Characterization of 802.11 Wireless Networks in the Home

Mark Yavis, Konstantina Papagiannaki, W. Steven Conner

Presented by: Rick Skowyra Paul Freitas

Outline

- Background
 - Motivation
 - Related Work
- Experimental Environment
 - Variables
 - Validation
- Results
- Conclusions

Motivation for Study

- Wireless Access Point deployment studied in commercial environment
- Home WLANs are considered less challenging to design
 - Little evidence supports this claim
 - Assumption needs to be investigated

Related Work

- Large Campus Networks
 - Kotz and Essien 2002
 - 475 access point WLAN
 - User traffic characteristics analyzed
 - Aguayo, et al. 2004
 - o 38 node 802.11b mesh network
 - Low correlation between loss rate and distance

Related Work (cont)

- Zhao and Govindan 2003
 - 60 nodes in different environments
 - "many links operate in a 'grey area' with difficult to predict intermediate loss rates and performance"

Factors Investigated

- Type of house
- Wireless standard used
- Transmission Power
- Transmission Rate
- Node Location
- Interference

Outline

- Background
 - Motivation
 - Related Work
- Experimental Environment
 - Variables
 - Validation
- Results
- Conclusions

Setup

- o 6 Nodes
- Ad Hoc network
- At least 5 channels from nearest occupied frequency
- No retransmissions
- No simultaneous transmissions

Probe Packets

- Each node sends probe packet to all other nodes
- o Probe Packet:
 - 1024 bytes
 - UDP
- 300 packets sent over 150 seconds

Methodology

 Tests performed in three different homes

Description of homes used in experimental testbeds.

Label	Size (ft²)	Construction	# Floors	# Nodes
ushomel	2,500	Wood	2	6
ushome2	2,000	Wood	2	6
ukhomel	1,500	Brick / steel	3	6

 802.11a and 802.11b protocols tested under varying transmission rates and powers

Node Deployment

2nd floor 6 7 2 2 2 1 3 Layout 2 ushome 2

Variables

- o 802.11a
 - txrate: 6Mbps, 18Mbps, 36Mbps, 54Mbps
 - txpower: 30mW
- o 802.11b
 - txrate: 2Mbps, 11Mbps
 - txpower: 1mW, 30mW

Validation

- 150 seconds is a sufficient time frame
 - Estimate of success rate over 20 minute period

- Time of day not a factor
- Represents actual link characteristics
 - Multiple trials at same time of day

Outline

- Background
 - Motivation
 - Related Work
- Experimental Environment
 - Variables
 - Validation
- o Results
- Conclusions

Overall Characteristics

ushome1 at 30mW and 2Mbps

- Asymmetry
- Bursty errors
- High loss for at least one pair of nodes

Large Changes in Node Location

Small Changes in Antenna Location and Orientation

Small Changes in Antenna Location and Orientation (cont)

Small Changes in Antenna Location and Orientation (cont)

Link Quality vs. Distance

ukhome1

ushome1

ushome2

Analysis of Changes in Antenna Location and Orientation

- Small changes more important than distance
 - Obstacles influence multipath fading and attenuation
 - More effect on link quality
- High data rate, low transmission power, resulted in lower link quality
 - Bad connections tend to stay bad

Interference

- Microwave
 - Broadspectrum interference
- Extreme shortrange interference
 - Shielding at 0ft negated some interference?
- Negligible at distances greater than 2ft

Impact of a 600W microwave on a receiver at varying distance from the interference source and a distance of 15ft from the sending unit

802.11a vs. 802.11b

802.11a vs. 802.11b

- "Binary" Behavior
- Potentially better performance in home applications
- 54Mbps has very poor link quality

Conclusions

- Placement of a wireless access point in the home is more difficult than normally assumed
 - Precise node alignment is critical
 - Distance is less important
 - External interference from appliances must be taken into account
- 802.11a may be more suitable for home environments
 - Shorter range than 802.11b
 - Better link quality