tasks that need doing” in the
environment

Let the system figure out who should perform them

The Declarative Method

Not without precedent

Similar to “affordances”

The Declarative Method

Tasks have structure

• Relative priorities
– “The most important thing is to

guard the door, but if you can,
also guard the hallway”

• Are made up of sub‐tasks
– “Guarding the hallway means

guarding the front, the middle and
the rear of the hallway.”

Behavior Trees

(Handling Complexity in the
Halo 2 AI, GDC 2005)

Takeaways:
1. Prioritized‐list decision scheme
2. Behaviors are self‐describing

We are not making a single choice.
We are finding a distribution across all choices.

melee

shoot

grenade

uncover

pursue

cover

sleep

fight

search

hide

idle

root

Task Trees?

Generator 2Generator 3

Generator 1

Task Trees?

24 guys

root fallback

forward

laststand

fallback

forward

laststand

fallback

forward

laststand

generator 2

generator 3

generator 1

8

8

8

8
0
0

8
0
0

8
0
0

Halo 3 AI Objectives System

The structure:
• A Tree of Prioritized Tasks
• Tasks are self‐describing

– priority
– activation script‐fragments
– capacities

The Algorithm:
• Pour squads in at the top
• Allow them to filter down to the most

important tasks to be filling RIGHT NOW

Basically, it’s a plinko machine.

The Dynamic Plinko Machine

• Tasks turn themselves on and
off

• Squads pulled UP, on
activation of a higher‐priority
task

• Squads pushed DOWN, on
deactivation of the task
they’re in

g3 laststand

3 Generators
Revisited

g1_group g1 alive max 10

root

g1 forward >75%

g1 fallback >50%

g2_group g2 alive max 10

g2 fallback >50%

g2 forward >75%

g3_group g3 alive max10

g3 fallback >50%

g3 forward >75%

g1 laststand

g2 laststand

g1_group g1 alive max 10

root

g2_group g2 alive max 10

g2 fallback >50%

g2 forward >75%

g3_group

g3 alive max10

g1 forward >75%

g1 fallback >50%

g1 laststand

g2 laststand

g3 fallback >50%

g3 forward >75%

g3 laststand

Designer UI

• Integration with HaloScript
• Run‐time feedback

The Algorithm

The Algorithm
• Consider a subtree fragment
• Determine which children are active

– Squads in inactive tasks assigned back up to
parent

• Consider top priority group
• Collect squads to attempt to distribute

– Squads currently in parent
– Squads in lower‐priority tasks

• Distribute Squads
• Recurse for children in top priority‐group
• Iterate to next “priority group”

Squad Distribution

Formally, we have
• set S of n squads
• set T of m tasks

Now, find a mapping

Two parts:
1. Respect Task‐Capacity Constraints
2. Minimize cost function H(F)

Squad Distribution

1. Respect Task‐Capacity Constraints

guys assigned to task t ≤ capacity(t)

... but remember, we’re bucketing by squads.

This is called bin‐packing. And it’s NP‐Hard.

5 8
1

12 15 8

Squad Distribution

1. Respect Task‐Capacity Constraints

Fortunately
a) there’s always Wikipedia
b) we can live with sub‐optimal
c) we’re optimizing not for m, but for H(F)

Squad Distribution

2. Minimize cost function H(F)

Why a cost function?
• Gives us a basis for choosing one

distribution over another
• Weigh different concerns

– don’t want to travel far
– want to act coordinated
– want to balance the tree
– want to get near to the player

Squad Distribution

2. Minimize cost function H(F)

DANGER: AI can look really stupid
with wrong H(f)

OPPORTUNITY: Designer has
abdicated his decision‐
making authority

Squad Distribution

2. Minimize cost function H(F)

A class of cost functions:

We use

A Greedy Approach

while (S is not empty)

find pair (s,t) that give the minimum
H(s,t) for all S x T (where adding s to t
would not exceed t’s capacity)

if (s,t)
assign(s, t)
capacity(t) = capacity(t) ­ size(s)
S = S – s

else
end

A note on Perf

Our algorithm may be O(n2m), but we are redeemed by the
fact that n and m are small

Other perf measures
• Cache H(s,t) results
• Timeslice entire trees  Halo3
• Timeslice nodes within trees

Refinements

Filters

Particular tasks only available to particular kinds of guys

E.g.
– Must be of character type X
– Must be in vehicles
– Must NOT be in vehicles
– Snipers

“Filters”
• Specify occupation conditions (as opposed to activation

conditions)
• “Trivially” implemented as an inf return value from H(s, t)
• Helpful for the “spice”

Further Task Refinements

Activation behavior
• Latch on
• Latch off / exhaustion

Exhaustion behavior
• Death count
• Living count

Assignment behavior
• One‐time assignment

All of these were designer requests

Case Studies

Case Study #1:
Leadership

Want to have leaders and
followers

• Brute and three grunts
• Brute Chieftan and brute pack

Gameplay
• Leaders provide structure to

encounter
• Leader death “breaks” followers

Case Study #1: Leadership

Two Parts:

1. Leadership‐based filters
– Core task: “leader” filter
– Peripheral tasks: “NO leader” filter

2. Task “broken” state
– Task does not allow redistribution in or out while broken
– NPCs have “broken” behaviors

Case Study #2: Player pickup

Vehicle encounters are not fun without a vehicle

Gameplay
• When the player needs a vehicle, allies go pick him up

Case Study #2: Player pickup

Implementation: one dedicated player‐pickup task per
encounter

Four parts:
1. vehicle filter
2. player_needs_vehicle() script function
3. “follow player” task option
4. driver player_pickup behavior

And that’s it!

Demo
(Max Dyckhoff, everybody)

Summaries

Badness Summary

• Requires designer training

• Sometimes awkward relationship between scripting system
and Objectives

• Tying together allied and enemy “fronts” was complicated.

• The squad wasn’t always the best level at which to do the
bucketing

– e.g. give a guy a sniper rifle ... shouldn’t he then be allowed to occupy
a “sniper” task?

Technique Summary

• Declarative approaches are great
– less direct control, more manageability

• Hierarchies are great
– more modular
– better scalability

• Self‐describing tasks makes this whole thing O(n)
complexity rather than O(n2) (conceptually)

Production Summary

• The Goal: provide a powerful tool for designers to control strategy‐
level decision‐making for a large group of characters

• Flexible enough to incorporate plenty of designer‐requested
features / modifications

• Great for Prototyping
– became much more complicated as we neared shippable encounter state

• One‐stop‐shop for encounter construction

• Design of the system driven from the UI outwards

Summary Summary

Not a problem isolated to Halo

As number of NPCs grows, these kinds of techniques
will become more and more important

All you need ...
... is H(s,t)

