

TinyOS
Applications

Advanced Computer Networks

TinyOS Applications Outline

 AntiTheft Example {done in gradual pieces}
– LEDs, timer, booting

 Sensing Example
– Light Sensor

– Wiring to AntiTheft

 Single Hop Networks
– Active Messages interface

– Sending packets

– Receiving packets

Advanced Computer Networks TinyOS Applications 2

AntiTheft Example [List 6.1]

module AntiTheftC {

 uses {

 interface Boot;

 interface Timer <Tmilli> as WarningTimer;

 interface Leds;

 }

}

implementation {

 enum { WARN_INTERVAL = 4096, WARN_DURATION = 64 };

can only declare integer constants

Advanced Computer Networks TinyOS Applications 3

AntiTheft Example [List 6.1]

event void WarningTimer.fired () {

 if (call Leds.get () & LEDS_LED0)

 { /* Red LED is on. Turn it off, will switch on
 again in 4096 – 64 ms. */

 call Leds.led0Off ();

 call WarningTimer.startOneShot (WARN_INTERVAL –

 WARN_DURATION);

 }

 else

 { // Red LED is off. Turn it on for 64 ms.

 call Leds.led0On ();

 call WarningTimer.startOneShot (WARN_DURATION);

 }

}

Advanced Computer Networks TinyOS Applications 4

event void Boot.booted () {

 /* We just booted. Perform first

 LED transition */

 signal WarningTimer.fired ();

 }

}

interface Leds { [List 6.2]

…

 async command void led0On ();

 async command void led0Off ();

 async command uint8_t get ();

}

AntiTheft Example [List 6.1]

software signal

Advanced Computer Networks TinyOS Applications 5

AntiTheft configuration [List 6.6]

configuration AntiTheftAppC { }

implementation {

 components AntiTheftC, MainC, LedsC;

 components new TimerMilliC () as WTimer;

 AntiTheftC.Boot -> MainC;

 AntiTheftC.Leds -> LedsC;

 AntiTheftC.WarningTimer -> WTimer;

}

 Advanced Computer Networks TinyOS Applications 6

Sensing Example

 TinyOS provides two standard interfaces
for reading sensor samples:
– Read :: acquire a single sample.

– ReadStream :: sample at a fixed rate.

interface Read <val_t> {

 command error_t read ();

 event void readDone (error_t, val_t val);

}

Advanced Computer Networks TinyOS Applications 7

Sensing Example [List 6.8]

Anti-theft Example: detecting dark conditions

module DarkC {

 uses {

 interface Boot;

 interface Leds;

 interface Timer<TMilli> as TheftTimer;

 interface Read<uint16_t> as Light;

 }

}

Advanced Computer Networks TinyOS Applications 8

Sensing Example [List 6.8]

implementation {

 enum { DARK_INTERVAL = 256, DARK_THRESHOLD = 200};

 event void Boot.booted () {

 call TheftTimer.startPeriodic (DARK_INTERVAL);

 }

 event void TheftTimer.fired () {

 call Light.read (); //Initiate split-phase light sampling

 }

Advanced Computer Networks TinyOS Applications 9

samples four times per second

Sensing Example [List 6.8]

/* Light sample completed. Check if it is a theft. */

 event void Light.readDone (error_t ok, uint16_t val)
{

 if (ok == SUCCESS && val < DARK_THRESHOLD)

 call Leds.led2On (); /* Theft Alert! Alert! */

 else

 call Leds.led2Off(); /* Don’t leave LED on */

 }

}

Advanced Computer Networks TinyOS Applications 10

Sensor Components

 Sensors are represented in TinyOS by
generic components, e.g., PhotoC for
the light sensor on the mts310 board.

 A single component usually represents
a single sensor:

generic configuration PhotoC () {

 provides interface Read<uint16_t>;

}

Advanced Computer Networks TinyOS Applications 11

AntiTheft Light Sensor Wiring [List 6.9]

configuration AntiTheftAppC { }

implementation {

… /* the wiring for the blinking Red LED */

 components DarkC, MainC, LedsC;

 components new TimerMilliC () as TTimer;

 components new PhotoC ();

 DarkC.Boot -> MainC;

 DarkC.Leds -> LedsC;

 DarkC.TheftTimer -> TTimer;

 DarkC.Light -> PhotoC;

}

Advanced Computer Networks TinyOS Applications 12

Single Hop Networks

 TinyOS uses a layered network
structure where each layer defines a
header and footer layout.

 The lowest exposed network layer in
TinyOS is called active messages (AM).

 AM is typically implemented directly
over a mote’s radio providing unreliable,
single-hop packet transmission and
reception.

Advanced Computer Networks TinyOS Applications 13

Single Hop Networks

 Packets are identified by an AM type, an 8-
bit integer that identifies the packet type.

 ‘Active Messages’ indicates the type is used
automatically to dispatch received packets to
an appropriate handler.

 Each packet holds a user-specified payload of
up to TOSH_DATA_LENGTH bytes (normally 28
bytes)**.

 A variable of type message_t holds a single
AM packet.

** changeable at compile time.

 Advanced Computer Networks TinyOS Applications 14

Platform-Independent Types

 TinyOS has traditionally used structs to
define message formats and directly
access messages.

 Platform-independent structs are
declared with nx_struct and every field
of a platform-independent struct must
be a platform-independent type.

nx_uint16_t val ; // A big-endian 16-bit value

nxle_uint32_t otherval; // A litte-endian 32-bit value

Advanced Computer Networks TinyOS Applications 15

TinyOS 2.0 CC2420 Header [List 3.32]

 typedef nx_struct cc2420_header_t ** {

 nxle_uint8_t length;

 nxle_uint16_t fcf;

 nxle_uint8_t dsn;

 nxle_uint16_t destpan;

 nxle_uint16_t dest;

 nxle_uint16_t src;

 nxle_uint8_t type;

 } cc2420_header_t;

The CC2420 expects all fields to be little-endian.

Advanced Computer Networks TinyOS Applications 16

Theft Report Payload
Modifying anti-theft to report theft by
sending a broadcast message

Platform-independent struct in the
antitheft.h header file:

#ifndef ANTITHEFT_H

#define ANTITHEFT_H

typedef nx_struct theft {

 nx_uint16_t who;

} theft_t;

…
#endif

struct to define payload

Advanced Computer Networks TinyOS Applications 17

AMSend Interface [List 6.12]

 Contains all the commands needed to fill in and
send packets:

interface AMSend {

 command error_t send (am_addr_t addr, message_t*
 msg, uint8_t len);

 event void sendDone (message_t* msg, error_t error);

 command error_t cancel (message_t* msg);

 command uint8_t maxPayLoadLength ();

 command void* getPayLoad (message_t* msg, uint8_t len);

}

Node’s AM address (usually) = TOS_NODE_ID

 Advanced Computer Networks TinyOS Applications 18

Sending Report-Theft Packets [List 6.13]
uses interface AMSend as Theft;

…

message_t reportMsg; //theft report message buffer

bool sending; //Do not send while a send is in progress

void reportTheft () {

 theft_t* payload = call Theft.getPayload (&reportMsg,

 sizeof (theft_t));

 if (payload && !sending)

 { //If Payload fits and we are idle – Send packet

 payload->who = TOS_NODE_ID; //Report being stolen!

 //Broadcast the report packet to everyone

 if (call Theft.send (TOS_BCAST_ADDR, &reportMsg,

 sizeof (theft_t)) == SUCCESS)

 }

}

 Advanced Computer Networks TinyOS Applications 19

event void Theft.sendDone (message_t *msg,

 error_t error) {

 sending = FALSE; //Our send completed

}

Called from MovingC

if (variance > ACCEL_VARIANCE * ACCEL_NSAMPLES)

 {

 call Leds.led2On () ; /* Theft Alert */

 reportTheft ();

 }

Sending Report-Theft Packets [List 6.13]

Advanced Computer Networks TinyOS Applications 20

Generic AMSenderC configuration

generic configuration AMSenderC (am_id_t AMId) {

 provides {

 interface AMSend;

 interface Packet;

 interface AMPacket;

 interface PacketAcknowledgements as Acks;

 }

}

Advanced Computer Networks TinyOS Applications 21

Communication Stack

Cannot switch itself on and off on-
demand, and needs the SplitControl
interface to start and stop the radio:

interface SplitControl { [List 6.14]

 command error_t start ();

 event void startDone (error_t error);

 command error_t stop ();

 event void stopDone (error_t error);

}

Advanced Computer Networks TinyOS Applications 22

MovingC using SplitControl
uses interface SplitControl as CommControl;

…

event void Boot.booted () {

 call CommControl.start () ;

}

event void CommControl.startDone (error_t ok) {

 //Start checks once communication stack is ready

 call TheftTimer.startPeriodic (ACCEL_INTERVAL);

}

event void CommControl.stopDone (error_t ok) { }

 Advanced Computer Networks TinyOS Applications 23

Moving C Receiving Packet

 MovingC receives a packet payload (defined
as a struct contained in a header file
antitheft.h) that contains acceleration
settings for detecting movement of the
mote:

typedef nx_struct settings {

 nx_uint16_t accerVariance;

 nx_uint16_t accelInterval;

} settings_t;

struct to define payload

Advanced Computer Networks TinyOS Applications 24

AM Packet Reception

 Provided by the TinyOS Receive interface:

interface Receive {

 event message_t* receive(message_t* msg,

 void* payload, uint8_t len);

}

Receive.receive, as a receive “handler”, receives a packet
buffer which it can simply return or return as a
different buffer if the handler wants to hold onto
buffer.

Advanced Computer Networks TinyOS Applications 25

MovingC Receiving Packet [List 6.16]

uses interface Receive as Setting;

…

uint16_t accelVariance = ACCEL_VARIANCE;

event message_t* Settings.receive (message_t *msg,

 void *payload, uint8_t len) {

 if (len >= sizeof (settings_t)) //Check for valid packet

 { /* Read settings by casting payload to settings_t,

 reset check interval */

 settings_t *settings = payload;

 accelVariance = setting->accelVariance;

 call TheftTimer.startPeriodic (setting->accelInterval);

 }

 return msg;

}

Advanced Computer Networks TinyOS Applications 26

Selecting a Communication Stack
 Need to wire to the components representing
the desired communications stack.

configuration ActiveMessageC {

 provides interface SplitControl;

 …

}

generic configuration AMSenderC (am_id_t id) {

 provides interface AMSend;

 …}

generic configuration AMReceiverC (am_id_t id) {

 provides interface Receive;

 …}

 Advanced Computer Networks TinyOS Applications 27

TinyOS Applications Summary

 AntiTheft Example
– LEDs, Timer, Boot

– get, enum

 Sensing Example
– Light Sensor

– Read (split-phase)

– Wiring to AntiTheft

– Two Timer instances

 Advanced Computer Networks TinyOS Applications 28

TinyOS Applications Summary

 Single Hop Networks
– Active Messages, typed messages

– Platform-independent types

 Sending packets
– AMSenderC generic configuration

– SplitControl of Radio Stack

– Structs for packet payloads

 Receiving packets
– Implemented as a receive event handler.

Advanced Computer Networks TinyOS Applications 29

