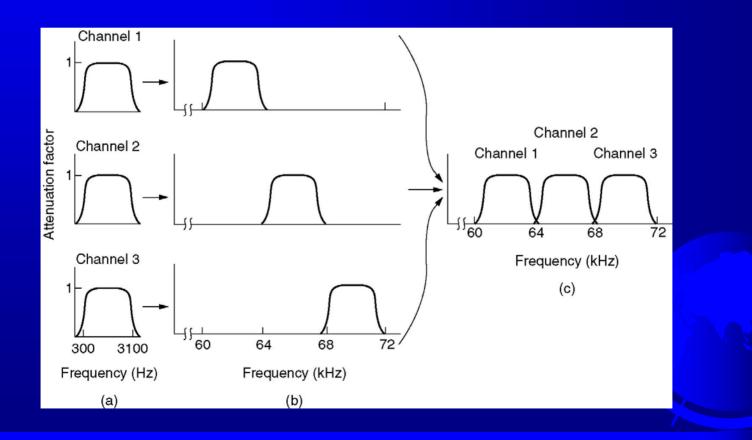


Computer Networks

Medium Access Sublayer (Part I)

Topics

- Introduction
- Multiple Access Protocols
- Thernet The Barbon Street
- Wireless LAN Protocols
- Bridges
- Misc (brief)
 - High-Speed LANs
 - Satellite Networks



Introduction

- Remember, two categories of networks
 - point-to-point
 - broadcast
- Key issue is who gets channel
 - example: 6-person conference call
- The Many protocols to decide
- Medium Access Control sublayer
 - lower part of data-link layer, but easier here
- Many LANs multiaccess
 - satellites, too

Fixed Channel Allocation

Static channel allocation– FDM, TDM

FDM

- Time delay T
- Capacity C bps
- rightarrow Arrival rate λ frames/sec
- Frames mean 1/μ bits

Divide into N channelsEach channel C/N bps

TDM is the same

$$T = \frac{1}{\mu C - \lambda}$$

$$T = 1$$

$$\mu(C/N) - (\lambda/N)$$

$$= N$$

$$\mu C - \lambda$$

$$= NT$$

Dynamic Channel Allocation in LANs and MANs: Assumptions

Station Model

– N independent stations

- Single Channel Assumption.
 - One shared channel for transmission
- Collision Assumption.
 - garbled if transmissions overlap
- (a) Continuous Time.
 - (b) Slotted Time.
- (a) Carrier Sense.(b) No Carrier Sense.

Multiple Access Protocols

- ALOHA
- Carrier Sense Multiple Access Protocols
- Collision-Free Protocols
- Limited-Contention Protocols
- Wireless LAN Protocols

ALOHA - A Family of Contention Protocols

- 1970's, Abramson
- The second secon
- Ground based broadcasting, packet radio
 - generalizes to uncoordinated users competing for single, shared channel
- Pure ALOHA
 - no time slots
- Slotted ALHOA
 - time slots for frames

Pure ALOHA

Transmit whenever you want

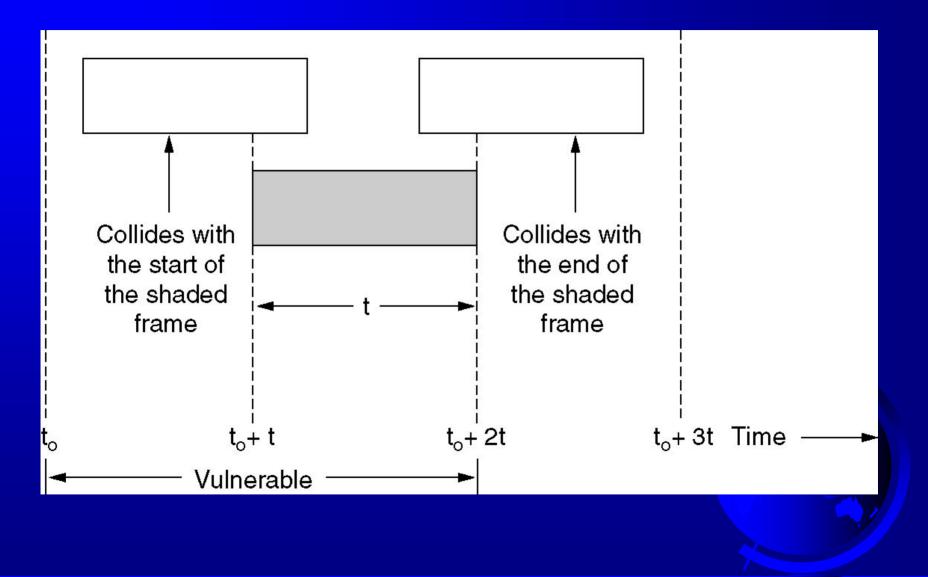
User	
Α	
В	
С	
D	
E	
	Time —

- Detect collisions after sending
 - checksum error
- If collision, wait random time and retry

Pure ALOHA == Pure Chaos?

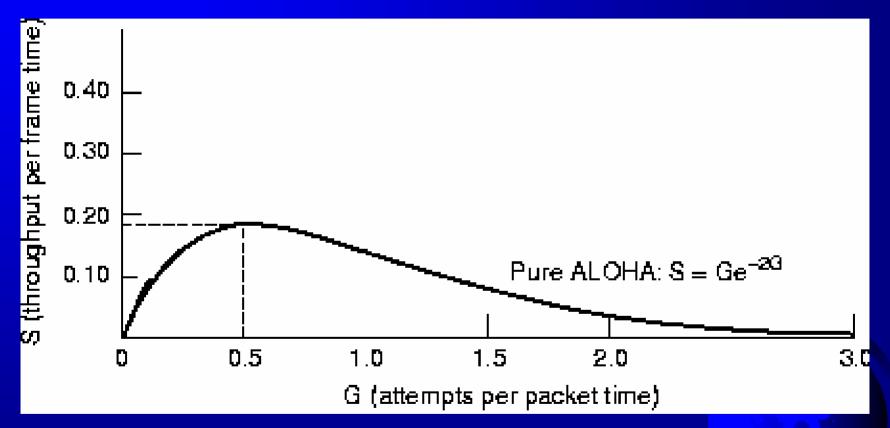
- Assume infinite collection of stations
- Users in two states: typing or waiting
- The User typing a line. When done, transmit it.
 - user *waiting* for response. When done, *typing*.
- *frame time* is time to put frame on wire
 - frame length / bit rate (fixed frame length)
- The Mean number of new frames per frame time -N
 - What does N > 1 mean?

Analysis of Pure ALOHA


- Stations also re-generate collided frames
 - -G is old plus new frames
 - -G > N? G = N? G < N?
- \sim High load, many collisions: G > N
- Throughput per frame time is G times probability of frame having zero collisions:

 $S = G P_0$

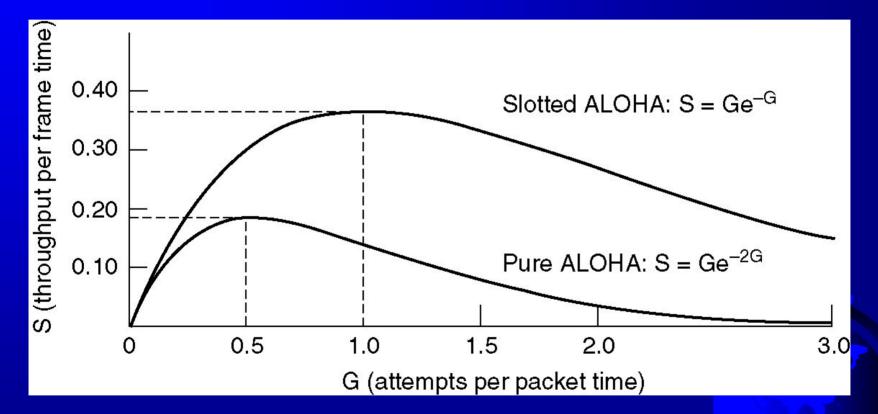
- ex: G=.5, $P_0=.5$ so S=.25


- Note: P_0 is probability of successful transmission

Frame Collisions

Analysis of Pure ALOHA (cont.) Probability k frames generated per frame time $G^k e^{-G}$ $\Pr[k] = \cdots$ k! $Pr[0] = e^{-G}$ \sim Need two frame times empty, 2G generated - for two slots, $Pr[0] = e^{-2G}$ \sim Using S=GP₀, throughput per frame time $S = Ge^{-2G}$

Pure ALOHA Offered Load vs. Throughput



Max at G = 0.5, S = 1/2e, only about 0.184 (18%)!
– Can we do better?

Slotted ALOHA

- Divide time into intervals, one for each frame Stations agree upon time intervals – one can "pip" as time keeper, like a clock Users transmit only at beginning of slot See Need one frame time to be empty, G generated - for one slot, $Pr[0] = e^{-G}$ Throughput
 - $S = Ge^{-G}$

Slotted ALOHA Offered Load vs. Throughput

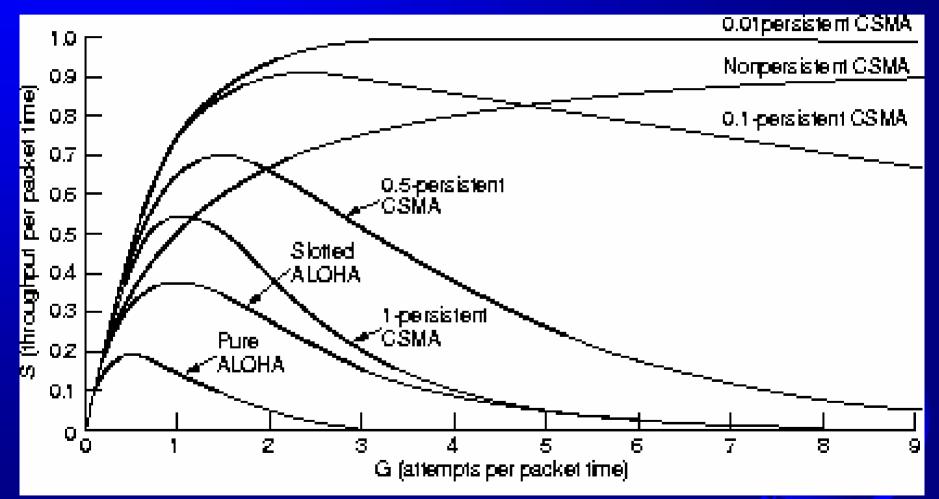
This is *not* Ethernet! \bigcirc Max at G = 1, S = 1/e, only about 0.368 (37%) - This is *not* Ethernet!

Last Thoughts on Slotted ALOHA

- ☞ Best (G = 1):
 - 37% empty
 - 37% success
 - 26% collisions
- Raising G, reduces empties but increases collisions exponentially
- Expected transmissions (includes original) $\mathbf{E} = \mathbf{e}^{\mathbf{G}}$

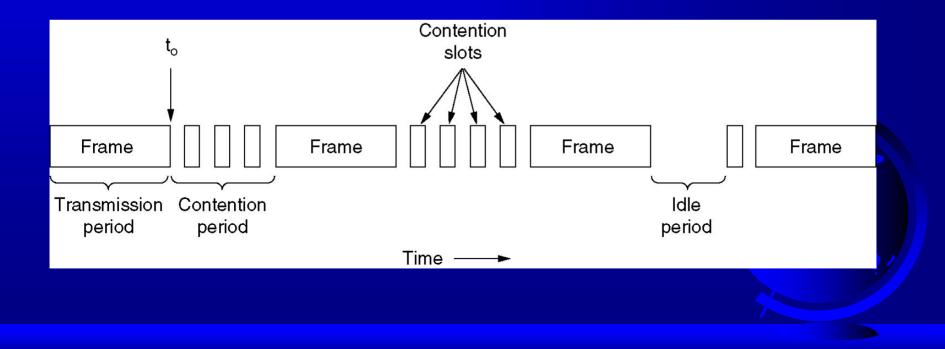
− G=0, then 1 transmission; G=1 then 2.X trans.
Small increase in load, big decrease in perf

Carrier Sense Multiple Access -CSMA Protocols


- Sending without paying attention is obviously limiting
- The In LANs, can detect what others are doing
- Stations listen for a transmission
 - *carrier sense protocols*

- detect, send at first chance
- wait if another sending
- longer delay, more collisions
- *mon-persistent* CSMA
 - if empty, send
 - if not, less greedy, waits random time then repeats
 - fewer collisions, longer delay
- *p-persistent* CSMA
 - if empty, sends with probability p
 - defers with probability q = 1 p

Carrier Sense Multiple Access



CSMA with Collision Detection

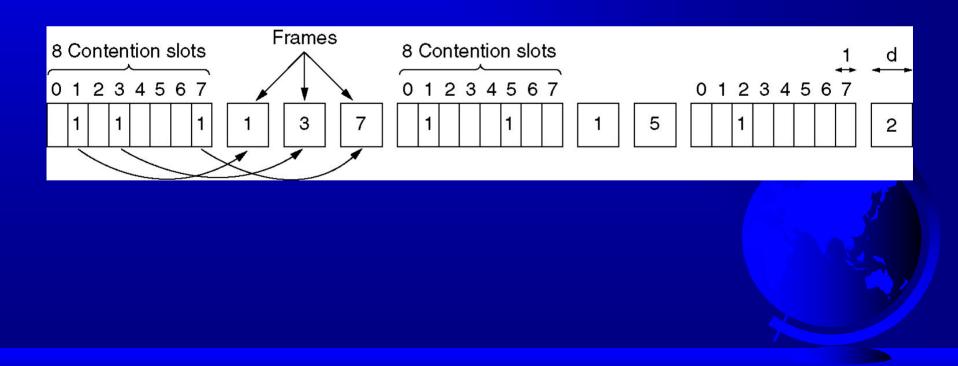
If detect collision, stop transmitting

 frame will be garbled anyway

 CSMA with Collision Detection (CD)

CSMA/CD Closing Comments

- How long until realize a collision? Time to travel length of cable? Why not?
- The Propogation τ , need 2τ to "seize" the line
- $rac{\sim}$ Model 2τ slot as slotted ALOHA
- \sim 1-km cable has $\tau \approx 5 \ \mu sec$
- Collision detection analog
 - special hardware encoding so can detect
- Does not guarantee reliable delivery
 Basis IEEE 802.3 (*Ethernet*)


Collision-Free Protocols

- Collisions still occur in CSMA/CD
- \sim More so when "wire" long (large τ)
- Short frames, too, since contention period becomes more significant
- The Want collision free protocols
- Need to assume N stations have numbers
 0 to (N-1) wired in

Bit-Map Protocol

Have N contention slots
Station N puts 1 in slot N-1, else 0

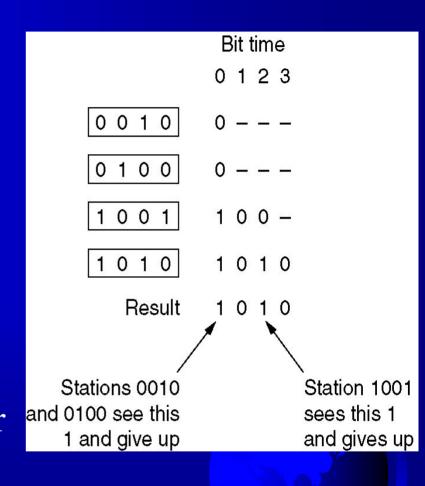
ex: station 0 wants to send, 1 in 0th slot

Bit-Map Protocol Performance

- *N* contention slots, so *N* bits overhead /frame
- ☞ d data bits
- Station wants to transmit, waits
 - Low numbered: avg N/2 slots (current) + N for next
 - High numbered: avg. N/2
 - Combined avg. delay: N
- Fificiency under low load (1 sending):
 - d/(N+d)
 - average delay: N/2
- Figh load (N sending): can prorate overhead
 - d/(d+1)
 - average delay: N(d+1)/2

Where the Heck Were We?

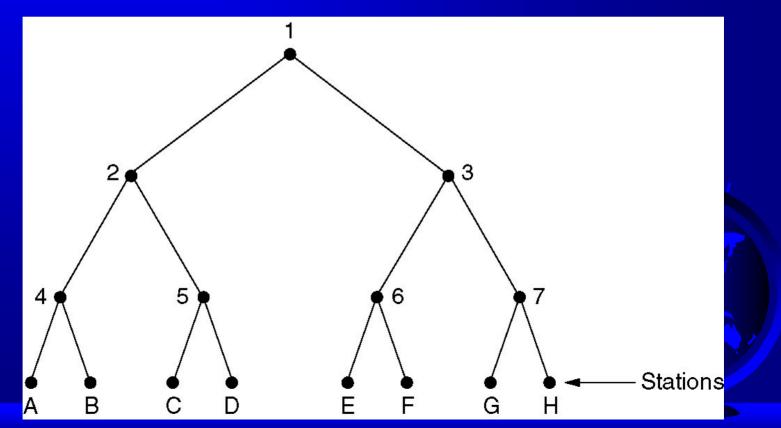
Introduction Multiple Access Protocols - contention - collision-free **Ethernet Wireless LAN Protocols Bridges** Misc (brief) - High-Speed LAN



Binary Countdown

Instead of 1 bit per station, encode in binary - transmit address in binary Assume all stations see inserted bits instantaneously When multiple transmit, OR together When a station sees high-order 1 bit where it has a zero, it gives up

Binary Countdown Performance

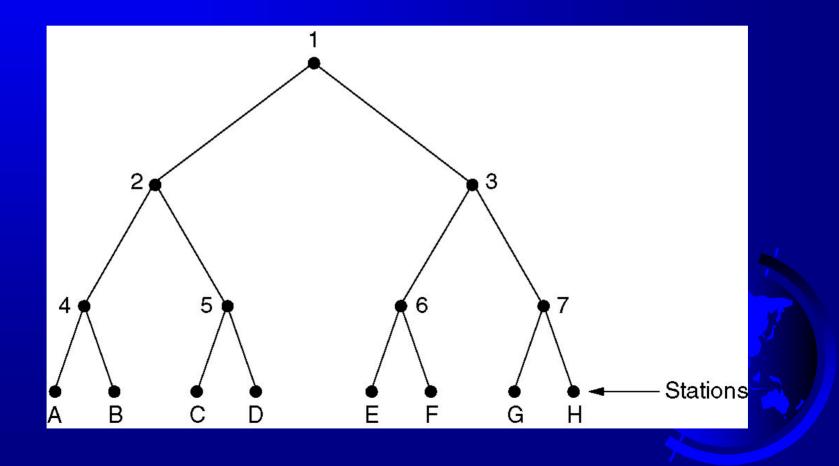

- $rac{}{}$ Efficiency: d/(d+log_2N)
- Sender address as first field and no overhead
- Fairness/Unfairness?
 - Mok and Ward (1979): Use virtual station numbers
 - C,H,D,A,G,B,E,F are 7,6,5,4,3,2,1,0
 - D sends: C,H,A,G,B,E,F,D

Contention vs. Collision-Free

- Contention better under low load. Why?
- Collision-free better under high load. *Why*?
- Hybrid: limited contention protocols
- Instead of symmetric contention, asymmetric
- Divide into groups. Each group contents for same slot.
- The How to assign to slots?
 - 1 per slot, then collision free (Binary Countdown)
 - All in same slot, then contention (CSMA/CD)

Adaptive Tree Walk Protocol

- The U.S. Army test for Syphilis
 - Test group, if negative all ok
 - If positive, then split in two and re-test



Adaptive Tree Walk Protocol

Where to begin searching (entire army?) - if heavily loaded, not at the top since there will always be a collision ☞ Number levels 0, 1, 2 ... \sim At level *i*, $1/2^{i}$ stations below it - ex: level 0, all stations below it, 1 has 1/2 below... $rac{}$ If q stations want to transmit, then $q/2^i$ below Want number below to be 1 (no collisions) $-q/2^{i} = 1, i = \log_{2} q$

Other Improvements

If collision at 1, 2 idle, do we need to search 3?

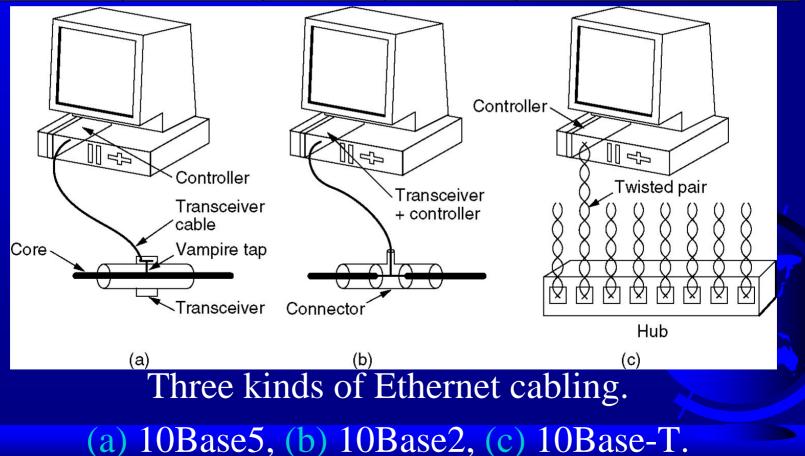
Heck, Here We Are

- Multiple Access Protocols
 - contention
 - collision-free
- Thernet The Barbon Street
- Wireless LAN Protocols
- Bridges
- Misc (brief)
 - High-Speed LANs
 - Satellite Networks

Ethernet

- Ethernet Cabling
- Manchester Encoding
- The Ethernet MAC Sublayer Protocol
- The Binary Exponential Backoff Algorithm
- Ethernet Performance
- Switched Ethernet
- Fast Ethernet
- Gigabit Ethernet
- IEEE 802.2: Logical Link Control

Ethernet (IEEE 802.3)


- Began as ALOHA, added carrier sense
- Content of the second secon
 - old scientist dudes thought waves propagated through substance called "ether", so a geeky joke
- Serox, DEC and Intel made 10 Mbps standard
 - 1 to 10 Mbps
 - not "Ethernet", but close enough

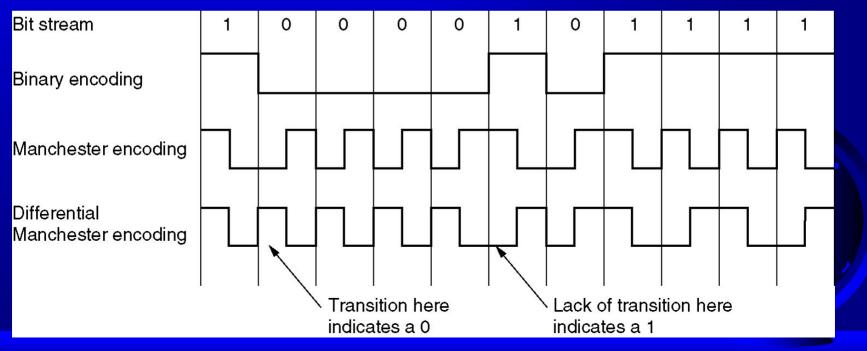
Ethernet Cabling


- IOBase5 "Thick Ethernet"
 - 10 Mbps, 500 meters
- IOBase2 "Thin Ethernet" or "Thinnet"
 - BNC connectors, or T-junctions
 - Easier and more reliable than 10Base5
 - But only 200 meters and 30 stations per segment
- All on one line, then difficult to find break
 - domain reflectometry
 - hubs
- IOBaseT (Twisted pair)
- IOBaseF (Fiber)

Kinds of Ethernet Cabling

Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2000 m	1024	Best between buildings

Cable Topologies

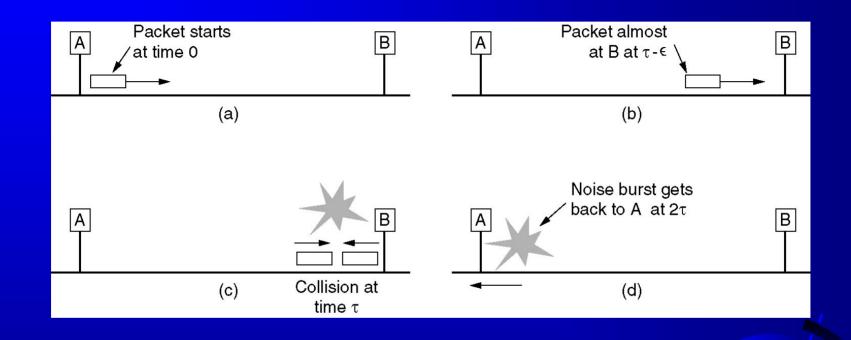


Cable topologies. (a) Linear, (b) Spine, (c) Tree, (d) Segmented. Repeaters?

Encoding

O volts for 0 and 5 volts for 1 can be misleading

- Want start, middle and end of each bit without reference to external clock
 - Manchester Encoding
 - Differential Manchester Encoding uses changes



Ethernet Protocol

- Preamble: 10101010 to allow clock synch
- Start of Frame: 10101011
- Source and Destination addr: 2 or 6 bytes
 - 1 for high order bit means "multicast"
 - all 1's means "broadcast"
- Center Length: data length, 46 to 1500
 - very small frames, problems, so pad to 46

Bytes	8	6	6	2	0-1500	0-46	4			
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum			
))					
(b)	Preamble S F	Destination address	Source address	Length	Data	Pad	Check- sum			
Frame formats. (a) DIX Ethernet, (b) IEEE 802.3.										

Short, Short Frames

rightarrow Frame must be $> 2\tau$

Otherwise, how to tell collision from short frame?

Collision Action?

- $racking Each slot of length 2\tau$
- The second secon
- The second secon
- \sim If another collision, then wait 0 to 2³-1 slots
- \sim After *i* collisions, wait 0 to 2ⁱ-1 slots
 - called binary exponential backoff
 - why is this a good idea? Consider other options
- After 10 collisions, wait 0 to 1023 slots
- After 16 collisions, throw in the towel

Now, Where Were We?

Introduction
Multiple Access Protocols
IEEE 802 Standard

Ethernet (802.3)

Wireless LAN Protocols
Misc

