
AIPaint: A Sketch-Based Behavior Tree Authoring Tool

David Becroft*, Jesse Bassett, Adrián Mejía, Charles Rich and Candace Sidner
Worcester Polytechnic Institute
Worcester, Massachusetts, USA

http://www.cs.wpi.edu/~rich/aipaint

Abstract
Current behavior authoring tools force game designers to
split their attention between the game context and the tool
context. We have addressed this problem by developing a
behavior authoring tool that merges these two contexts. This
paper outlines the design and implementation of a game-
independent behavior tree authoring tool, called AIPaint,
that allows a designer to create and edit behavior trees via a
natural sketching interface overlaid on the game world. We
demonstrate the use of AIPaint to author computer-
controlled characters in two simple games and report on an
observational evaluation.

 Introduction
In a typical game development team, the designer is
responsible for deciding how the computer-controlled
characters (AI agents) in the game should behave, while
the programmer has the technical expertise necessary to
implement these behaviors. The development process
involves frequent iteration, wherein the designer specifies a
behavior, the programmer implements it, the designer
evaluates it and changes it, the programmer changes the
implementation, and so on. Behavior authoring tools in
general attempt to reduce this expensive and inefficient
iteration by allowing designers to create and change AI
agents’ behaviors on their own.
 For example, BrainFrame (Fu and Houlette 2002) and
many similar tools provide a graphical interface to a game-
independent agent architecture, such as a finite state
machine. Once BrainFrame is integrated with a particular
game, a designer can create behaviors by manipulating
state diagrams without having to write any code.
 Chris Hecker was the first to introduce the idea of a
“Photoshop of AI”—an ideal behavior authoring tool for
designers that could generate computationally efficient
behavior representations while still offering a high degree
of aesthetic expressiveness (Hecker 2008). This goal has
motivated the development of behavior authoring tools
such as BehaviorShop (Heckel, Youngblood and Hale
2009). BehaviorShop provides a graphical interface for
creating agents based on subsumption architectures, which
are claimed to be easier for non-programmers to
understand than state machines.

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 As user-friendly as BehaviorShop and similar tools may
be, they still require designers to split their attention
between two contexts: (1) the tool, in which designers edit
behaviors, and (2) the game, in which designers observe
and test behaviors. We believe this split limits the aesthetic
expressiveness afforded by these authoring tools and that
merging these two contexts will improve the designer’s
experience. This paper outlines the design and
implementation of a game-independent behavior tree
authoring tool, called AIPaint, that allows a designer to
create and edit behavior trees via a natural sketching
interface overlaid on the game world. The name AIPaint is
meant to suggest that we see this work as a small step
towards Hecker’s vision.
 The existing system most similar to AIPaint is the
sketch-based authoring facility in Madden NFL 2011 for
the iPad. This game allows the player to define football
plays by drawing paths on the field using the touch screen;
the simulated football players will follow these paths when
the play begins. AIPaint fundamentally differs from this
system in that AIPaint is a generic tool designed to be
applied to many games, not just football simulations. Also,
as we will see below, the expressive power of AIPaint
sketches is much greater than that of Madden’s play
sketches, because AIPaint allows the designer to construct
behaviors that involve making decisions and performing
arbitrary actions, rather than simply following paths.
 More broadly, AIPaint falls within the tradition of visual
programming-by-demonstration approaches, such as
(Smith, Cypher and Tesler 2010). Compared with these
approaches, however, our goals are more modest. We are
not trying to achieve a completely general visual
programming language—we would be happy if the
designer simply bothers the programmer less often.

Design Goals
A guiding metaphor in our design of AIPaint is the
relationship between a director and the actors rehearsing a
stage play. We view the game designer as the director who
needs to evaluate and modify the behavior of the actors
(the AI agents). The director can watch the actors perform
their behaviors and tell them to stop when he sees
something he doesn’t like. Then he can issue some
directions, and if an actor is confused by the “input,” he
may ask questions to clarify the director’s intent. When the
director is finished “editing,” he can resume the action.

* Becroft is currently an employee of Microsoft Corporation.

In Proc. Seventh Artificial Intelligence and Interactive Digital
Entertainment Conference, Palo Alto, CA, October 2011.

Finally, if the director wants to rehearse a specific scene,
he can prearrange the actors on the stage to set up the
desired situation. Note that a director modifies the behavior
of his actors by communicating with them via an
intelligent interface, not by reaching into their heads and
manually adjusting their brains. Also note that the game
designer and director are both expert authors—AIPaint is
intended for game development teams fluent in their craft.
This metaphor of the game designer as a director leads us
to four key design goals for AIPaint.
 Our first goal is for the game designer to communicate
behavior specifications to AIPaint similarly to how he
might communicate them to an AI programmer in the
absence of a behavior authoring tool. One can easily
imagine the designer in such a situation heading to a
whiteboard or opening an image editor to sketch diagrams,
perhaps overlaid on game screenshots. We see a similar
approach when a football coach or commentator describes
a play by marking up an image of the field with X’s and
arrows. AIPaint therefore provides a sketch-based interface
in which the designer draws simple symbols (lines, circles,
arrows, etc.) directly on the game world to describe
behaviors. This kind of interface works best with a touch
screen or tablet, but a mouse also suffices.

Our second design goal is for AIPaint to naturally
support the specification of relationships between the
spatial and symbolic aspects of an agent’s behavior. Our
approach to this goal has been to make both the spatial
relationships among game objects and the symbolic
information that determines how an agent interprets the
game world visible at the same time. AIPaint is therefore
well suited for behavior authoring in which objects and
conditions relevant to agents’ decisions are manifested
visibly in the game world. For instance, Pac-Man lends
itself to AIPaint authoring, whereas a game in which
conversation is the key element would not.
 Our third design goal is for AIPaint to operate on
behaviors in a simple, widely used representation. We
therefore chose behavior trees (Isla 2005) for our current
implementation. A behavior tree has action (behavior)
nodes at its leaves and decision (choice) nodes internally.
When a behavior tree is evaluated in a given world state,
the current action is chosen by traversing the tree from the
root node, choosing a child at each decision node
according to the decision’s outcome in the world state. Our
architecture leaves room for substituting other behavior
representations, but this would not be a minor change.

Our final design goal is for AIPaint to be a game-
independent tool. A game implementation that uses
AIPaint for behavior authoring must provide code that
conforms to several well-specified interfaces (see details
below), so that AIPaint can call upon the game to perform
tasks, such as screen-to-world coordinate transformation,
and obtain world state information. The game-independent

portion of AIPaint contains the sketching interface and the
code that builds a behavior representation from the sketch
input. Certain aspects of the game-independent portion of
AIPaint are also available to the game programmer for
extension, and it is likely that each game that uses AIPaint
will extend the sketching language with some game-
specific symbols.

Proof of Concept
In this section, we demonstrate the use of our implemented
AIPaint tool for behavior authoring in two simple games.
The first game is Pac-Man1 (see Figure 1), in which we use
AIPaint to recreate the behavior of the classic Pac-Man
ghosts. The ghost behaviors in Pac-Man are a good
example of using the connection between spatial and
symbolic information to define behaviors. The second
example is a computer soccer game (see Figure 2), which
despite its simplicity is different enough from Pac-Man to
illustrate the game-independence of AIPaint.
Pac-Man
Each ghost in Pac-Man—Inky, Blinky, Pinky, and Clyde—
has a unique behavior. We will demonstrate the use of
AIPaint by showing how a game designer can build
Blinky's and Clyde’s behaviors (see video at website). We
also built Inky and Pinky’s behaviors using AIPaint, but
they require the use of more complex features, such as
intermediate variables, which are detailed in our technical
report (Bassett, Becroft and Mejía 2011).
Blinky
The designer begins by running the current development
build of the game, which includes the AIPaint tool. The
game handles mouse and keyboard input as in normal
game play until the designer presses a special key that
pauses the game and activates the AIPaint sketching

1 Pac-Man is a registered trademark of Namco Bandai Games, Inc.

Figure 1: Pac-Man game r unning with the AIPaint tool. (a)
A shape is dr awn in natur al sketch input. (b) The sketch
input is r ecognized as an ar r ow shape and cleaned up. (c) A
distance-conditional arr ow with slider bar . (d) A temporar y
position var iable r elative to Pac-Man’s position and
or ientation. (e) A “go twice as far ” symbol connected to a
tempor ar y position var iable.

interface. The designer then clicks on the red ghost
(Blinky) to begin modifying its default random-walk
behavior. In the original Pac-Man game, Blinky has a very
simple behavior: he always moves towards Pac-Man.

Once an agent has been selected for behavior
modification, the designer sketches on the game world to
provide directions. As the designer sketches, shapes are
automatically recognized and cleaned up. Each of these
symbols/shapes has a specific meaning. For example,
Figure 1(a) shows a Pac-Man screen on which an arrow
has been drawn from Blinky to Pac-Man. Figure 1(b)
shows this arrow after AIPaint’s sketch recognizer has
cleaned up the shape. The meaning of this arrow in the
context of this game is that Blinky should move toward
Pac-Man. This arrow is all that is needed to specify
Blinky's desired behavior.
Clyde
The designer specifies Clyde's behavior by starting with a
copy of Blinky. Clyde, the orange ghost, has a behavior
that involves choosing between two actions. When Clyde
is more than eight tiles away from Pac-Man, he targets
Pac-Man’s position. When he comes within eight tiles of
Pac-Man, he instead targets a position near one corner of
the maze. We thus need to compare the distance between
Clyde and Pac-Man to a threshold value—eight tiles—and
use the result to select one of two actions. This “distance-
conditional arrow” shape takes the form of an arrow from
Clyde to Pac-Man with a tick mark on the shaft of the
arrow that the designer can drag back and forth to specify
the threshold value (see Figure 1(c)). To specify Clyde’s
complete behavior, the designer draws this conditional
arrow, followed by a simple arrow from Clyde to Pac-Man
(the less-than-or-equal case) and a simple arrow from
Clyde to the corner of the maze (the greater-than case).
Soccer
We also integrated AIPaint with a simple computer soccer
game (see Figure 2) to demonstrate the game-
independence of AIPaint. We then implemented a blocking
behavior, in which an agent moves to the member of the
opposite team who last touched the ball. The designer
needs some help from the game programmer to set up this

behavior. Specifically, AIPaint needs to know that when
the designer draws an arrow to the soccer player who last
touched the ball, he probably intends to make a statement
about whoever last touched the ball, rather than that
specific player. Once the programmer has entered this
generalization rule, the designer can specify the desired
blocking behavior by drawing an arrow to the member of
the opposite team who last touched the ball, and AIPaint
will make the appropriate generalization (see details
below).

Architecture
AIPaint is a game-independent tool implemented in Java.
Although the sketch interface described above is intended
for unaided use by game designers, AIPaint does rely upon
the game programmer to initially write some code to
connect a specific game to AIPaint.
Interface to the Game World
AIPaint achieves game independence by communicating
with the game world via Java interface classes. The game
programmer needs to implement these classes and also
write code to initialize certain AIPaint data structures.

Primarily, the game is responsible for providing AIPaint
with world state information in the form of feature-value
pairs, which is a very abstract and general data
representation. The game-specific code will typically
compute these feature-value pairs by examining properties
of game objects, such as their type, position, orientation,
etc. Behavior tree decision nodes make decisions during
game play based on computations involving these features.
For instance, a behavior tree node might look up the values
of the world features that correspond to the positions of
two game objects and compare the distance between them
to a given threshold.
The Data Pipeline
AIPaint’s data pipeline, shown in Figure 3, transforms the
designer's sketch input into a form that can be used to
create or modify a behavior tree. First the sketch input is
recognized and cleaned up into shapes. These are then
mapped to statements in a language we call Sketcho.
Statements are then translated into directions in a language
we call Directo. Finally, directions are used to effect
modifications to a behavior tree. Clarification questions to
the designer and game context information support the
process by resolving ambiguities and suggesting
generalizations.
$N: From Strokes to Shapes
The first step in the AIPaint data pipeline is to recognize
the shapes sketched by the designer. As the designer drags
his finger or mouse cursor across the screen, the input
points are recorded and grouped into strokes. These strokes
are passed to our Java implementation of the $N Figure 2: Sketch input for specifying behavior in

s imulated soccer game.

multistroke recognition algorithm (Anthony and Wobbrock
2010), which returns a list of possible shapes paired with
confidence values. To perform the shape recognition, the
$N algorithm depends on a data set that defines the shapes
to be recognized. A game programmer can easily extend
AIPaint’s sketching language by providing new shape
definitions, enabling the designer to draw symbols for new
actions and conditions.
 Our implementation of the $N algorithm also returns the
locations of control points in recognized shapes, which are
specified as part of each shape’s definition. Control points
simply denote the points on a shape that might be
meaningful, such as the head and tail of an arrow.
Knowing the locations of the control points of a recognized
shape makes it possible to perform shape clean-up.
 Once a shape is unambiguously recognized, it is passed
to the next stage of processing.
Sketcho: From Shapes to Statements
In the step labeled Sketcho in Figure 3, shapes are
translated into statements that represent their meaning. For
example, the arrow in Figure 1(b) is translated to a move-to
statement and the shape in Figure 1(c) is translated to a
distance-conditional statement.
 Notice that Sketcho has two additional inputs, namely
clarifications from the designer and game context
information. These are needed to resolve possible

ambiguities in interpreting the designer's intent, as
explained below.
Clarification Questions
Although it does not occur in the authoring of the four Pac-
Man ghosts, it is possible in principle for there to be
ambiguity in the basic translation from shapes to
statements. For example, if a distance conditional is to be
added to a behavior that already contains a conditional, it
may be unclear which test is done first. Sometimes, this
ambiguity can be resolved from the game context,
specifically the current decision states of all the nodes in
the behavior tree (details beyond the scope of this paper).
However, if this fails to resolve the ambiguity, our
architecture also provides a mechanism for asking
multiple-choice questions of the designer and providing the
answers as input to Sketcho.
Generalization
Sometimes a designer wants to make a statement about a
class of game objects, instead of a particular instance.
Perhaps this is because the agent needs to make a decision
about an object that is dynamically selected. An example
of this phenomenon appeared in the preceding section, in
which the soccer game designer wanted an agent to move
to the member of the opposite team who last touched the
ball. The particular opposite team member specified by this
statement changes often during game play.
 To support this kind of specification, the game
programmer must, in effect, provide AIPaint with a set of
generalization rules that make sense for this particular
game. Concretely, the programmer defines a specially
marked game feature that is to be used for generalization,
and a procedure for keeping it up to date. For example, in
Pac-Man, the closest-pellet is such a feature. In the soccer
game, the programmer must define last-player-who-had-
the-ball. The game designer and game programmer should
work together to decide which generalizations will be
natural for their game.
 Thus whenever the designer draws a shape involving a
game object, AIPaint automatically checks whether this
object is currently the value of one of the special
generalization features. If so, the argument to the resulting
statement is not the particular game object, but a
placeholder that produces the appropriate game object
when evaluated at runtime.
Directo: From Shapes to Statements
The Directo step in Figure 3 collects the input statements
into a syntax tree and then traverses the tree, replacing
each statement with a list of directions for how to
appropriately modify the behavior tree. Only this step and
the next one (behavior transformer) would need to be
changed if the AIPaint target behavior representation were
changed from behavior trees to something else.

Figure 3: AIPaint data pipel ine architecture.

 In the current version of AIPaint, directions include
adding, removing and splicing behavior tree nodes. For
example, the move-to statement in the creation of Blinky's
behavior above gives rise to a direction that adds an
appropriate action node at the root of the behavior tree.
Behavior Transformer
Directions are then passed to the Behavior Transformer
module, which applies them to the behavior tree of the
currently selected agent in its current paused state. The
designer can then un-pause the game and the agent will
begin behaving according to the new behavior tree.

Figure 4 illustrates the transformation of Blinky’s
behavior tree into Clyde’s. Blinky’s tree contains only one
action node; the behavior transformer splices it with a
decision node that tests Clyde’s distance to Pac-Man
against a threshold of eight units.

 Behavior Debugging

Behavior Debugging
In addition to creating and modifying agent behaviors by
sketching directly on the paused game world, designers can
also use two important AIPaint features for debugging:
“Show Me What You’re Thinking” and poseability.
Show Me What You’re Thinking
Continuing the Pac-Man authoring example, suppose the
designer wants to confirm that Clyde does indeed target
Pac-Man when he is more than eight tiles away. The best
way to do this is to press a special key that asks Clyde to
“show me what you're thinking” while the game is running.
In this mode, Clyde automatically draws his current
primitive action on the screen as a shape, e.g., an arrow
(see Figure 5). Note that these arrows are not drawn by the
designer, but generated and rendered by AIPaint as a
dynamic view on Clyde’s behavior tree. As the designer
plays the game, he can continuously observe how Clyde’s
current action changes with the situation: When Pac-Man
moves, does the action arrow target Pac-Man’s new
position? When Clyde comes within eight tiles of Pac-
Man, does the action arrow now point to the corner of the
maze?

Implementing this feature involves essentially pulling
data through the Figure 3 pipeline in reverse. AIPaint
displays the current action by first producing a

corresponding statement. This statement is then back-
translated to the corresponding shape, which is then
displayed on the game screen.
Poseability
Often a designer needs to test an agent’s behavior in a very
particular scenario that occurs infrequently in normal game
play. Instead of forcing the designer to get to the desired
game state by playing, AIPaint allows the designer to
“pose” a paused game by clicking and dragging visible
game objects to desired locations. This feature is
implemented via a set of required methods on the API for
every visible game object that allow its position (and
possibly other features) to be manipulated by AIPaint. For
example, to confirm Clyde's correct behavior, instead of
waiting until he happened to be close to Pac-Man and then
farther than eight units, the designer could simply pose him
and/or Pac-Man at various distances and see what happens.

Evaluation
We evaluated AIPaint using a small observational study,
whose goal was primarily to give us some insights into the
strengths and weaknesses of the current prototype. Four
undergraduate students were given brief instructions on
how to use AIPaint on a touch screen and then tasked with
building the behaviors of the four Pac-Man ghosts. Each
student was asked to rate themselves on a scale from 1
(unfamiliar) to 5 (familiar) on the topics of programming,
videogames and videogame design. All students rated
themselves 3 or less on programming, 4 or 5 on
videogames and 3 or more on videogame design.

Figure 5: When “Show Me What You’re Thinking” is
active, AIPaint dr aws the agent’s cur rent action using the
appr opriate shape. Her e, Clyde is shown (a) targeting the
cor ner of the maze when close to Pac-Man and (b) tar geting
Pac-Man when far away.

Figure 4: Example transformation of Bl inky's
behavior tree into Clyde's .

 All the students completed all four ghosts. Other than
difficulties getting the stroke recognition to work reliably,
which we addressed by adding a special sketch training
phase, the main complaint concerned confusion about
whether to press the “execute” button after each shape was
drawn or after all the shapes for a given agent were
completed. Students also complained of difficulty
expressing Clyde’s behavior, which involves a distance-
conditional statement paired with two move-to statements;
students had little success deciding when to draw each
statement and how the conditional statement would affect
the behavior. On a 7-point Likert scale, students’ responses
to the statement “I found the AIPaint user interface easy to
use” were one neutral (4), two agree somewhat (5), and
one agree (6). Positive written comments included: “If only
AIPaint could read the arrows I drew then I think it would
work well” and “pretty nifty.”

Evaluating software development tools is very difficult
in general. For example, what should AIPaint be compared
to? You cannot compare programmers using AIPaint
versus programmers using Java, for example, because
AIPaint is intended for non-programmers who may not
write Java. You could compare AIPaint with another
graphical tool, such as BrainFrame or BehaviorShop, but
such a comparison would conflate the issue of state
machines versus subsumption versus behavior trees with
the key contribution of AIPaint, namely merging the
authoring and game contexts. An evaluation of AIPaint
would also benefit from the participation of expert game
designers instead of students. A more robust evaluation
remains as future work.

Conclusions and Future Work
We have demonstrated the feasibility and potential of a
new type of general-purpose behavior authoring tool in
which spatial/symbolic directions are sketched directly on
the game world.
 The biggest unanswered question is the scalability of
this approach, i.e., for games with different kinds of
decisions and behaviors or much bigger behavior trees with
the same type of nodes we already use. Regarding the first
kind of scalability, it is worth reiterating that we do not
expect to totally eliminate the AI game programmer. Our
architecture provides an API for defining new sketching
primitives and their semantics, which we expect to be used
for new games. For very large behavior trees, we expect
that some additional visualization, such as a “scrapbook of
situations,” will be needed to manage complexity
 In addition to fixing the problems highlighted in the user
study, the following extensions would improve the system.
 First, agents sometimes need to make decisions based on
features of the game state that may not have graphical
representations, such as the agent’s current health. A
solution to this problem is to define special graphical

affordances for such features that are only visible when the
game is paused for AIPaint interaction. For example,
health could be indicated by a number next to the agent,
and that number could then be included in a sketch.
 Second, current clarification questions force the designer
to think about the structure of the behavior tree
representation to a greater degree than is desirable. A better
approach might be to allow AIPaint to temporarily pose the
game world in a way that highlights the implications of the
designer’s choice. For example, AIPaint might show the
designer two different game states that would result from
different agent decisions depending on the order in which
conditional behavior nodes were merged.
 Third, we could allow the designer to edit the shapes
displayed in “show me what you’re thinking” mode. For
example, the designer could drag the head of an arrow
from one place to another.
 Finally, designers currently have no way to override the
generalization rules in effect for their game. A simple
mechanism for either asking before applying the rule or
undoing the generalization afterward would be useful.

Acknowledgments
We thank Prof. J. Rosenthal at the U. of Toronto for his
soccer game code and www.bennychow.com for the Pac-
Man code. Special thanks to Damián Isla for inspiring this
project and for his feedback throughout.

References
Anthony, L. and Wobbrock, J. O. 2010. A Lightweight
Multistroke Recognizer for User Interface Prototypes. In Proc.
Graphics Interface, Toronto, Canada, pp. 245-252.
Bassett, J.; Becroft, D.; and Mejía, A. 2011. AIPaint: A Sketch-
Based Behavior Tree Authoring Tool, Project Report CR1-1001,
Worcester Polytechnic Institute, Worcester, MA.
Fu, D. and Houlette, R. 2002. “Putting AI in Entertainment: An
AI Authoring Tool for Simulation and Games. IEEE Intelligent
Systems vol. 17, no. 4, pp. 81-84.
Heckel, F. W. P.; Youngblood, G. M.; and Hale, D. H. 2009.
BehaviorShop: An Intuitive Interface for Interactive Character
Design. In Proceedings of the Fifth Artificial Intelligence for
Interactive Digital Entertainment Conference, pp. 46-51.
Hecker, C. 2008. Structure vs. Style. Game Developers
Conference. http://chrishecker.com/Structure_vs_Style (accessed
2011).
Isla, D. 2005. Handling Complexity in the Halo 2 AI. Game
Developers Conference. http://www.gamasutra.com/gdc2005/
features/20050311/isla_01.shtml (accessed 2011).
Smith, D.; Cypher, A.; and Tesler, L. 2000. Programming by
Example: Novice Programming Comes of Age, Comm. ACM,
43(3).

