/ '/ ~
/,//; WY

Basic Game Physics

Technical Game Development Il

Professor Charles Rich

Computer Science Department
rich@wpi.edu

[some material provided by Mark Claypool]

IMGD 4000 (D 09)

Introduction

= What is game physics and why is it
important?
» computing motion of objects in virtual scene
— including player avatars, NPC’s, inanimate objects

* computing mechanical interactions of objects
— interaction usually involves contact (collision)
* simulation must be real-time (versus high-
precision simulation for CAD/CAM, etc.)

* simulation may be very realistic, approximate, or
intentionally distorted (for effect)

(@) VY21 meb 4000 (D 09)

Introduction (cont’d)

= What is game physics and why is it
important?
e can improve immersion
e can support new gameplay elements

* becoming increasingly prominent (expected) part
of high-end games

* like Al and graphics, facilitated by hardware
developments (multi-core, GPU)

* maturation of physics engine market

IMGD 4000 (D 09) 3

Physics Engines

= Similar buy vs. build analysis as game engines
* Buy:
— complete solution from day one
— proven, robust code base (hopefully)
— feature sets are pre-defined
— costs range from free to expensive
e Build:
— choose exactly features you want
— opportunity for more game-specification optimizations
— greater opportunity to innovate

— cost guaranteed to be expensive (unless features extremely
minimal)

IMGD 4000 (D 09) 4

Physics Engines

= Open source
e Box2D, Bullet, Chipmunk, JigLib, ODE, OPAL, OpenTissue,
PAL, Tokamak, Farseer, Physics2d, Glaze
= Closed source (limited free distribution)
* Newton Game Dynamics, Simple Physics Engine, True Axis,
PhysX
= Commercial
e Havok, nV Physics, Vortex

= Relation to Game Engines
 integrated/native, e.g,. C4
e pluggable, e.g.,
— C4+PhysX
— jME+ODE (via jJME Physics)
IMGD 4000 (D 09) 5

LS N

Basic Game Physics Concepts

= Why?
* To use an engine effectively, you need to
understand something about what it's doing

* You may need to implement small features or
extensions yourself

 Cf. owning a car without understanding anything
about how it works

= Examples

» kinematics and dynamics
* projectile motion
* collision detection and response

IMGD 4000 (D 09) 6

LS N

Kinematics

= Study of the motion of objects without taking
into account mass or force

= Basic quantities: position, time
= Basic equations:

d=wvt
v=u+at
d = ut + at?/2
vZ=u2+ 2ad
where: t - (elapsed) time

d - distance (change in position)

v - (final) velocity (change in distance per unit time)
a - acceleration (change in velocity per unit time)

u - (initial) velocity

’[IMGD 4000 (D 09) 7

I I

Kinematics (cont’d)

Prediction Example: If you throw a ball straight
up into the air with an initial velocity of 10 m/
sec, how high will it go?

4v=0
v2 =u2+ 2ad
d
u =10 m/sec a=-1OI
a = -10 m/sec? (approx due to gravity)
v = 0 m/sec (at top of flight)
u=10

0 =102+ 2(-10)d
d=5m

(note answer independent of mass of ball)

%P1 IMGD 4000 (D 09) 8

I I

Computing Kinematics in Real Time

start = getTime() // start time

p=20 // initial position
u 10 // initial velocity
a -10

function update () { // in render loop
now = getTime()
t = now - start
simulate(t);

3

function simulate (t) {
d=(u+ (0.5%a*t)*t d = ut + at?/2
move object to p + d

3

Problem: Number of calls and time values to simulate
depend on (changing) frame rate

/[1MGD 4000 (D 09) 9

Frame Rate Independence

= Complex numerical simulations used in physics
engines are very sensitive to time steps (due to
truncation error and other numerical effects)

= But results need to be repeatable regardless of
CPU/GPU performance
 for debugging
» for game play

= Solution: control simulation interval separately

/P1 IMGD 4000 (D 09) 10

Frame Rate Independence

delta = 0.02 // physics simulation interval (sec)

lag = 0 // physics Tag
updated = 0 // time of last update

function update () { // in render Tloop
now = getTime()
t = (updated - start) - lag
lag = lag + (now - updated)
while (Tag > delta)
simulate(t)
t =t + delta
lag = lag - delta
updated = now

delta
simulation ticks | : | |

frame updates | I —

updated now
~ L IMGD 4000 (D 09)

I I

Doing It In 3D

= Mathematically, consider all quantities

involving position to be vectors:

d=wvt
v=u+at
d = ut + at?/2

(Note these are all scalar products, so essentially
calculations are performed independently in each

dimension.)

= Computationally, using appropriate 3-element

vector datatype

Y Pl 1meD 4000 (D 09)

I I

The Firing Solution

= How to hit a target
» with a grenade, spear, catapult, etc.

* a beam weapon or high-velocity bullet over short
ranges can be viewed as traveling in straight line

 projectile travels in a parabolic arc

a=[0, 0, -9.8] m/sec?
(but typically use higher value, e.g. -18) d = ut o at2/2

u = muzzle velocity vector

Given d, solve for u.

The Firing Solution

= In most typical game situation, the magnitude
of u is fixed and we only need to know its
relative components (orientation)

= After a lot of hairy math [see Millington 3.5.3], it
turns out there are three relevant cases:
* target is out of range (no solutions)
* target is at exact maximum range (single solution)

* target is closer than maximum range (two possible
solutions)

The Firing Solution

u_m___m_"long time trajectory

“short time trajector;y""

u = muzzle velocity vector

= Usually choose short time trajectory

* gives target less time to escape u = (2d -at?) / 2xt
* unless shooting over wall, etc.

S\

Y9/ P IMGD 4000 (D 09)

where x = max muzzle speed

function firingSolution (d, x, gravity) {

3

Note scalar product of two vectors using * e.qg.,

// real-valued coefficents of quadratic
a = gravity * gravity

b -4 * (gravity * d + x*x)
c=4*d=*d

// check for no real solutions
if (4*a*c > b*b) return null

// find short and long times
disc = sqrt(b*b - 4*a*c)
tl = sqrt((-b + disc) / 2*a)
t2 = sqrt((-b - disc) / 2*a)
if (tl1 <0)
if (t2 < 0) return null
else t = t2
else if (t2 <0) t =tl
else t = min(tl, t2)

// return firing vector
return (2*d - gravity*t*t) / (2*x*x)

[a,b,c] * [d,e,f]=a*d + b¥e + c*f

IMGD 4000 (D 09)

Dynamics

= Notice that the preceding kinematic
descriptions say nothing about why an object
accelerates (or why its acceleration might
change)

= To get a full “modern” physical simulation you
need to add two more basic concepts:
e force
°* mass

= Discovered by Sir Isaac Newton

= around 1700 @

Newton’s Laws

1. A body will remain at rest or continue to
move in a straight line at a constant speed
unless acted upon by a force.

2. The acceleration of a body is proportional to
the resultant force acting on the body and is
in the same direction as the resultant force.

3. For every action, there is an equal and
opposite reaction.

Motion Without Newton’s Laws

= Pac-Man or early Mario style

« follow path with instantaneous changes in speed
and direction (velocity)

S

* not physically possible

« fine for some casual games (esp. with appropriate
animations)

) VY21 map 4000 (D 09) 19

Newton’s Second Law

F =ma

at each moment in time:
F = force vector, Newton’s
m = mass (intrinsic property of matter), kg
a = acceleration vector, m/sec?
This equation is the fundamental driver of all physics simulations:
« force causes acceleration

* acceleration causes change in velocity
* velocity causes change in position

) VY21 map 4000 (D 09) 20

10

How Are Forces Applied?

= Without contact
e gravity
* wind (if not modeling air particles)
* magic
= Usually involves contact
« collision (rebound)
« friction (rolling, sliding)
= Dynamic (force) modeling also used for
autonomous steering behaviors (later in term)

/1 IMGD 4000 (D 09) 21

Collision Detection

= Determining when objects collide is not as
easy as it seems
e geometry can be complex
* objects can be moving quickly
 there can be many objects
— naive algorithms are O(n?)
= Two basic approaches:
e overlap testing
— detects whether collision has already occurred
* intersection testing
— predicts whether a collision will occur in the future

/P1 IMGD 4000 (D 09) 22

11

Overlap Testing

= Most common technique used in games
Exhibits more error than intersection testing

Basic idea:

 at every simulation step, test every pair of objects
to see if overlap

Easy for simple volumes (e.g., spheres),
harder for polygonal models
Results of test:

« collision normal vector (useful for reaction)
« time that collision took place

K/J Y9/ P IMGD 4000 (D 09) 23

Overlap Testing: Finding Collision Time

= Calculated by doing “binary search” in time, moving
object back and forth by 1/2 steps (bisections)

A
0 7
& A A
A
)

Initial Overlap Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
Test Forward 1/2 Backward 1/4 Forward 1/8 Forward 1/16 Backward 1/32

= |n practice, five iterations usually enough

K/J Y9/ P IMGD 4000 (D 09) 2

12

Limitations of Overlap Testing

= Fails with objects that move too fast (no overlap
during simulation time slice)

window

= Solution approach:

e constrain game design so that fastest object moves smaller
distance in one tick than thinnest object

e may require reducing simulation step size (adds computation
overhead)

(@) VY21 meb 4000 (D 09) 25

Intersection Testing

= Predict future collisions

Extrude geometry in direction of movement
* e.g., ‘swept”’ sphere turns into capsule shape

0\0

Then, see if extruded shape overlaps objects

When collision found (predicted)
¢ move simulation to time of collision (no searching)
e resolve collision
e simulate remaining time step(s)
e works for bullet/window example

(@) VY21 meb 4000 (D 09) 26

13

Speeding Up Collision Detection

= Bounding Volumes
* Oriented

e Hierarchical
= Partitioning

= Plane Sweep

7)Y/ P imeD 4000 (D 09) 27

Bounding Volumes

I I

If bounding volumes don’t overlap, then no

more testing is required

* if overlap, more refined testing required

* bounding volume alone may be good enough for
some games

Commonly used volumes

* sphere - distance between centers less than sum of radii
* boxes

— axis aligned (loose fit, easier math)
— oriented (tighter fit, more expensive)

Axis-Aligned Bounding Box Oriented Bounding Box

Y Pl 1meD 4000 (D 09) 28

14

Complex Bounding Volumes

= Multiple volumes per object

* e.g., separate volumes for head, torso and limbs
of avatar object

= Hierarchical volumes
* e.g., boxes inside of boxes
= Techniques can be combined

* e.g., hierarchical oriented bounding boxes
(OBBTree) in jME

OO

)Y/ 1 maD 4000 (D 09)

29

Oriented Bounding Box Tree

Figure 1: Building the OBBTree: recursively partition the
bounded polygons and bound the resulting groups.

[Gottschalk, Lin, Minocha, SIGGRAPH °96]

) YY1 mMGD 4000 (D 09)

30

15

Partitioning for Collision Testing

139

To address the n? problem...
= Partition space so only test objects in same cell

S R
v
/ ./’ "\. \ .\t
¢ P.\ A2 \.v -
» 4]_.

In best case (uniform distribution) reduces n?to linear

= In worst case (all objects in same cell) no
improvement

P IMGD 4000 (D 09) 31

Plane Sweep for Collision Testing

LD,

= Observation: a lot of objects stay in one place

= Sort bounds along axes (expensive to do once!)

= Only adjacent sorted objects which overlap on all
axes need to be checked further

= Since many objects don’t move, can keep sort up to
date very cheaply with bubblesort (nearly linear)

Yy
B,

nNE=
R: e /‘BD
o A
N
A° /
C, | |
R(J o *7‘ - J‘
| C
& e :
. Ay ARy By R Gy By G X
“| IMGD 4000 (D 09) 32

16

More physics we are not covering

= Collision response
* Conservation of momentum
 Elastic collisions
* Non-elastic collisions - coefficient of restitution

= Rigid body simulation (vs. point masses)

= Soft body simulation
e spring-mass-damper dynamics

[see excellent recent book by Millington, “Game Physics
Engine Development”, MK, 2007]

) VY1 imeD 4000 (D 09) 33

Open Dynamics Engine

= Brief case study of a complete physics engine
= Overview from author (Russell Smith)

= JME Physics interface

)Y/ P1 imeD 4000 (D 09) 34

17

Dynamics Simulation

A whirlwind tour.
(Current State, and New Frontiers)

Russell Smith
Dec 2004

Copyright ©2004 Russell Smith

What is Dynamics?

 Classical physics: Newton’s law][s].
@p__av’

= ——_—__ <4— Grad school

High school —» f = ma
dt? op

* In this talk “dynamics” is mostly “articulated
rigid body dynamics”.

e But also:

— Particle dynamics, cloth dynamics, wave dynamics, fluid
dynamics, flexible body dynamics, fracture dynamics...

Copyright ©2004 Russell Smith

18

Dynamics Simulation Libraries

» API primitives: rigid or flexible bodies, joints, contact
with friction, collision detection, etc...

» Many techniques, many libraries, lots of research.

y ¢
~
O
@ % wur'.(-
Rigid bedes Joints Contact
(solid objects) (like hinges) igmilo:'s\d

& o=°

Feichon Gadge t
s, ey (e o)

Copyright ©2004 Russell Smith

Applications: Games

— Interactive 3D worlds — typically FPS games.

— Limited uses: stacks of boxes, rag-dolls, collapsing buildings.
But: need fast, stable and predictable simulation.

Copyright ©2004 Russell Smith

19

Applications: 3D animation tools

— The big three (Maya, Softimage, 3DS Max), many others.
— Simulate dead things, or in combination with motion capture.
— Many custom tools, e.g. Massive (“Lord of the Rings”).

CANSOUEUOORVnER s e

|
ANgEEREER

lelvewy|
omy ‘v

|y kbt | :
P[n;i .

i
]
H

Copyright 2004 Russell Smith

Applications: Industrial

— Robot prototyping / modeling / research (e.g. Honda ASIMO,
NASA mars rover).

— Biomechanics.
— Vehicle operator training, prototyping.

Copyright 2004 Russell Smith

20

OPEN DYNAMICS ENGINE"

My rigid body simulation library.
— Many others: Havok, PhysX (Novodex, Meqon), SD/Fast...

A platform for research.
— Simulation algorithms, simulation applications.

Open source (BSD license).
— Dynamics should be ubiquitous: encourage innovation.

— Closed source libraries constrain users: endless
customization and integration hassles.

— Why customization: ODE - Softimage XSI| - ILM
* Used in “Eternal Sunshine of the Spotless Mind”.

Copyright 2004 Russell Smith

OPEN DYNAMICS ENGINE"

* Over 1000 users: widely used in games, game engines, robot
simulation, 3D animation.

Copyngnt 52004 Russell Smith

21

Why Simulation is Hard

* Modeling real-world mechanisms is hard.

» Unexpected behavior.

— Hard-to-debug numerical explosions, jitter, poor contact behavior
and general unexpected weirdness.

» APIs force the user to learn arcane concepts.

— Many simulation primitives not intuitive — angular velocity, inertia
tensors.

» Too slow for big models.
» Force-based modeling is tricky.

* Too many numerical parameters to tune.

— Many modeling / numerical approximations used, all with their own
tradeoff parameters. Little guidance available, need to experiment.

Copyright ©2004 Russell Smith

APl Issues

* In the old days it was harder:

— MDH parameters, weird reference frames, text file
configuration, poor documentation, implementation exposed.

* Now we think about the user experience.

— Absolute positions, utility functions (e.g. for rotation),
interactive setup (3D tools), documentation, API consistency,
only essential concepts in the API.

« Still lots of room for improvement.
— Constructive modeling: glue, split, clone, deform, etc.

— Dynamics debuggers — identify model physical / numerical
errors.

— Standardized data formats.

Copyright ©2004 Russell Smith

22

Speed

Higher speed - real time simulation of more
complex worlds.

Big-matrix methods need lots of Optimization.

— Coding tricks: minimize memory traffic, cache-friendly algorithms,
pipelining, SIMD.
» Parameterized code, search for efficient parameters (ATLAS).

CPU budgeting.

— lterative methods allow us to cap effort per frame.
— But accuracy is an issue.

Parallelization.
— Problem is not coarse grained — so clusters don't work well.
— Parallel direct factorization — only for large problems.
— lterative techniques the easiest to parallelize.
— ODE QuickStep inner loop: 3x speedup using 6 CPUs — [SGI Altix].

Copyright ©2004 Russell Smith

Speed

Higher speed - real time simulation of more
complex worlds.

Big-matrix methods need lots of Optimization.

— Coding tricks: minimize memory traffic, cache-friendly algorithms,
pipelining, SIMD.
» Parameterized code, search for efficient parameters (ATLAS).

CPU budgeting.

— lterative methods allow us to cap effort per frame.
— But accuracy is an issue.

Parallelization.

Problem is not coarse grained — so clusters don't work well.
Parallel direct factorization — only for large problems.

Iterative techniques the easiest to parallelize.

ODE QuickStep inner loop: 3x speedup using 6 CPUs — [SGI Altix].

Copyright ©2004 Russell Smith

23

Constraint Based Modeling (good!)

Velocity / acceleration [in]Jequality constraints (LCP):

f(v)=0,£,(v)=0 or f,(2)=0,f,(a)=0

Contacts and friction.

— Relative velocity & force normal to contact surface = 0.
— Tangential forces limited by Coulomb friction (various models).
— Constraint modeling is now commonplace for contacts.

Actuators and brakes.
— Joint velocity = v, but don’t apply too much force.

Simulator enforces constraints automatically
— No parameters to tune.
— Integration problems hidden away.

Can also model stiff springs, e.g. suspensions.

Copyright 2004 Russell Smith

Joints are Constraint

ODE'’s “robot” joints:

ODE'’s special purpose joints:

Axis 2

—

Copyright 2004 Russell Smith

24

Constraint Also Good For:

« Mechanisms

— Gears, linked platforms, steering geometry, suspensions,
roller coasters, weird joints (e.g. screw joints), etc.

* Modeling

— Contact geometry, various kinds of friction, various
actuators, spongy / flexible joints, etc.

« Disadvantages:
— More expensive than forces. %
. L . GAME
* Must factor a matrix of constraint information. PROGRAMMING
— More mathematically difficult to formulate. b T

+ But “intuitive” guidance available, see

Game Gems |V ch3.4.

Copyright 2004 Russell Smith

JME/ODE Integration (JME Physics 2.1)

Spatial L PhysicsRepresentation
@ localTranslation : String -
v 9= L

4 children

Physicshiode PhysicsBox PhysicsSphere
@ extent : String @ radius : String -
@ width : String —

StaticPhyiscshode DynamicPhysicshode
Sphere

@ mass : Float - -
@ pivat : String @ radius : String -

https://jmephysics.dev.java.net

(@) V7P1 mcD 4000 (D 09) 50

25

jME Physics (2.1)

¥ children

room1 :Node

localTranslation == Yector3f(10, 0, 10)

¥ children

table :StaticPhyiscsNode

localTranslation == Yector3f(4, 0,5)

¥ children ¥ childrer

» children

ball:DynamicPhysicsNode

.Sf
ector3f(0.5f, 0, 0.7F)

-4—1: generateRepresentation()

c* children

¥ children

tableMesh :TriMesh

representati hysicsBox
extent == Yector3f(10, 3, 10)

ballMesh:Sphere

radius ==

ballRepresentation :PhysicsSphere
radius :

—2: activate()

26

