
1

Professor Charles Rich
Computer Science Department
rich@wpi.edu

IMGD 4000 (D 09) 1

Basic Game Physics

Technical Game Development II

[some material provided by Mark Claypool]

IMGD 4000 (D 09) 2

Introduction

  What is game physics and why is it
important?
•  computing motion of objects in virtual scene

–  including player avatars, NPC’s, inanimate objects

•  computing mechanical interactions of objects
–  interaction usually involves contact (collision)

•  simulation must be real-time (versus high-
precision simulation for CAD/CAM, etc.)

•  simulation may be very realistic, approximate, or
intentionally distorted (for effect)

2

IMGD 4000 (D 09) 3

Introduction (cont’d)

  What is game physics and why is it
important?
•  can improve immersion
•  can support new gameplay elements
•  becoming increasingly prominent (expected) part

of high-end games
•  like AI and graphics, facilitated by hardware

developments (multi-core, GPU)
•  maturation of physics engine market

IMGD 4000 (D 09) 4

Physics Engines

  Similar buy vs. build analysis as game engines
•  Buy:

–  complete solution from day one
–  proven, robust code base (hopefully)
–  feature sets are pre-defined
–  costs range from free to expensive

•  Build:
–  choose exactly features you want
–  opportunity for more game-specification optimizations
–  greater opportunity to innovate
–  cost guaranteed to be expensive (unless features extremely

minimal)

3

IMGD 4000 (D 09) 5

Physics Engines

  Open source
•  Box2D, Bullet, Chipmunk, JigLib, ODE, OPAL, OpenTissue,

PAL, Tokamak, Farseer, Physics2d, Glaze

  Closed source (limited free distribution)
•  Newton Game Dynamics, Simple Physics Engine, True Axis,

PhysX

  Commercial
•  Havok, nV Physics, Vortex

  Relation to Game Engines
•  integrated/native, e.g,. C4
•  pluggable, e.g.,

–  C4+PhysX
–  jME+ODE (via jME Physics)

IMGD 4000 (D 09) 6

Basic Game Physics Concepts

  Why?
•  To use an engine effectively, you need to

understand something about what it’s doing
•  You may need to implement small features or

extensions yourself
•  Cf. owning a car without understanding anything

about how it works

  Examples
•  kinematics and dynamics
•  projectile motion
•  collision detection and response

4

IMGD 4000 (D 09) 7

Kinematics

  Study of the motion of objects without taking
into account mass or force

  Basic quantities: position, time
  Basic equations:
 d = vt
 v = u + at

 d = ut + at2/2
 v2 = u2 + 2ad
 where: t - (elapsed) time
 d - distance (change in position)
 v - (final) velocity (change in distance per unit time)
 a - acceleration (change in velocity per unit time)
 u - (initial) velocity

IMGD 4000 (D 09) 8

Kinematics (cont’d)

Prediction Example: If you throw a ball straight
up into the air with an initial velocity of 10 m/
sec, how high will it go?

 v2 = u2 + 2ad

 u = 10 m/sec
 a = -10 m/sec2 (approx due to gravity)
 v = 0 m/sec (at top of flight)

 0 = 102 + 2(-10)d
 d = 5 m

v = 0

u = 10

d

a = -10

(note answer independent of mass of ball)

5

IMGD 4000 (D 09) 9

Computing Kinematics in Real Time

start = getTime() // start time
p = 0 // initial position
u = 10 // initial velocity
a = -10

function update () { // in render loop
 now = getTime()
 t = now - start
 simulate(t);
}

function simulate (t) {
 d = (u + (0.5 * a * t)) * t
 move object to p + d
}

d = ut + at2/2

Problem: Number of calls and time values to simulate
depend on (changing) frame rate

IMGD 4000 (D 09) 10

Frame Rate Independence

  Complex numerical simulations used in physics
engines are very sensitive to time steps (due to
truncation error and other numerical effects)

  But results need to be repeatable regardless of
CPU/GPU performance
•  for debugging
•  for game play

  Solution: control simulation interval separately

6

IMGD 4000 (D 09) 11

Frame Rate Independence

delta = 0.02 // physics simulation interval (sec)
lag = 0 // physics lag
updated = 0 // time of last update

function update () { // in render loop
 now = getTime()
 t = (updated - start) - lag
 lag = lag + (now - updated)
 while (lag > delta)
 simulate(t)
 t = t + delta
 lag = lag - delta
 updated = now
}

frame updates

simulation ticks
lag

delta

updated now

IMGD 4000 (D 09) 12

Doing It In 3D

  Mathematically, consider all quantities
involving position to be vectors:

 d = vt
 v = u + at

 d = ut + at2/2
 (Note these are all scalar products, so essentially

calculations are performed independently in each
dimension.)

  Computationally, using appropriate 3-element
vector datatype

7

IMGD 4000 (D 09) 13

The Firing Solution

  How to hit a target
•  with a grenade, spear, catapult, etc.
•  a beam weapon or high-velocity bullet over short

ranges can be viewed as traveling in straight line
•  projectile travels in a parabolic arc

d = ut + at2/2

u = muzzle velocity vector
d

a = [0, 0, -9.8] m/sec2

(but typically use higher value, e.g. -18)

Given d, solve for u.

IMGD 4000 (D 09) 14

The Firing Solution

  In most typical game situation, the magnitude
of u is fixed and we only need to know its
relative components (orientation)

  After a lot of hairy math [see Millington 3.5.3], it
turns out there are three relevant cases:
•  target is out of range (no solutions)
•  target is at exact maximum range (single solution)
•  target is closer than maximum range (two possible

solutions)

8

IMGD 4000 (D 09) 15

The Firing Solution

  Usually choose short time trajectory
•  gives target less time to escape
•  unless shooting over wall, etc.

u = muzzle velocity vector
d

long time trajectory

short time trajectory

u = (2d -at2) / 2xt
where x = max muzzle speed

function firingSolution (d, x, gravity) {

 // real-valued coefficents of quadratic
 a = gravity * gravity
 b = -4 * (gravity * d + x*x)
 c = 4 * d * d

 // check for no real solutions
 if (4*a*c > b*b) return null

 // find short and long times
 disc = sqrt(b*b - 4*a*c)
 t1 = sqrt((-b + disc) / 2*a)
 t2 = sqrt((-b - disc) / 2*a)
 if (t1 < 0)
 if (t2 < 0) return null
 else t = t2
 else if (t2 < 0) t = t1
 else t = min(t1, t2)

 // return firing vector
 return (2*d - gravity*t*t) / (2*x*x)
}

Note scalar product of two vectors using *, e.g.,

 [a,b,c] * [d,e,f] = a*d + b*e + c*f
16 IMGD 4000 (D 09)

9

IMGD 4000 (D 09) 17

Dynamics

  Notice that the preceding kinematic
descriptions say nothing about why an object
accelerates (or why its acceleration might
change)

  To get a full “modern” physical simulation you
need to add two more basic concepts:
•  force
•  mass

  Discovered by Sir Isaac Newton

  around 1700 

IMGD 4000 (D 09) 18

Newton’s Laws

1.  A body will remain at rest or continue to
move in a straight line at a constant speed
unless acted upon by a force.

2.  The acceleration of a body is proportional to
the resultant force acting on the body and is
in the same direction as the resultant force.

3.  For every action, there is an equal and
opposite reaction.

10

IMGD 4000 (D 09) 19

Motion Without Newton’s Laws

  Pac-Man or early Mario style
•  follow path with instantaneous changes in speed

and direction (velocity)

•  not physically possible
•  fine for some casual games (esp. with appropriate

animations)

IMGD 4000 (D 09) 20

Newton’s Second Law

F = ma

at each moment in time:

 F = force vector, Newton’s

 m = mass (intrinsic property of matter), kg

 a = acceleration vector, m/sec2

This equation is the fundamental driver of all physics simulations:
•  force causes acceleration
•  acceleration causes change in velocity
•  velocity causes change in position

11

IMGD 4000 (D 09) 21

How Are Forces Applied?

  Without contact
•  gravity
•  wind (if not modeling air particles)
•  magic

  Usually involves contact
•  collision (rebound)
•  friction (rolling, sliding)

  Dynamic (force) modeling also used for
autonomous steering behaviors (later in term)

IMGD 4000 (D 09) 22

Collision Detection

  Determining when objects collide is not as
easy as it seems
•  geometry can be complex
•  objects can be moving quickly
•  there can be many objects

–  naive algorithms are O(n2)

  Two basic approaches:
•  overlap testing

–  detects whether collision has already occurred
•  intersection testing

–  predicts whether a collision will occur in the future

12

IMGD 4000 (D 09) 23

Overlap Testing

  Most common technique used in games
  Exhibits more error than intersection testing
  Basic idea:

•  at every simulation step, test every pair of objects
to see if overlap

  Easy for simple volumes (e.g., spheres),
harder for polygonal models

  Results of test:
•  collision normal vector (useful for reaction)
•  time that collision took place

IMGD 4000 (D 09) 24

Overlap Testing: Finding Collision Time

  Calculated by doing “binary search” in time, moving
object back and forth by 1/2 steps (bisections)

  In practice, five iterations usually enough

B B

t1

t0.375

t0.25

B

t0

Iteration 1

Forward 1/2

Iteration 2

Backward 1/4

Iteration 3

Forward 1/8

Iteration 4

Forward 1/16

Iteration 5

Backward 1/32

Initial Overlap

Test

t0.5

t0.4375 t0.40625

BB B

A

A

A

A
A A

13

IMGD 4000 (D 09) 25

Limitations of Overlap Testing

  Fails with objects that move too fast (no overlap
during simulation time slice)

  Solution approach:
•  constrain game design so that fastest object moves smaller

distance in one tick than thinnest object
•  may require reducing simulation step size (adds computation

overhead)

t0t-1 t1 t2

bullet

window

IMGD 4000 (D 09) 26

Intersection Testing

  Predict future collisions
  Extrude geometry in direction of movement

•  e.g., “swept” sphere turns into capsule shape

  Then, see if extruded shape overlaps objects
  When collision found (predicted)

•  move simulation to time of collision (no searching)
•  resolve collision
•  simulate remaining time step(s)
•  works for bullet/window example

t0

t1

14

IMGD 4000 (D 09) 27

Speeding Up Collision Detection

  Bounding Volumes
•  Oriented

•  Hierarchical

  Partitioning

  Plane Sweep

IMGD 4000 (D 09) 28

Bounding Volumes

  If bounding volumes don’t overlap, then no
more testing is required
•  if overlap, more refined testing required
•  bounding volume alone may be good enough for

some games
  Commonly used volumes

•  sphere - distance between centers less than sum of radii

•  boxes
–  axis aligned (loose fit, easier math)
–  oriented (tighter fit, more expensive)

Axis-Aligned Bounding Box Oriented Bounding Box

15

IMGD 4000 (D 09) 29

Complex Bounding Volumes

  Multiple volumes per object
•  e.g., separate volumes for head, torso and limbs

of avatar object
  Hierarchical volumes

•  e.g., boxes inside of boxes

  Techniques can be combined
•  e.g., hierarchical oriented bounding boxes

(OBBTree) in jME

Oriented Bounding Box Tree

IMGD 4000 (D 09) 30

[Gottschalk, Lin, Minocha, SIGGRAPH ’96]

16

IMGD 4000 (D 09) 31

Partitioning for Collision Testing

  To address the n2 problem...
  Partition space so only test objects in same cell

  In best case (uniform distribution) reduces n2 to linear
  In worst case (all objects in same cell) no

improvement

IMGD 4000 (D 09) 32

Plane Sweep for Collision Testing

  Observation: a lot of objects stay in one place
  Sort bounds along axes (expensive to do once!)
  Only adjacent sorted objects which overlap on all

axes need to be checked further
  Since many objects don’t move, can keep sort up to

date very cheaply with bubblesort (nearly linear)

C

B

R

A

x

y

A0 A1 R0 B0 R1C0 C1B1

B0

B1
A1

A0

R1

R0

C1

C0

17

IMGD 4000 (D 09) 33

More physics we are not covering

  Collision response
•  Conservation of momentum
•  Elastic collisions
•  Non-elastic collisions - coefficient of restitution

  Rigid body simulation (vs. point masses)
  Soft body simulation

•  spring-mass-damper dynamics

[see excellent recent book by Millington, “Game Physics
 Engine Development”, MK, 2007]

Open Dynamics Engine

  Brief case study of a complete physics engine

  Overview from author (Russell Smith)

  jME Physics interface

IMGD 4000 (D 09) 34

18

IMGD 4000 (D 09) 35

IMGD 4000 (D 09) 36

19

IMGD 4000 (D 09) 37

IMGD 4000 (D 09) 38

20

IMGD 4000 (D 09) 39

IMGD 4000 (D 09) 40

21

IMGD 4000 (D 09) 41

IMGD 4000 (D 09) 42

22

IMGD 4000 (D 09) 43

IMGD 4000 (D 09) 44

23

IMGD 4000 (D 09) 45

IMGD 4000 (D 09) 46

24

IMGD 4000 (D 09) 47

IMGD 4000 (D 09) 48

25

IMGD 4000 (D 09) 49

jME/ODE Integration (jME Physics 2.1)

IMGD 4000 (D 09) 50

https://jmephysics.dev.java.net

26

jME Physics (2.1)

IMGD 4000 (D 09) 51

