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Introduction 

  What is game physics and why is it 
important? 
•  computing motion of objects in virtual scene 

–  including player avatars, NPC’s, inanimate objects 

•  computing mechanical interactions of objects 
–  interaction usually involves contact (collision) 

•  simulation must be real-time (versus high-
precision simulation for CAD/CAM, etc.) 

•  simulation may be very realistic, approximate, or 
intentionally distorted (for effect) 
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Introduction (cont’d) 

  What is game physics and why is it 
important? 
•  can improve immersion 
•  can support new gameplay elements 
•  becoming increasingly prominent (expected) part 

of high-end games 
•  like AI and graphics, facilitated by hardware 

developments (multi-core, GPU) 
•  maturation of physics engine market 
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Physics Engines 

  Similar buy vs. build analysis as game engines 
•  Buy: 

–  complete solution from day one 
–  proven, robust code base (hopefully) 
–  feature sets are pre-defined 
–  costs range from free to expensive 

•  Build: 
–  choose exactly features you want 
–  opportunity for more game-specification optimizations 
–  greater opportunity to innovate 
–  cost guaranteed to be expensive (unless features extremely 

minimal) 
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Physics Engines 

  Open source      
•  Box2D, Bullet, Chipmunk, JigLib, ODE, OPAL, OpenTissue, 

PAL, Tokamak, Farseer, Physics2d, Glaze  

  Closed source (limited free distribution) 
•  Newton Game Dynamics, Simple Physics Engine, True Axis, 

PhysX 

  Commercial 
•  Havok, nV Physics, Vortex 

  Relation to Game Engines 
•  integrated/native, e.g,. C4 
•  pluggable, e.g., 

–   C4+PhysX 
–   jME+ODE (via jME Physics) 

IMGD 4000 (D 09) 6 

Basic Game Physics Concepts 

  Why? 
•  To use an engine effectively, you need to 

understand something about what it’s doing 
•  You may need to implement small features or 

extensions yourself 
•  Cf. owning a car without understanding anything 

about how it works 

  Examples 
•  kinematics and dynamics 
•  projectile motion 
•  collision detection and response 
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Kinematics 

  Study of the motion of objects without taking 
into account mass or force 

  Basic quantities:  position, time 
  Basic equations: 
             d = vt 
             v = u + at 

          d = ut + at2/2 
             v2 = u2 + 2ad 
  where:  t - (elapsed) time 
      d - distance (change in position)  
       v  - (final) velocity (change in distance per unit time) 
       a  - acceleration (change in velocity per unit time) 
       u  - (initial) velocity 
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Kinematics (cont’d) 

Prediction Example:  If you throw a ball straight 
up into the air with an initial velocity of 10 m/
sec, how high will it go? 

  v2 = u2 + 2ad 

 u = 10 m/sec 
 a = -10 m/sec2 (approx due to gravity) 
 v = 0 m/sec (at top of flight) 

          0 = 102 + 2(-10)d 
          d = 5 m 

v = 0 

u = 10 

d 

a = -10 

(note answer independent of mass of ball) 
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Computing Kinematics in Real Time 

start = getTime() // start time 
p = 0             // initial position 
u = 10            // initial velocity 
a = -10 

function update () { // in render loop 
   now = getTime() 
   t = now - start 
   simulate(t); 
} 

function simulate (t) { 
   d = (u + (0.5 * a * t)) * t 
   move object to p + d 
} 

d = ut + at2/2 

Problem:  Number of calls and time values to simulate 
depend on (changing) frame rate 
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Frame Rate Independence 

  Complex numerical simulations used in physics 
engines are very sensitive to time steps (due to 
truncation error and other numerical effects) 

  But results need to be repeatable regardless of 
CPU/GPU performance 
•  for debugging 
•  for game play 

  Solution:  control simulation interval separately 
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Frame Rate Independence 

delta = 0.02  // physics simulation interval (sec) 
lag = 0       // physics lag 
updated = 0   // time of last update 

function update () { // in render loop 
   now = getTime() 
   t = (updated - start) - lag 
   lag = lag + (now - updated) 
   while ( lag > delta )  
     simulate(t) 
     t = t + delta 
     lag = lag - delta 
   updated = now 
} 

frame updates 

simulation ticks 
lag 

delta 

updated now 

IMGD 4000 (D 09) 12 

Doing It In 3D 

  Mathematically, consider all quantities 
involving position to be vectors: 

            d = vt 
            v = u + at 

         d = ut + at2/2 
   (Note these are all scalar products, so essentially 

calculations are performed independently in each 
dimension.) 

  Computationally, using appropriate 3-element 
vector datatype 
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The Firing Solution 

  How to hit a target  
•  with a grenade, spear, catapult, etc. 
•  a beam weapon or high-velocity bullet over short 

ranges can be viewed as traveling in straight line 
•  projectile travels in a parabolic arc 

d = ut + at2/2 

u = muzzle velocity vector 
d 

a = [0, 0, -9.8] m/sec2 

(but typically use higher value, e.g. -18) 

Given d, solve for u. 
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The Firing Solution 

  In most typical game situation, the magnitude 
of u is fixed and we only need to know its 
relative components (orientation) 

  After a lot of hairy math [see Millington 3.5.3], it 
turns out there are three relevant cases: 
•  target is out of range (no solutions) 
•  target is at exact maximum range (single solution) 
•  target is closer than maximum range (two possible 

solutions) 
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The Firing Solution 

  Usually choose short time trajectory 
•  gives target less time to escape 
•  unless shooting over wall, etc. 

u = muzzle velocity vector 
d 

long time trajectory 

short time trajectory 

u = (2d -at2) / 2xt 
where x = max muzzle speed  

function firingSolution (d, x, gravity) { 

   // real-valued coefficents of quadratic 
   a = gravity * gravity 
   b = -4 * (gravity * d + x*x) 
   c = 4 * d * d 

   // check for no real solutions 
   if ( 4*a*c > b*b ) return null 

   // find short and long times 
   disc = sqrt(b*b - 4*a*c) 
   t1 = sqrt((-b + disc) / 2*a) 
   t2 = sqrt((-b - disc) / 2*a) 
   if ( t1 < 0 ) 
      if ( t2 < 0 ) return null 
      else t = t2 
   else if ( t2 < 0 ) t = t1 
   else t = min(t1, t2) 

   // return firing vector 
   return (2*d - gravity*t*t) / (2*x*x) 
} 

Note scalar product of two vectors using *, e.g., 

 [a,b,c] * [d,e,f] = a*d + b*e + c*f 
16 IMGD 4000 (D 09) 
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Dynamics   

  Notice that the preceding kinematic 
descriptions say nothing about why an object 
accelerates (or why its acceleration might 
change) 

  To get a full “modern” physical simulation you 
need to add two more basic concepts: 
•  force  
•  mass 

  Discovered by Sir Isaac Newton  

  around 1700  
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Newton’s Laws 

1.  A body will remain at rest or continue to 
move in a straight line at a constant speed 
unless acted upon by a force. 

2.  The acceleration of a body is proportional to 
the resultant force acting on the body and is 
in the same direction as the resultant force. 

3.  For every action, there is an equal and 
opposite reaction. 
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Motion Without Newton’s Laws 

  Pac-Man or early Mario style 
•  follow path with instantaneous changes in speed 

and direction (velocity) 

•  not physically possible 
•  fine for some casual games (esp. with appropriate 

animations) 
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Newton’s Second Law 

F = ma  

at each moment in time:  

 F = force vector, Newton’s 

 m = mass (intrinsic property of matter), kg 

 a = acceleration vector, m/sec2 

This equation is the fundamental driver of all physics simulations: 
•  force causes acceleration 
•  acceleration causes change in velocity 
•  velocity causes change in position 
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How Are Forces Applied? 

  Without contact 
•  gravity 
•  wind (if not modeling air particles) 
•  magic 

  Usually involves contact 
•  collision (rebound) 
•  friction (rolling, sliding) 

  Dynamic (force) modeling also used for 
autonomous steering behaviors (later in term) 
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Collision Detection 

  Determining when objects collide is not as 
easy as it seems 
•  geometry can be complex 
•  objects can be moving quickly 
•  there can be many objects 

–  naive algorithms are O(n2)  

  Two basic approaches: 
•  overlap testing 

–  detects whether collision has already occurred 
•  intersection testing 

–  predicts whether a collision will occur in the future 
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Overlap Testing 

  Most common technique used in games 
  Exhibits more error than intersection testing 
  Basic idea: 

•  at every simulation step, test every pair of objects 
to see if overlap 

  Easy for simple volumes (e.g., spheres), 
harder for polygonal models 

  Results of test: 
•  collision normal vector (useful for reaction) 
•  time that collision took place 
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Overlap Testing: Finding Collision Time 

  Calculated by doing “binary search” in time, moving 
object back and forth by 1/2 steps (bisections) 

  In practice, five iterations usually enough 

B B

t1

t0.375

t0.25

B

t0

Iteration 1

Forward 1/2

Iteration 2

Backward 1/4

Iteration 3

Forward 1/8

Iteration 4

Forward 1/16

Iteration 5

Backward 1/32

Initial Overlap

Test

t0.5

t0.4375 t0.40625

BB B

A

A

A

A
A A
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Limitations of Overlap Testing 

  Fails with objects that move too fast (no overlap 
during simulation time slice) 

  Solution approach: 
•  constrain game design so that fastest object moves smaller 

distance in one tick than thinnest object 
•  may require reducing simulation step size (adds computation 

overhead) 

t0t-1 t1 t2

bullet

window
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Intersection Testing 

  Predict future collisions 
  Extrude geometry in direction of movement 

•  e.g., “swept” sphere turns into capsule shape 

  Then, see if extruded shape overlaps objects 
  When collision found (predicted) 

•  move simulation to time of collision (no searching) 
•  resolve collision 
•  simulate remaining time step(s) 
•  works for bullet/window example 

t0

t1
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Speeding Up Collision Detection   

  Bounding Volumes 
•  Oriented 

•  Hierarchical 

  Partitioning 

  Plane Sweep 
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Bounding Volumes 

  If bounding volumes don’t overlap, then no 
more testing is required 
•  if overlap, more refined testing required 
•  bounding volume alone may be good enough for 

some games 
  Commonly used volumes 

•  sphere - distance between centers less than sum of radii 

•  boxes 
–  axis aligned (loose fit, easier math) 
–  oriented (tighter fit, more expensive) 

Axis-Aligned Bounding Box Oriented Bounding Box
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Complex Bounding Volumes 

  Multiple volumes per object 
•  e.g., separate volumes for head, torso and limbs 

of avatar object 
  Hierarchical volumes 

•  e.g., boxes inside of boxes 

  Techniques can be combined 
•  e.g., hierarchical oriented bounding boxes 

(OBBTree) in jME 

Oriented Bounding Box Tree 
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[Gottschalk, Lin, Minocha, SIGGRAPH ’96] 
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Partitioning for Collision Testing 

  To address the n2 problem... 
  Partition space so only test objects in same cell 

  In best case (uniform distribution) reduces n2 to linear 
  In worst case (all objects in same cell) no 

improvement 
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Plane Sweep for Collision Testing 

  Observation:  a lot of objects stay in one place 
  Sort bounds along axes (expensive to do once!) 
  Only adjacent sorted objects which overlap on all 

axes need to be checked further 
  Since many objects don’t move, can keep sort up to 

date very cheaply with bubblesort (nearly linear) 

C

B

R

A

x

y
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More physics we are not covering 

  Collision response 
•  Conservation of momentum 
•  Elastic collisions 
•  Non-elastic collisions - coefficient of restitution 

  Rigid body simulation (vs. point masses) 
  Soft body simulation 

•  spring-mass-damper dynamics 

[see excellent recent book by Millington, “Game Physics   
 Engine Development”, MK, 2007] 

Open Dynamics Engine 

  Brief case study of a complete physics engine 

  Overview from author (Russell Smith) 

  jME Physics interface 
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jME/ODE Integration (jME Physics 2.1) 
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https://jmephysics.dev.java.net 



26 

jME Physics (2.1) 
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